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Abstract

As the complexity of our data increased exponentially in the last decades, so has our

need for interpretable features. This thesis revolves around two paradigms to approach

this quest for insights.

In the first part we focus on parametric models, where the problem of interpretabil-

ity can be seen as a “parametrization selection”. We introduce a quantile-centric

parametrization and we show the advantages of our proposal in the context of regres-

sion, where it allows to bridge the gap between classical generalized linear (mixed)

models and increasingly popular quantile methods.

The second part of the thesis, concerned with topological learning, tackles the

problem from a non-parametric perspective. As topology can be thought of as a way

of characterizing data in terms of their connectivity structure, it allows to represent

complex and possibly high dimensional through few features, such as the number of

connected components, loops and voids. We illustrate how the emerging branch of

statistics devoted to recovering topological structures in the data, Topological Data

Analysis, can be exploited both for exploratory and inferential purposes with a special

emphasis on kernels that preserve the topological information in the data.

Finally, we show with an application how these two approaches can borrow strength

from one another in the identification and description of brain activity through fMRI

data from the ABIDE project.

Acknowledgements

I am forever in debt with Håvard Rue for his help and his hospitality. I would also like

to acknowledge Peter Congdon for providing the hospitalization for self harm data

used in Section 1.7.1 and Bertrand Michel for referring to the Fullerenes analysed in

Section 3.2.

Special thanks go to the reviewers Massimo Ventrucci and Larry Wasserman for

their valuable comments and constructive feedback.





Introduction

This thesis is based on two main pillars: Quantile Regression and Topological Data Analysis.

Quantile Learning The first part of the thesis revolves around Quantile Regression, a
supervised technique aimed at modeling the quantiles of the conditional distribution of
some response variable. With respect to “standard” regression, which is concerned with
modeling the conditional mean, Quantile Regression is especially useful when the tails of
the distribution are of interest, as for example when the focus is on extreme behavior rather
than average, or when it is important to assess whether or not covariates a�ect uniformly
di�erent levels of the population.

Even though the idea dates back to Galton (1883) (as noted in Gilchrist (2008)), Quantile
Regression was formally introduced only relatively recently by Koenker and Bassett (1978).
Since then, the use of quantiles in regression problems has seen an impressive growth and has
been thoroughly explored in both the parametric (see Yue and Rue (2011), Wang, McKeague,
and Qian (2017)), and non-parametric framework (see Yu and Jones (1998), Takeuchi et al.
(2005), Li and Racine (2007)) with applications ranging from the Random Forest Quantile
Regression of Meinshausen (2006) to D-vine copulas for quantiles in Kraus and Czado (2017),
through Quantile Regression in graphical models as in Ali, Kolter, and Tibshirani (2016).

One of the most significant developments in the Quantile Regression literature has been
the introduction of the Asymmetric Laplace Distribution (ALD) as a working likelihood
Yu and Moyeed (2001). From a frequentist point of view, the use of the ALD gave rise to
a class of likelihood based method for fitting quantile models and has been instrumental
in introducing random e�ects in linear and non linear Quantile Regression models; see for
example Geraci and Bottai (2007), Geraci and Bottai (2014), Geraci (2017) or Marino and
Farcomeni (2015) for a more comprehensive review. The introduction of the ALD has been
even more critical in the Bayesian framework, where the likelihood is required in inferential
procedure Yu and Moyeed (2001). As a result, fully bayesian versions of Quantile Regression,
such as the additive mixed Quantile model of Yue and Rue (2011), as well as Quantile
Bayesian Lasso and Quantile Bayesian Elastic Net, have been developed in the last couple
of years, examples being Alhamzawi, Yu, and Benoit (2012) or Li, Xiy, and Lin (2010).
Extensions of the Asymmetric Laplace Distribution such as the Asymmetric Laplace Process
(Lum and Gelfand (2012)), broadened Quantile Regression to spatially dependent data.
Despite their popularity however, ALD based methods are not always satisfactory, especially
in terms of uncertainty quantification. The use of the ALD introduces an unidentifiable
parameter in the posterior variance, hence any inference beside point estimation is precluded
(Yang, Wang, and He 2016).
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We propose a model-based approach for Quantile Regression that considers quantiles of
the generating distribution directly, and thus allows for a proper uncertainty quantification.
We then create a link between Quantile Regression and generalized linear models by mapping
the quantiles to the parameter of the response variable. This formulation not only recast
Quantile Regression in a much more cohesive setting and overcomes the fragmentation
that characterizes the Quantile Regression literature, but it is also key to an e�cient and
ready-to-use fitting procedure, as the connection allows to estimate the model using R-INLA
(Rue, Martino, and Chopin (2009) and Rue et al. (2017)).

Additionally, we extend our model based approach in the case of discrete responses,
where there is no 1-to-1 relationship between quantiles and distribution’s parameter, by
introducing continuous generalizations of the most common discrete variables (Poisson,
Binomial and Negative Binomial) to be exploited in the fitting.

Topological Learning In the second part of the thesis we focus on Topological Data
Analysis (TDA), a rapidly growing branch of statistics whose aim is estimating topological
invariants of unobserved manifolds, typically (but not exclusively) through point–clouds
sampled on them. TDA can be seen as a way of uncovering the “shape of the data” in terms
of their topology. As topology is a rather broad definition of shape, which is focused on the
connectivity structure, TDA methods are intrinsically related with clustering, making them a
great exploratory tool for high dimensional and highly complex data.

TDA has a relatively short history, being based on Persistent Homology Groups, topo-
logical invariants introduced only at the beginning of 2000 by Edelsbrunner, Letscher, and
Zomorodian (2002). The main tool of this class of methods, the Persistence Diagram, a
topological summary containing both topological features and a measure of their importance,
has been investigated from a statistical perspective even more recently (B. T. Fasy et al.
2014, Chazal, Glisse, et al. (2015)). While doing statistics on the Persistence Diagram has
yield positive results (Chazal, Fasy, et al. 2015), statistics using the Persistence Diagram
has proven to be more challenging, as even basic quantities such as the mean are not
easy to compute or to interpret (Turner et al. 2014). For this reason several alternative
representation of the Diagram, typically in the form of functional object, have been proposed
(Bubenik (2015), Adams et al. (2017) or Moon, Giansiracusa, and Lazar (2018) to name a
few examples).

We introduce a new topological summary for scale-spaces, the Persistence Flamelet,
which allows to extend TDA to the case of object that have multiple resolution, such as time
series, which depend on time, or smoothers in general, which involve a tuning parameter.
We investigate in particular the case of kernel density estimators, where the scale parameter
is the bandwidth, and we show how its topology changes with it. We prove that the Flamelet
is not just a visualization tool by characterizing it probabilistically and showing that Central
Limit Theorem and Law of Large Numbers hold for this new object.

Even though the impressive growth of TDA literature in the last couple of years has
yield several inference–ready tools, this hype has not yet been matched by popularity in the
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practice of data analysis, we thus focus on the potential of topological characterization as a
Learning tool, with a special emphasis on Supervised problems. In order to perform inference
using topological summaries, which are typically defined in spaces which are not amenable
to direct modelling, we adopt a kernel approach to recast the learning into more familiar
vector spaces. We define a topological exponential kernel, we characterize it, and we show
that, despite not being positive semi-definite, it can be successfully used in regression and
classification tasks. We examine in particular the former and we show how to use Persistence
Diagram as covariate and as responses in regression problems. Finally, we show preliminary,
yet encouraging, results of combining quantile methods with TDA to gain insights on brain
activity. Building on functional connectivity, which in the literature has been analysed
mostly with respect to its 0-dimensional structure, we show how TDA allows straightforwardly
to investigate higher dimensional features as well, and then we use the quantile methods
introduced in the first part of the thesis to better understand phenotypical determinants of
the topological structure.

A tale of two thesis? At a first glance, there is little in common between the two
topics themselves, as Quantile Regression is well established in “classical” statistics, while
Topological Data Analysis is an emerging research area at the boundary between Statistics
and Computational Topology. Our contributions also appear to go in opposite direction,
since we approach Quantile Regression from a model-based perspective, heavily relying on
parametric modelling to exploit fast and e�cient Bayesian fitting procedure (INLA), while
we opt for a parameter-free approach for Topological Inference, adopting classical tools
in non-parametric statistics such as kernels. Finally, from a computational standpoint,
thanks to INLA, we are providing extremely e�cient and extremely fast implementations in
the Quantile Regression setting, while, due to the indefiniteness of topological kernels, we
turn to non-e�cient solvers for classification problems using topological summaries, whose
computation is already very time-consuming.

At a closer look however, the contribution presented in this thesis are all trying to pursue
the same goal, that is interpretable characterization of data. Despite being at the core
of learning, interpretability is in fact not a uniquely defined concept but there are many
di�erent declinations of this notion, depending on the task and most importantly on the
information already available. Our contribution can be seen as as an attempt to enforce
interpretability at the two end of the spectrum of model knowledge, i.e. the case where we
know almost everything (that is, we have a parametric model for our data) and the case we
know almost nothing (i.e. we don’t even know the support of the data generating process).

From a parametric perspective, the interpretation typically goes through the parameters.
Our model-based approach to Quantile Regression can be thought of a way of reparametrizing
the model in terms of its quantiles. While the mean needs not to exist, the quantile are
always defined and they retain the same interpretation regardless of the complexity of the
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model considered, hence a parametrization in terms of quantiles can be thought of as a
“universal” parametrization.

The main argument against a parametrization based on quantiles may be that in the
discrete case quantiles still exist but are not unique, which is why we focus on the discrete
case, proposing a model-aware approach to overrule this objection.

As for the case where preliminary information is close to null, there may be even too many
ways of finding a meaningful characterization of data, but topological invariants stand out
for many reasons. The main one is of course their interpretability and the relevance of such
interpretable objects in statistical learning: topological features of dimension 0, connected
components, can in fact be thought of as clusters or peaks, while topological features
of dimension 1, loops, represent periodic structures. Another advantage of a topological
characterization is that it can be computed for most kind of data, from more standard
point-clouds, to functional data or networks, which is especially appealing in the era of
“complex data”. Finally, a topological characterization does not depend on the coordinates
of the data and it is rather robust with respect to deformation, which makes it very flexible.



Chapter 1

Model Based Quantile Regression

1.1 Motivation

Classical (mean) regression methods model the average behavior, which despite being an
useful summary measure, does not capture how the covariates may not a�ect in the same
way all levels of population. Quantile regression allows to quantify the e�ect of the covariates
at each di�erent quantile level, hence giving us a more complete picture of the phenomenon
in analysis. As a motivating example to understand the use of this class of methods, let us
consider data from the NBA 2016 ≠ 2017 season. For each of the 484 players in the NBA we
consider the following variables:

• Y: Points scored in the whole season
• X: Minute played per game (on average)
• E: Number of games played in the season

While in classical mean regression we would be interested in modeling conditional expectation
E[Y |X = x], thus analyzing the behavior of the average player, a Quantile Regression model
is concerned with the behavior of specific classes of players.

As opposed to (European) football, where only attacker scores, in basketball roles are
not as well defined and all the players may score, hence usually, ceteris paribus, players
that scores more are better players than those who score less. This implies that if – is the
quantile level, then Q–(Y |X = x) models the level – player:

• – = 0.50 median player
• – = 0.75 good player
• – = 0.25 bad player

We assume Y|X = x ≥ Poisson(⁄) and that the level – quantile of the number of points
scored depends on the minutes played, and adopt the following model for the level – quantile
of the conditional distribution of the response variable Q–(Y|X = x):

Q–(Y|X = x) = E exp{—–x}

where the exposure E is needed to take into account the fact that players that have played
more games have more chances to score. As we can see from Table 1.1, the e�ect of the
minutes played is very di�erent among the di�erent players’ groups, and how it compares to
the estimate for the average player.
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Quantile level – —̂– —̂–/—̂mean
0.01 0.01 0.08
0.25 0.01 0.09
0.50 0.06 0.63
0.75 0.06 0.65
0.99 0.09 1.03

Table 1.1: Estimated —– for di�erent quantile levels –.

It is no surprise that the time played by an all star player is more valuable in terms of
points scored, and, in fact, we an see that one minute played by a great player (– = 0.99)
is worth —0.99/—0.01 ¥ 13 times a minute played by a rather poor player (– = 0.01). What
may not be as obvious instead, is that the “average” player is not really representative, as
the estimate of — for the mean model is closer to the franchise players than to that of the
median player, which motivates us to explore regression methods beyond the mean.

0 10 20 30

0
50

0
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00
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00
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00
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Figure 1.1: Minutes on the court vs Points scored per player, size proportional
to the number of games played.
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Loss Function L(Y, r(X)) Regression Function rú(X)
Quadratic Loss (Y ≠ r(Y ))2 E[Y |X]

0 ≠ 1 Loss {Y ”= r(X)} Mode(Y |X)
Absolute Loss |Y ≠ r(X)| Median(Y |X)

Check Loss (Y ≠ r(X))(– ≠ {Y ≠ r(X) < 0}) Q–(Y |X)

Table 1.2: Most common loss functions and corresponding regression func-
tions.

1.2 A Decision theory intermezzo

The broad goal of regression methods is to explain a random variable Yi as a function of
observed and/or latent covariates X; in formulas

Y = r(X) + Á (1.1)

where Á is an error term which takes into account the randomness of the Y , while r(·), the
regression function, represents the deterministic part of the relation between the response and
the covariates. The regression function r(X) is a summary of the conditional distribution of
Y |X, chosen to minimize the expected loss (or risk) occurring when we neglect the error
term to explain Y , or, in other words, the deterministic term r(X) must be chosen so that,
on average, it is “close” to the random variable Y . If the loss is taken to be the quadratic
loss, i.e.

L(Y, r(X)) = (Y ≠ r(X))2

for example, then the regression function minimizing the risk is the conditional mean E[Y |X].
A di�erent loss function results in a di�erent interpretation of the deterministic term of the
regression, as shown in Table 1.2.

The choice of the check (or pinball) loss fl–(x) = x(– ≠ {x < 0}), a tilted version of the
absolute value, results in the regression function being the conditional quantiles.

rú(X) = arg min
r(X)

E[L(Y, r(X))]

= arg min
r(X)

E[fl–(Y ≠ r(X))]

= Q–(Y |X).

No loss function is uniformly better than the others, but each has di�erent strengths. The
advantage of the check loss over the quadratic loss (hence of Quantile Regression over mean
regression), for example, is that it gives a more complete picture of the distribution of Y |X,
it is more robust with respect to outliers, it allows for dealing with censored data without
additional assumptions, and most importantly it allows to model extreme behavior.

pdf
2
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Figure 1.2: Check Loss

As in mean regression, Quantile Regression models can be parametric (which are the ones
we will focus on), semi-parametric or non parametric altogether. In the first and most basic
formulation of Koenker and Bassett (1978)}, quantile linear regression, the quantile of level
– of the conditional distribution Y |X, can be modeled as:

Q–(Y |X) = Xt—–

where the notation —– highlights the dependence of the regression coe�cients to the quantile
level. Given a sample Dn = {(Yi, Xi)}n

i=1, estimate for the regression coe�cient —– can be
found by minimizing the empirical risk:

‚—– = arg min
—–

‚E[fl–(Yi ≠ Xt

i —–)]

= arg min
—–

nÿ

i=1
fl–(Yi ≠ Xt

i —–). (1.2)

This is a standard linear programming (LP) problem and can be trivially solved by means
of simplex method or interior point methods (Koenker and d’Orey 1987, Koenker and Ng
(2005)).

1.3 Asymmetric Laplace Distribution

Quantile regression as defined by the optimum problem in Equation (1.2) does not require
any distributional assumption for the response variable, and is thus an intrinsically non
parametric (in the sense of model–free) method. This lack of generating model assumption
implies that there is no likelihood, which is disturbing to some, especially Bayesians. In order
to adopt likelihood based inferential procedure in the context of Quantile Regression, pseudo-
likelihood approaches have been proposed. Among those, the one method dominating the
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literature is to exploit the Asymmetric Laplace Distribution (ALD) as a working likelihood,
as first suggested by Yu and Moyeed (2001).

A random variable X has an Asymmetric Laplace Distribution with parameters –, scale
‡ and center µ, i.e. X ≥ ALD(–, ‡, µ), if it has density

fX(x) = –(1 ≠ –)
‡

exp
;

≠fl–(x ≠ µ)
‡

<
.

By assuming that the conditional distribution for the response variable Y |X is an ALD with
parameters – taken to be the quantile level we are interested in, and µ = Xt— (or a more
complicated function of Xt— if we want to move beyond linear Quantile Regression) the
likelihood corresponding to a sample Dn = {(Yi, Xi)}n

i=1 is:

L(—; Dn) Ã exp
I

≠
q

n

i=1 fl–(Yi ≠ Xt

i
—)

‡

J

.

As the log-likelihood is proportional to minus the check function, it is immediate to see
that the Maximum Likelihood Estimator (MLE) corresponds to the Quantile Regression
estimator in Equation (1.2), hence the ALD translates Quantile Regression into a likelihood
based estimation setting, without making true distributional assumption on the response
variable; it is thus not the generating model but a working model (or likelihood).

Although most of what said in the following applies to the frequentist domain as well, as
the presence of a generating model and hence a likelihood is especially critical for Bayesian
procedures, from here on we will focus mostly on the Bayesian approach to Quantile
regression.

1.3.1 Bayesian Pros of the ALD

From a theoretical point of view, one strong justification to the use of ALD in the Bayesian
framework is the good behavior of estimates obtained adopting the ALD as a likelihood
for data generated from a di�erent distribution. This was shown empirically in Yu and
Moyeed (2001) and then investigate more thoroughly by Sriram, Ramamoorthi, and Ghosh
(2013), which proved the posterior consistency (as well as convergence rate to the true value)
of ALD-based estimators for misspecified models under both proper and improper priors
yielding proper posteriors. As a side result, this motivates flexibility in the choice of prior
distribution in relation to the ALD. For example Yu and Moyeed (2001) proves that the
posterior distribution is proper even with an improper uniform prior. Regularized version
of Quantile Regression, such as LASSO, Elastic-net and SCAD have also been explored in
the Bayesian framework exploiting the ALD as a working likelihood (Li, Xiy, and Lin 2010
Alhamzawi and Yu (2014)).

From a more practical point of view, the popularity of the ALD in the Bayesian framework
stems mostly from the ease of implementation of the resulting fitting procedure. A random
variable Y ≥ ALD(–, ‡, µ) admits in fact the following decomposition:

Y = ‡(◊1V + ◊2Z
Ô

V ) (1.3)

where ◊1 = (1 ≠ 2‡)/(‡ ≠ ‡2), ◊2
2 = 2/(‡ ≠ ‡2), Z ≥ N(0, 1) and V ≥ Exp(1), with Z and

V independent. This can be used to recast Quantile Regression as the following hierarchical



10 Chapter 1. Model Based Quantile Regression

model

Y |X, V ≥ N(Xt— + ◊1‡V, ◊2
2‡2V )

‡V ≥ Exp(‡)

which allows for an easy implementation of most MCMC algorithms, see Kozumi and
Kobayashi (2011).

1.3.2 Universal Cons of the ALD

Albeit ubiquitous, the ALD has shown numerous drawbacks that may hinder its use in the
context of Quantile Regression.

From a computational standpoint, in fact, ALD-based estimation is easy to implement
but it is not e�cient. The almost exclusive use of MCMC for the Bayesian fitting of Quantile
Regression resulted in Bayesian methods for Quantile Regression being slow, but treating the
ALD with numerical rather than simulation approaches to optimization has in fact proven
to be challenging, as the fact that the function in the exponent is piece-wise linear precludes
the use of any solver tailored for smooth functions. Several attempts have thus been made
to couple Bayesian Quantile regression with fast fitting procedure by imposing an additional
level of smoothing to the check loss in the exponent of the ALD.

For example Yue and Rue (2011) suggests to replace the check loss with

Âfl–,“(u) =

Y
]

[

log(cosh(–“|u|))
“

u Ø 0
log(cosh((1≠–)“|u|))

“
u < 0

where “ is a fixed parameter such that Âfl–,“(u) æ fl–(u) as “ æ Œ. The value of “ thus
tunes the accuracy of the approximation and must be chosen according to the level of the
quantile of interest and the amount of data available. Going towards more extreme quantiles
will call for a higher value of “.

Another work in this direction is Fasiolo et al. (2017), which defines a smoother version of
the ALD exploiting its connection with the more general family of exponential tails densities
defined in Jones (2008) as:

pG(y|Â, „) = K≠1
G

(Â, „) exp
Ó

Ây ≠ (Â + „)G[2](y)
Ô

, (1.4)

where Â, „ > 0, K≠1
G

(Â, „) is a normalizing constant and

G[2](y) =
⁄

y

≠Œ

⁄
t

≠Œ

g(z)dzdt =
⁄

y

≠Œ

G(t)dt

with g(z) and G(z) being the p.d.f. and the c.d.f. respectively of an arbitrary random
variable. When G(z) = I(z < 0), this formulation allows to recover exactly the ALD, hence
a smoother version of the ALD can be defined by simply choosing a smoother G(z) function.
For example, Fasiolo et al. (2017) suggests to take G(z) to be the c.d.f. of a logistic random
variable with scale “≠1 and center at 0, i.e.

G(z; “) = exp{“z}
1 + exp{“z} .
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As in the previous case, the parameter “ can thought of as the “proximity” to the ALD, as
for “ æ Œ, we have that

exp{“z}
1 + exp{“z} æ I[z < 0]

With this choice of G(z), the density in Eq.1.4 can be rewritten as

pG(y|–, “) = “e(1≠–)y(1 + ey“)1/“

Beta ((1 ≠ –)/“, ·/“)

which can be generalized to any location µ and scale ‡ as

pG(y|µ, ‡, –, “) = “e(1≠–) y≠µ
‡ (1 + e

(y≠µ)“
‡ )1/“

‡Beta ((1 ≠ –)/“, –/“) . (1.5)

Interestingly enough, this density is related to kernel quantile estimation methods. More
specifically, by di�erentiating with respect to µ the log-likelihood corresponding to Eq. (1.5),
we obtain

1
n

nÿ

i=1
G(yi; µ, ‡, –, “) = 1 ≠ – (1.6)

where 1
n

q
n

i=1 G(yi; µ, ‡, –, “) is a logistic kernel estimator of the c.d.f., with bandwidth ‡/“,
hence the solution of Eq. (1.6) is a standard inversion kernel quantile estimator at 1 ≠ –, as
can be seen in Fasiolo et al. (2017). As always in kernel methods, the choice of bandwidth
‡/“ is critical. When ‡/“ æ 0, the density in Eq. (1.5) converges to the ALD, however,
Fasiolo et al. (2017) claims that it is not required nor desirable to approximate the check
too closely, as not only it becomes computationally challenging but it is also statistically
sub-optimal, in the sense that, as shown in Cheng, Sun, and others (2006) and Falk (1984),
kernel estimators are asymptotically better than empirical estimators of the quantiles in
terms of relative e�ciency.

Both these approaches require the introduction of an additional smoothing parameter,
which should be chosen separately for each selected level of the quantile, but they provide a
computation-friendly a generalization of the ALD. However, even though its computational
drawbacks can be mitigated by means of smoothing, the choice of ALD is still not without
consequences, as adopting the ALD imposes several restriction that may not be obvious
or desirable in applications. More specifically, as pointed out in Yan and Kottas (2017),
assumptions about the data implicitly made in an ALD model are:

• the skewness of the density is fully determined when a specific percentile is chosen
(that is, when – is fixed)

• the density is symmetric when – = 0.5, that is in the case of median regression
• the mode of the error distribution is at 0 regardless of the parameter –, which results

in rigid error density tails for extreme percentiles.

We are not claiming that these assumptions are unreasonable, but rather we are stressing
the fact that they should be made if supported by a generating model, and that the ALD
assumption does impose some restrictions on the underlying model.
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Finally, and more critically for us, from a Bayesian point of view, the major drawback
of adopting the ALD as a working likelihood is that posterior inference is restrained by
the presence of a confounding parameter. As pointed out by Yang, Wang, and He (2016),
the scale parameter ‡ of the ALD a�ects the posterior variance, despite not having any
impact on the quantile itself. A random variable X ≥ ALD(–, ‡, µ), in fact, is such that
P(X Æ µ) = – does not depend on ‡ (Yue and Rue 2011).

Correction can be made to overcome this issue. For example, Yang, Wang, and He
(2016) proposes the following adjustment to the posterior variance to make it invariant with
respect to the value of ‡:

Ô
n‚�adj = n–(1 ≠ –)

‡2
‚�(‡) ‚D ‚�(‡)

where ‚D = n≠1 q
n

i=1 XiXt

i
and ‚�(‡) is the posterior variance-covariance matrix. ‚�adj

however has only asymptotic valid and is limited to model specifications with proper priors.
Alternatively, Sriram (2015) proposes a sandwich likelihood method to correct the posterior
covariance based on the ALD so that the resulting Bayesian Credible sets satisfy frequentist
coverage properties, which is still not a general solution as it tackles the problem from a
very specific and partially limited perspective.

1.4 Model–Based Quantile Regression

From a Bayesian perspective, the major drawback of adopting any working likelihood rather
than a generating distribution is that the validity of posterior inference is not automatically
guaranteed by Bayes Theorem. Our alternative is to reject altogether the use of a working
likelihood in favor of the true generating model. We propose a model–based Quantile
Regression, which exploits the shape of the conditional distribution to link the covariates of
interest to the distribution parameter.

Assuming that Y |X is distributed according to some continuous cumulative distribution
function F (y; ◊), where ◊ is the distribution’s parameter, our procedure can be formalized in
two steps.

• Modeling step: the quantile of Y |X, q– = Q–(Y |X) is modeled as

q– = g(÷–) (1.7)

where g is an invertible function chosen by the modeler and ÷– is the linear predictor,
which depends on the level – of the quantile. No restriction is placed on the linear
predictor, which can include fixed as well as random e�ect. Our approach is thus
flexible enough to include parametric or semi parametric models, where the interest
may lay in assessing the di�erence in the impact that the covariate may have at
di�erent levels of the distribution, as well as fully non parametric models, where the
focus is shifted towards prediction instead.

• Mapping step: the quantile q– is mapped to the parameter ◊ as

◊ = h(q–, –) (1.8)
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where the function h must be invertible to ensure the identifiability of the model and
explicitly depends on the quantile level –. The map h gives us a first interpretation of
model-based Quantile Regression as a reparametrization of the generating likelihood
function F (y; ◊), in terms of its quantiles, i.e. F (y; q– = h≠1(◊, –)).

When ◊ œ R, the map ◊ = h(q–, –) is uniquely defined. When ◊ œ Rd, with d > 1, all
the components of the model parameters have to be redefined as a function of the quantiles.
As the quantile is a location parameter, linking the location parameter of the model to it
directly it is straightforward. For the other parameters of the distribution, there are multiple
option to be explored; depending on the meaning of the parameter one could rewrite as a
function of interquartile distance, which represent a measure of variability, or exploiting
Groeneveld and Meeden’s coe�cient for skewness (Groeneveld and Meeden 1984).

By linking the quantiles of the generating distribution to its canonical parameter ◊, we are
indirectly modeling ◊ as well, hence we are implicitly building a connection between Quantile
Regression and Generalized Linear (Mixed) Models (GLMM), which are also concerned
with the modeling of ◊. The modeling and mapping steps in fact, can be considered as a
way to define a link function, in the GLMM sense, as the composition ◊ = h(g(÷)), and
this allows us to rephrase Quantile Regression as a new link function in a standard GLMM
problem. Drawing a path from GLMM to Quantile Regression is instrumental in the fitting
however the pairing is only formal: coe�cients and random e�ect have a completely di�erent
interpretation.

One of the advantages of coupling Quantile Regression to GLMM is that it allows to
bypass slow MCMC methods for the fitting and instead use R-INLA (Rue et al. 2017), which
allows for both flexibility in the model definition and e�ciency in their fitting. R-INLA is an
R package that implements the INLA (Integrated Nested Laplace Approximation, see Rue,
Martino, and Chopin (2009)) method for approximating marginal posterior distributions
for hierarchical Bayesian models, where the latent structure is assumed to be a Gaussian
Markov Random Field, (Rue and Held 2005), which is especially convenient for computations
due to its naturally sparse representation. The class of model that can be formulated in a
hierarchical fashion is broad enough to include parametric and semi parametric models; the
INLA approach is thus extremely flexible and provides a unified fitting framework for mixed
and additive models in all their derivations. More details are provided in Appendix A.

1.5 Discrete Data

Quantile regression was originally defined for continuous responses and extending it to the
case of discrete variable has proven to be challenging.

In the “classical” model-free setting, inference is limited by the fact that the non-
di�erentiable objective function in Equation (1.2) together with the points of positive mass
of one of the variables involved in the optimization problem, makes it impossible to derive
an asymptotic distribution for the sample quantiles (Machado and Santos Silva 2005).

In the case of model-based Quantile Regression, dealing with discrete distribution is non
trivial since it is di�cult to define both the model g and the map h as defined in Section
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1.4. As far as the modeling step is concerned, most common model choices, such as the log
model for count data or logit for binary responses are typically continuous and are not well
suited to represent the conditional quantiles, which are intrinsically discrete. More tragically,
as the quantile function is discrete, it is not possible to define an injective map h, which
means that it is not possible to define a unique ◊ generating each quantile, as can be seen in
Figure 1.5.

Either way, in order to fit the model it is necessary to impose some additional level of
smoothing, which is usually done by approximating the distribution of the discrete random
variable with a continuous analogue.

1.5.1 Jittering

In order to enforce the necessary level of smoothing, the most natural approach is to treat
the discrete responses as if they were generated by a continuous distribution. This is a
common element to most strategies for dealing with quantiles for discrete data, which then
di�er in how this continuous distribution is built/chosen.

To date, the most famous strategy to rephrase Quantile Regression for discrete data in a
continuous setting is jittering, first introduced by Machado and Santos Silva (2005), which
consists in adding continuous and bounded noise U to the response variable Y and then
model quantiles of the “continuous” Z = Y + U . The noise variable U is typically taken
to be Uniformly distributed in (0, 1), although the procedure would hold for any bounded
continuous distribution, as long as U and Y are independent.

The quantiles of the new random variable Z are in one-to-one relation with the quantiles
of the original variable of interest Y , in the sense that QY (–) = ÁQZ(–) ≠ 1Ë. However,
although the distribution of the new random variable Z is continuous, it is not smooth over
the entire support, since it does not have continuous derivative for integer values of Z, hence
additional assumptions are needed in order to carry out inferential procedures.

Moreover, the estimates —̂– are naturally a�ected by the specific realization of the jittering
noise, hence it is advisable to remove its e�ect by means of averaging or integrating. In the
first case, Machado and Santos Silva (2005) defines the average-jittering estimator —̂m,– as

—̂m,– = 1
m

mÿ

j=1
—̂(j)

–

where —̂(j)
– with j = 1, . . . , m is any estimate of —– computed on the j-th jittered sample

D(j)
n = {Zi = Yi + u(j)

i
, Xi}n

i=1, and u(1), . . . , u(m) are independent random samples.

1.5.2 Model-aware Interpolation

Jittering can be thought of as a way of interpolating a discrete distribution that it is
insensitive to the specific features of the distribution. In order to tailor the interpolation on
the model we are considering, we define continuous distributions to use in the fitting that
are aware of the shape of the original discrete distribution. Inspired by Ilienko (2013), we
focus in particular on discrete distributions whose c.d.f. can be written as

FX(x; ◊) = P(X Æ x) = k(ÂxÊ, ◊) (1.9)
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where k is a continuous function in the first argument. The continuous interpolation is then
defined by removing the floor operator, so that the function k(x, ◊) is the c.d.f. of X Õ, a
continuous version of X. By definition of floor we have that

FX(x) = k(ÂxÊ, ◊) = k(x, ◊) = FXÕ(x) (1.10)

for all integer x, and since the two c.d.f.s are the same at the integer values of x, this can be
seen as a continuous generalization of the original variable.

One of the features of our model-aware strategy is that it allows for a proper assessment
of variability. In Section 1.4 we already made a case for the advantages of the model-based
approach in the Bayesian setting, however, this is profitable in the frequentist framework as
well. Confidence intervals for the regression coe�cient in fact heavily rely on the asymptotic
normality of the sample quantiles, which is guaranteed only when the distribution generating
the data is continuous, while sample quantiles of discrete distribution in general are not
asymptotically normal. It is possible to generalize the definition of sample quantile to
quantile of the mid–distribution in order to gain asymptotic normality to exploit in the
construction of confidence intervals in the discrete setting (Ma, Genton, and Parzen 2011),
however, the interpretation of this new summary is not entirely clear.

Even in the ubiquitous jittering approach, it is cumbersome to determine the variance
associated to the estimates for the coe�cients; the asymptotic normality of the sample
quantiles is granted in fact as the sample size as well as the number of repetition of the
jittering procedure go to infinity, and thus variance estimation require computationally
intensive re-sampling procedures.
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Figure 1.3: Estimated probability of having at least one crossing on a
simulated example where Y |X ≥ Poisson(exp{X}), where X ≥ Gamma(1, 5).

Moreover, our approach has shown to be less prone than jittering to the phenomenon of
quantile crossing. This is a paradoxical result occurring when the quantile curves intersect
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one another, as shown in Figure 1.4, resulting in the total loss of meaning of the curves
themselves. Despite distributional quantiles being by definition an increasing function of the
probability index, this is not always true for the fitted curves, especially when the sample
size is small.
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Figure 1.4: Quantile curves estimated with model based Quantile Regression
(top) and jittering (bottom). Darker curves correspond to higher quantile
levels.

Figure 1.3 shows how, even on a simulated toy example, the model based quantile
estimator seems to be less a�ected by crossing.
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1.6 Continuous Poisson Distribution

The class of distribution defined by Equations (1.9) and (1.10) is broad enough to include
the three distribution most frequently encountered in applications: Poisson, Binomial and
Negative Binomial. We explore in detail the Poisson case, the other two are trivial extensions.

The starting point for defining a continuous version of the Poisson distribution is to
rewrite the cumulative density function for the Poisson as the ratio of Incomplete and
Regular Gamma function:

X ≥ Poisson(⁄) FX(x) = P(X Æ x) = �(ÂxÊ + 1, ⁄)
�(ÂxÊ + 1) x Ø 0 (1.11)

where
�(x, ⁄) =

⁄
Œ

⁄

e≠ssx≠1ds

is the upper incomplete Gamma function. Extending the Poisson distribution to the
continuous case from this formulation is just a matter of removing the floor operator, that is

X Õ ≥ Continuous Poisson(⁄) FXÕ(x) = P(X Õ Æ x) = �(x + 1, ⁄)
�(x + 1) x > ≠1.

(1.12)
where the domain has been extended from x Ø 0 to x > ≠1 in order to avoid mass at 0.

The Continuous Poisson defined in Equation (1.12) is similar to that of Ilienko (2013),
with the noticeable di�erence that our definition of Continuous Poisson is shifted by 1,
so that the Discrete Poisson X is a monotonic left continuous function of the Continuous
Poisson X Õ; more specifically Continuous and Discrete versions of the Poisson are related by

X = ÁX ÕË. (1.13)

By integration by parts we have

�(x + 1, ⁄)
�(x + 1) ≠ �(x, ⁄)

�(x) = ⁄xe⁄/�(x + 1) (1.14)

which is enough to show that:

P(ÁX ÕË = x) = P(X Õ œ (x ≠ 1, x]) = FXÕ(x) ≠ FXÕ(x ≠ 1)

= �(x + 1, ⁄)
�(x + 1) ≠ �(x, ⁄)

�(x) = ⁄xe⁄/�(x + 1)

= P(X = x). (1.15)
(1.16)

Following Ilienko (2013), we have that FXÕ(x) is a well defined c.d.f., in the sense that it is
non-decreasing in x, is right-continuous and it satisfies:

lim
xæŒ

FXÕ(x) = 1 and lim
xæ≠Œ

FXÕ(x) = 0.
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The good thing about this definition is that FX(k) = FXÕ(k) ’ k œ N. The bad thing
about this definition is that it is not yet completely continuous, as there is a jump in x = 0.
In order to overcome this, we thus change our definition to

X Õ ≥ Continuous Poisson(⁄) FXÕ(x) = �(x + 1, ⁄)
�(x + 1) ◊ {x Ø ≠1} = G⁄(x + 1).

where G⁄(x) is known as regularized upper incomplete gamma function. As can be seen in
Figure 1.5, this new distribution is still an interpolant of the original discrete one. Notice
that although it is “technically” allowed for x < 0, as we are using this distribution to
model counts, this is not necessary nor used for our purposes. It is also worth noticing that
1 ≠ G⁄(x) corresponds to the c.d.f. of a Gamma distribution with parameters (x, 1), i.e.

G⁄(x + 1) = 1 ≠ FGamma(x+1,1)(⁄).

It is possible to determine a density function for the Continuous Poisson distribution, which
looks like

fX(x; ⁄) =
G3,0

2,3(|⁄)
�(x) + Q(x, ⁄)

Ë
log(⁄) ≠ Â(0)(x)

È

=
⁄x

2G3,0
2,3(|⁄)

�(x) + P (x, ⁄)
Ë
Â(0)(x) ≠ log(⁄)

È

where G is the Meijer G-function and F is the generalized hypergeometric function, Â(k)(x)
is the k-th derivative of the digamma function. However this is not easy to work with and
implies that the moments of the Continuous Poisson do not have a closed form expression
but they require numerical approximations.

Interestingly enough, the moments of the continuous and discrete Poisson distribution
do not coincide, although asymptotically their ratio tends to 1.

1.6.1 Continuous Count distributions

The Binomial and the Negative Binomial distribution can also be trivially extended to the
continuous case. Their c.d.f. can in fact be written as:

Y ≥ Binomial(n, p) FY (y) = I1≠p(n ≠ ÂyÊ, ÂyÊ + 1) (1.17)
Z ≥ Negative Binomial(r, p) FZ(z) = I1≠p(r, ÂzÊ + 1) (1.18)

where Ix(a, b) is the regularized incomplete Beta function defined as:

Ix(a, b) = B(a, b, x)
B(a, b) with B(a, b, x) =

⁄ 1

x

ta(1 ≠ t)b≠1dt (1.19)

Again the extension of these two random variables to the continuous case can be obtained
by removing the floor operator:

Y Õ ≥ Continuous Binomial(n, p) FY Õ(y) = I1≠p(n ≠ y, y + 1) (1.20)
Z Õ ≥ Continuous Negative Binomial(r, p) FZÕ(z) = I1≠p(r, z + 1) (1.21)



20 Chapter 1. Model Based Quantile Regression

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F λ
(x
)

λ

1
2.5
5
7
10

0 1 2 3 4 5 6

0
2

4
6

8

λ

Q
λ(
α
)

α

0.05
0.25
0.5
0.75
0.95

Figure 1.5: Top: c.d.f. of the discrete (dashed line) and continuous (con-
tinuous line) Poisson distribution for several values of ⁄. Bottom: quantile
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distribution.
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It is obvious that these two continuous distributions, exactly like the continuous Poisson
defined before, result in interpolation of both the c.d.f. and quantile functions of the discrete
original, analogously to what can be seen in Figure 1.5.

We previously claimed that the main advantage of this model-aware strategy for ap-
proximating discrete distributions with continuous versions, it is that the new continuous
variables retain the same structure of their discrete counterpart. This can be made more
explicit in the case of the Poisson, Binomial and Negative Binomial, where the behavior of
the resulting continuous random variables mimic that of their discrete counterparts.

In the discrete case in fact it is well known that the Poisson distribution is the limiting
case of both the Binomial and the Negative Binomial when the probability of observing
one event goes to 0 and that Binomial and Negative Binomial are also entwined in a 1-to-1
relation. The same relations are preserved in the continuous case, hence the two classes of
distribution have similar meaning.

Binomial

Poisson

Negative Binomial

Figure 1.6: Diagram summarizing the connection between Binomial, Negative
Binomial distribution. Continuous lines indicate asymptotic relations, dashed
lines denote a finite sample relation.

Poisson and Binomial Let X be a Continuous Poisson with parameter ⁄, Y be a
Continuous Binomial with parameters n and p. Then by following Ilienko (2013) we have
that for n æ Œ and p æ 0 so that np æ ⁄

FY (x) = B(x + 1, N ≠ x, p)
B(x + 1, N ≠ x) ≠æ �(x + 1, ⁄)

�(x + 1) = FX(x). (1.22)

Analogously to its discrete version, the Continuous Poisson can thus be interpreted as an
approximation for a binomial-like distribution in the case of rare events.

Poisson and Negative Binomial Let X be a Continuous Poisson with parameter ⁄, Z
be a Continuous Negative Binomial with parameters r and p. Then it follows trivially from
Equation (1.22) that for r æ Œ and p æ 0 so that rp æ ⁄ we have

FZ(x) = B(x + 1, r, p)
B(x + 1, r) ≠æ �(x + 1, ⁄)

�(x + 1) = FX(x). (1.23)

From a modeling perspective, this motivates the choice of the Continuous Negative Binomial
instead of the Continuous Poisson in cases where there is over-dispersion, i.e. the assumption
of mean and variance being equal is clearly violated.
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Binomial and Negative Binomial Let Z be a Continuous Negative Binomial with
parameters r and p and Y be a Continuous Binomial with parameters s + r and 1 ≠ p, then

FZ(s) = 1 ≠ Ip(s + 1, r)
= 1 ≠ Ip((s + r) ≠ (r ≠ 1), (r ≠ 1) + 1)
= 1 ≠ P(Y Æ r ≠ 1)
= P(Y Ø r) (1.24)

which justifies the interpretation of the Continuous Negative Binomial as the waiting time
until the arrival of the r-th success in a Binomial-like experiment.

1.7 Quantile Regression for Poisson data

By assuming that discrete responses are generated by a Continuous Poisson discrete, it is
possible to extend Quantile Regression to count data. If Y |÷ ≥ Continuous Poisson(⁄), in
fact, we can specify the link function g and the parameter map h. More specifically we have:

g : q– = g(÷–) = exp{÷–} (1.25)

h : ⁄ = h(q–) =�≠1(q– + 1, 1 ≠ –)
�(q– + 1) . (1.26)

The Poisson distribution is typically used to model count data, however it is also possible to
use it when modelling rates. This is especially useful in the context of aggregated data, such
counts over a time interval or counts over an area, where the aggregating variable (length of
the time interval, or the size of the geographical area for example) a�ects the distribution
and makes comparison between units meaningless. When units are subjected to di�erent
exposures E, there are two ways of encoding it into the model:

• by including them in the model as o�set, discounting the quantiles directly and
considering q–/E

q– = exp{÷– + log(E)} = E exp{÷–}

⁄ = �≠1(q– + 1, 1 ≠ –)
�(q– + 1) (1.27)

• by adjusting the global parameter and consider ⁄/E

q– = exp{÷–}

⁄ = E
�≠1(q– + 1, 1 ≠ –)

�(q– + 1) . (1.28)

While in Poisson mean regression these two approaches yield the same results, as

⁄ = E exp{÷} ≈∆ ⁄/E = exp ÷ (1.29)

in Poisson Quantile Regression this is not true. In general

�≠1(E exp{÷–

i
}– + 1, 1 ≠ –)

�(E exp{÷–

i
}– + 1) ”= E

�≠1(exp{÷–

i
}– + 1, 1 ≠ –)

�(exp{÷–

i
}– + 1) (1.30)



1.7. Quantile Regression for Poisson data 23

and, besides the trivial case E = 1, it is not obvious to determine whether there are values
of E for which the equality would hold since there is no closed form solution for �≠1. A case
could be made for both modeling strategies, the former being a “quantile-specific” model
while the latter being more of a global model, and choosing between them depends on the
application.

As can be seen in Figure 1.5, the quantiles of the two distributions are not the same, and
the regression model returns fitted quantiles for the Continuous Poisson. However, fitted
quantiles of the discrete distribution can be obtained by exploiting quantile equivariance,
since we defined the continuous Poisson so that its discrete counterpart is a monotonic left
continuous function. Let Y |÷ ≥ Poisson(⁄) and Y Õ|÷ ≥ Continuous Poisson(⁄), then we
have

Q–(Y Õ|÷) = Q–(ÁY Ë|÷) = ÁQ–(Y |÷)Ë. (1.31)

1.7.1 An application - Disease Mapping

We conclude by showing with an application the potential of Quantile Regression in the
context of disease mapping, when the goal of the analysis to identify which areas correspond
to a high risk. We show this using emergency hospitalization data as in Congdon (2017).

Our dataset consist of:

• Y: counts of emergency hospitalizations for self-harm collected in England over a period
of 5 years (from 2010 to 2015). The counts are aggregated over 6791 are Middle Level
Super Output Areas (MSOAs).

• X1: Deprivation, as measured by the 2015 Index of Multiple Deprivation (IMD).
• X2: Social fragmentation, measured by a composite index derived from indicators from

the 2011 UK Census comprising housing condition and marital status.
• X3: Rural status, again measured by a composite indicator aimed at capturing the

accessibility to services and facilities such as schools, doctors or public o�ces.

Standard risk measure, such as the ratio between observed and expected cases in each
area, the Standardized Mortality (or Morbidity) Ratio (SMR) SMR = Y/E, is not reliable
here due to the high variability of expected cases E (Figure 1.8), hence is advisable to
introduce a random e�ect model that exploit the spatial structure to obtain more stable
estimates of the risk. Assuming that, conditionally on covariates X and random e�ects b, the
observations are generated by a Poisson distribution

Y|X, b ≥ Poisson(⁄) (1.32)

we adopt the following model for the conditional quantile of level –

Q–(Y|X, b) = E◊– = E exp{÷}. (1.33)

We opted for the quantile-level approach for handling exposures E in order to ease interpreta-
tion; as we discount each quantile for the exposures, in fact, the parameter ◊i,– corresponding
to the ith area can be considered the relative risk of unit i at level – of the population. The
linear predictor ÷ can be decomposed into

÷ = —0 + —DeprX1 + —SFX2 + —RSX3 + b (1.34)
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where —0 represent the overall risk and b consists in the sum of an unstructured random
e�ect capturing overdispersion and measurement errors and spatially structured random
e�ect. In order to avoid the confounding between the two components of the random e�ect
and to avoid scaling issues we adopt for b the modified version of the Besag–York–Mollier
(BYM) model introduced in Simpson et al. (2017):

b = 1
·b

1
1 ≠ „v +


„u

2
. (1.35)

Both random e�ects are normally distributed, and in particular

v ≥ N(0, I) (1.36)
u ≥ N(0, Q≠1

u ) (1.37)

so that b ≥ N(0, Q≠1
b

) with Q≠1
b

= ·≠1
b

(1 ≠ „)I + „Q≠1
u , a weighted sum of the precision

matrix for the I and the precision matrix representing the spatial structure Qu, scaled in
the sense of Sørbye and Rue (2014).

We assign priors on the precision ·b and the mixing parameter „ using the penalized
complexity (PC) approach, as defined in Simpson et al. (2017) and detailed in Riebler et
al. (2016) in the special case of disease mapping. Estimated coe�cients shown in Table
1.3 show that Deprivation has a negative impact, which only slightly attenuates at higher
quantile level, meaning that, as we could expect, higher deprivation corresponds to increases
in self harm hospitalization. Interestingly, being a rural area seems to have a positive e�ect
instead, with more rural areas being associated to lower rates of hospitalization.

Despite regression being a key tool for disease mapping, the use of Quantile Regression

Mean 1st Quartile 2nd Quartile 3rd Quartile
—0 -0.5989 (0.0151) -0.7076 (0.2650) -0.4701 (0.2758) -0.5128 (0.0420)
—Depr 1.9810 (0.0312) 2.0871 (0.2202) 1.9608 (0.1570) 1.9340 (0.0599)
—RS -0.8148 (0.0364) -0.8834 (0.1270) -0.8781 (0.2170) -0.7820 (0.2170)
—SF 0.4291 (0.0447) 0.5628 (0.1558) -0.0981 (0.8993) 0.3997 (0.1052)
·b 6.4098 (0.1996) 5.7681 (0.1807) 6.2743 (0.1960) 7.1589 (0.1772)
„ 0.8386 (0.0143) 0.8383 (0.0144) 0.8387 (0.0143) 0.8172 (0.0116)

Table 1.3: Posterior mean estimates of model parameters (and corresponding
standard deviations).

instead of mean regression is still unexplored, with exceptions in Congdon (2017) and
Chambers, Dreassi, and Salvati (2014). This is somehow surprising, since the focus of disease
mapping is on extreme behaviors of the population, for which using quantiles, that provide
insights on the tails of the distributions, would seem a more natural choice than considering
means. The relative risk ◊i,– can be directly used to detect “high risk” areas. Following
Congdon (2017), the ith area region is considered at “high risk” if [◊i,0.05, ◊i,0.95] > 1, where
1 represents an increase in the risk, otherwise it is assumed to be “low risk”.

Mean regression methods for identifying “high risk” areas are also based on relative risk
◊, although defined in a di�erent way, i.e.

E[Y|X, b] = E◊ = E exp{÷}. (1.38)
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Posterior probability of an increase in the risk are then used to assess whether an area has
high risk or not, so that the ith area is considered to be of high risk if P(◊i > 1|Y1, . . . Yn) > t
where t is a threshold value depending on the application (in this case we chose t = 0.9).

The di�erence between the two methods is that in the former high risk areas are those
where the risk increases for every level of the population, i.e. for those areas which are very
sensible and those which are less sensible to the disease, while the latter considers only the
mean level, which is a synthetic measure for the whole population but it may be subject to
compensation. Figure 1.9 and 1.10 show the critical areas identified by quantile and mean
regression. The similarity of the results of our method with those corresponding to a more
traditional approach, as well as to previous analyses, reassures us that our method yields
reasonable results. At the same time, the minor discrepancies between the two maps is
also encouraging, as the two methods have di�erent definitions of high risk; di�erent results
correspond in fact to di�erent insights on the disease risk and the non-overlap between
quantile-based exceedance probability-based methods testifies that there is information to
be gained from our approach.
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Figure 1.7: Raw counts of self harm hospitalization for the MSOAS.
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Figure 1.8: Quantile Relative Risk of level 0.025. In gray areas of High Risk.
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Figure 1.9: Exceedence probability for Mean Relative Risk. In gray areas of
High Risk.
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Figure 1.10: Quantile Relative Risk of level 0.025. In gray areas of High Risk.





Chapter 2

Topological Tools for Data Analysis

2.1 The shape of fixed-scale data

As we are dealing with increasingly complex data, our need for characterizing them through a
few, interpretable features has grown considerably. Topology has proven to be a useful tool in
this quest for “insights on the data”, since it characterizes objects through their connectivity
structure, i.e. connected components, loops and voids. In a statistical framework, this
characterization yields relevant information: for example, connected components correspond
to clusters (Chazal et al. 2013) while loops represent periodic structures (Perea and Harer
2015). At the crossroad between Computational Topology and Statistics, Topological Data
Analysis (TDA from here onwards) is a new and expanding research area devoted to recovering
the shape of the data focusing in particular on its topological structure (Carlsson 2009).

Although topology has always been considered a very abstract branch of mathematics, it
has some properties that are extremely desirable in data analysis, such as:

• It does not depend on the coordinates of the data, but only on pairwise distances. In
many applications, coordinates are not given to us or, even if they are, they have no
meaning and they could be misleading.

• It is invariant with respect to a large class of deformations. Two object that can
be deformed into one another without cutting or gluing are topologically equivalent,
meaning that topological methods are flexible.

• It allows for a discrete representation of the objects we study. Most continuous objects
can be approximated with a discrete but topologically equivalent object, for which it
is easier to define algorithms.

2.1.1 Persistent Homology Groups - Intuition

The broad goal of TDA is to recover the topological structure (i.e. 0-dimensional topological
features or connected components, 1-dimensional topological features or cycles and so on) of
any arbitrary function of data f , by characterizing it in terms of some topological invariant,
most often its Homology Groups, while also providing a measure of their importance.

The main advantage of this choice in terms of interpretability is that Homology Groups
of dimension k represent k-dimensional connected structures: the Homology Group of
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dimension 0 of a topological space X, H0(X) represents connected components of X, the
Homology Group of dimension 1, H1(X) represents loops (or cycles) of X, H2(X) represents
voids, and so on (we refer to Appendix B for a brief introduction of Homology Groups or to
Hatcher (2002) for a more complete and rigorous treatment of the subject).

True Object
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Figure 2.1: From left to right: the true object we are trying to recover (X),
the point–cloud data sampled on it (Xn) and the cover (dÁ).

In practice we most often do not observe the object we are interested in X directly,
but a point–cloud Xn = {X1, . . . , Xn} sampled on it, which may not be explored using
Homology Groups directly. A point–cloud Xn, in fact, has a trivial topological structure
per se, as it is composed of as many connected components as there are observations and
no higher dimensional features. Topological Invariants in the TDA framework are thus built
from functions of Xn rather than on the point–cloud itself, using an extension of Homology,
Persistent Homology, which is the mathematical backbone of TDA (Edelsbrunner and Harer
2010).

Roughly speaking, Persistent Homology provides a characterization of the topological
structure of any arbitrary function f by building a filtration on it (typically its sublevel
or superlevel sets, fÁ and fÁ respectively). The link between Persistent Homology and the
“shape of the data” is that for some choice of f , sublevel (or respectively superlevel) set
filtrations are topologically equivalent to the space data was sampled from, X.

Distance functions The most common choice for analysing the topological structure
of X is to investigate the Persistent Homology of the sublevel-set filtrations of a distance
function. At each level Á, the Á-sublevel set of the distance d, dÁ, is defined as

dÁ =
n€

i=1
B(Xi, Á),

where B(Xi, Á) = {x | dX(x, Xi) Æ Á} denotes a ball of radius Á and center Xi, and dX is an
arbitrary distance function. The metric dX can be used to enforce some desired property, for
example Chazal, Fasy, et al. (2014a) define a distance function, the Distance to Measure to
robustify the estimate. dÁ, usually called the cover of Xn is an approximation of the unknown
X that retains more topological information than the original point–cloud (Figure 2.1).

The topology of dÁ coulf be investigated by computing its Homology Groups, however
it is extremely sensible to the radius Á. For each value of Á, in fact, we obtain a di�erent
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estimate dÁ, with a di�erent topological structure. As shown in Figure 2.2, when Á is small,
dÁ is topologically equivalent to Xn: it consists of many connected components but no loops,
voids or other higher dimensional structures. Letting Á grow, balls in the cover start to
intersect “giving birth” to more complex features, such as cycles. Gradually, increasing
Á causes connected components to merge and loops to be filled so that eventually dÁ is
topologically equivalent to a ball (or in other words, contractible) and again retains no
information.

The key feature of encoding data into a filtration is that as Á grows, di�erent sublevel-sets
dÁ1 , dÁ2 are related, so that if a feature is present in both we can say that it remains alive
in the interval [Á1, Á2]. Persistent Homology then allows to see how features appear and
disappear at di�erent scales. Values Áb, Ád of Á corresponding to when two components are
connected for the first time (birth–step) and when they are connected to some other larger
component (death–step) are the generators of a Persistent Homology Group.

In the statistical literature, dÁ is often known as the Devroye–Wise support estimator
(Devroye and Wise 1980). The consistency of the Devroye-Wise estimator justifies and
motivates the use of the distance function: as dÁ is a consistent estimator of X, the topology
of dÁ is a reasonable approximation of the topology of X.

Kernel Density estimators The second way of linking levelset filtrations and the topol-
ogy of the support of the distribution generating the data, X, is that the super–levelsets
of a density function p can be topologically equivalent to the support of the distribution
itself as shown in B. T. Fasy et al. (2014). More formally, if the data are sampled from
a distribution P supported on X, and if the density p of P is smooth and bounded away
from 0, then there is an interval [÷, ”] such that the super–levelset pÁ = {x | p(x) Ø Á} is
homotopic (i.e. topologically equivalent) to X, for ÷ Æ Á Æ ”.

Since the true generating density p is most often unknown, it is typically approximated
by a kernel density estimator ‚p. A naive way to estimate the topology of X is hence to
compute topological invariants of the superlevel set of the kernel density estimator ‚p:

‚pÁ = {x | ‚pn(x) Ø Á}.

The superlevel sets ‚pÁ, with Á œ [0, max ‚p], form a decreasing filtration, which means that
‚pÁ µ ‚p” for all ” Æ Á. As in the case of distances, for each element in the filtration, i.e. for
each value Á, we obtain a di�erent estimate ‚pÁ, whose topology can be characterized by its
Homology Groups. Since in practice it is not possible to determine the interval [÷, ”] in
which the topology of ‚pÁ, is closest to that of X, we analyse the evolution of the topology in
the whole filtration. Once again, Persistent Homology allows to analyze how those Homology
Groups change with Á. Persistent loops in ‚pÁ naturally represent circular structures in ‚p,
Persistent Homology Groups of dimension 2 indicate holes in ‚p and so on.

Far from being trivial, topological features of dimension 0, or connected components
have also a relevant interpretation in terms of “bumps”. As can be seen from Figure 2.4,
connected components in the filtration ‚pÁ, are in fact local maxima of ‚p; this is true for any
super–levelset filtration. When the filtration is defined in terms of sub–levelset instead, as
in the case of the distance function, connected components represent local minima instead.



34 Chapter 2. Topological Tools for Data Analysis

Regardless of the class of functions f chosen to build the Persistent Homology Groups,
the intuition behind the Persistence approach is that features of the real object of interest X
should be found at many di�erent resolutions of its approximation fÁ; if a feature of fÁ has
a “long life”, is likely to be a relevant feature of X as well.
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Figure 2.2: From left to right: the cover dÁ for the data shown in Figure 2.1
for increasing values of Á. When the value of Á is very small (left) dÁ does
not have either of the two loops of X. For larger Á (right), the smaller loop
in the middle is filled by and the cover dÁ only retain the larger loop of X.

2.1.2 Persistent Homology Groups - Formally

The notion of “lifetime” of topological features is formalized as Persistent Homology Groups,
a multiscale version of Homology Groups that analyses the evolution of the topology of the
elements of a filtration. Intuitively, a Persistent Homology Group Hk,”≠÷(f) of dimension k,
consists of the k-dimensional homology classes of f÷ which are still alive at f”

1.

The main feature of the cover is that ’” Æ ÷, f”, and f÷, are related by inclusion: f” ™ f÷,
which allows to track the evolution of each feature and to see when it appears and disappears.
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Figure 2.3: From left to right: Data X, Rips complex RipsÁ(X) and corre-
sponding cover XÁ.

At every level Á of the filtration F , Homology Groups of dimension k identify topological
features of dimension k; in order to understand which k–dimensional feature survives between

1in the following we will refer to sublevel set filtrations and covers but results hold for any kind of filtration.
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÷ and ”, it is necessary to build the map

h : Hk(f÷) ‘æ Hk(f ”),

that shows how Homology Groups at ÷ and ” are related. However, since Homology is a
functor, it induces a linear map H(i”

÷) : H(f÷) ‘æ H(f”) on the inclusion map of the f÷ Òæ f”,
so that h = H(is

t ).

Definition 2.1 (Persistent Homology Groups). Given a filtration F = {XÁ
n}Á indexed on R,

i.e. a sequence of topological spaces fÁ for each Á œ R and maps f÷ Òæ f” for ÷ Æ ”, there
are natural maps

H(i”

÷) : Hk(f÷) ‘æ Hk(f”),

induced by functoriality. The dimension–k Persistent Homology Group Hk,p, where p = ”≠÷,
are defined as the image of the induced map H(i”

÷).

From a computational point of view, Persistent Homology Groups can be computed by
(means of) simple matrix reduction algorithms, due to the fact that the cover fÁ can be
approximated by a family of simplicial complexes without loosing any topological information.
The most intuitive discrete approximation of the cover fÁ is its Nerve, also known as Cech
complex.

Definition 2.2 (Cech Complex). Given a metric space (X, dX) the Cech complex Cech–(X)
is the set of simplices ‡ = [X1, . . . , Xk] such that the k closed balls B(Xi, –) have a non
empty intersection.

Figure 2.4: From left to right: birth of the smallest peak in the filtration, ‚pb
n,

death of the circle ‚pd
n and summarizing Persistence Diagram.

Since the elements of XÁ
n are by definition contractible, XÁ

n is what is called a good cover
and it satisfies the assumption of the Nerve Theorem.

Theorem 2.1 (Nerve). A good cover and its nerve are homotopic.

The Nerve Theorem implies that the homology group of CechÁ are topologically equivalent
to those of fÁ. Nevertheless, computing the Cech complex itself can still be computationally
challenging; for this reason the Vietoris–Rips complex, another combinatorial representation
of fÁ, is typically preferred.
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Definition 2.3 (Vietoris–Rips Complex). Given a metric space (X, dX) the Vietoris–Rips
complex Rips–(X) is the set of simplices ‡ = [X1, . . . , Xk] such that dX(Xi, Xj) Æ – for all
i, j.

Even though the Nerve theorem does not hold for Vietoris–Rips complexes, its topology
is still close to the one of fÁ due to its proximity to the Cech complex:

RipsÁ(X) ™ CechÁ(X) ™ Rips2Á(X).

Other families of simplicial complexes such as Delauney Triangulations, Witness complex
or Alpha shapes can be used to compute Persistent Homology as well. A formal model
selection procedure for selecting the best family of simplicial complexes in this context,
however, is non trivial, as, besides computational tractability, it may not be obvious to
formalize desirable properties of a simplicial complex. There are ways of choosing the best
simplicial complex representation of a space, however, for example Caillerie and Michel
(2011) builds a penalized Risk, using metric entropy as a penalty. The risk is defined from
L2, so that the result is a penalized Least Square Error.

2.2 Persistence Diagrams

The evolution of the topology of fÁ can be summarized by the Persistence Diagram D, a
multiset whose generic element xi = (bi, di) is the ith feature in fÁ (or equivalently, the
ith generator of a Persistent Homology Group). The first coordinate, the “birth time” bi,
represent how soon in the filtration the ith feature appears, i.e. the first value Á for which the
ith feature can be found in fÁ; the second coordinate, the “death time”" di, represents when
the feature disappear, i.e. the first value Á for which fÁ does not retain the ith feature anymore.
Since two or more feature can share birth and death time, each point has multiplicity equal
to the number of features, except for the diagonal, whose points have infinite multiplicity.
As death always occurs after birth, all points in the diagram are in or above the diagonal.
The Persistence Barcode is an equivalent representation, where each bar is a feature whose
length correspond to the lifetime of the corresponding feature.

The “lifetime” or persistence pers(x) = d ≠ b, of a feature can be considered as a measure
of its importance. Points that are close to the diagonal represent features that appear and
disappear almost immediately and may be neglected; a diagram whose only elements are the
points of the diagonal Dÿ is said to be empty. Figure 2.5 shows the Persistence Diagrams
corresponding to the point–cloud shown in Figure 2.1. If we focus on the red elements, which
represent the 1-dimensional features (or loops), we can see how the structure of the unknown
X is captured by the diagram. Not only the two loops of X are clearly recognizable both
from the Persistence Diagram (the two triangles above the diagonal) and the Persistence
Barcode (the two longer lines), but it also possible to distinguish between the two of them,
as the the small one is in fact slightly less persistent than the larger one.

Although in theory a feature may never die, in diagrams built from point clouds all the
information is contained between the diagonal and the diameter of the data. For the sake of
simplicity, we thus limit our analysis to bounded diagrams, i.e. diagrams without infinitely
persistent features.



2.2. Persistence Diagrams 37

Definition 2.4 (Space of Persistence Diagrams). Let Persp(D) =
q

xœD
pers(x)p be the

degree–p total persistence of a persistence diagram d. Define the space of persistence diagrams
D as

D =
)
D

-- Persp(D) < Œ
*
,

where Dÿ is the persistence diagram containing only the diagonal.
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Figure 2.5: (From left to right) Persistence Diagram, Persistence Barcode and
Persistence Landscape of data shown in Figure 2.1. In black 0–dimensional
features (connected components), in red 1–dimensional features (loops).

As Homology, and hence Persistent Homology Groups, can be defined for every dimension
k, so does the Persistence Diagram. However, it is worth stressing that diagrams correspond-
ing to di�erent dimensions are shown together for visualization purposes only and must be
considered separately in inferential procedures.

2.2.1 Metrics for Persistence Diagrams

Persistence diagrams can be compared through several metrics, most noticeably the Bottle-
neck and the Wasserstein distance, which add to D the structure of a metric space. The
Wasserstein distance, also known as Earth Mover distance or Kantorovich distance is a
popular metric in Probability and Computer Science as well as Statistics.

Definition 2.5 (Wasserstein Distance between Persistence Diagrams). Given a metric d,
called ground distance, the Wasserstein distance between two persistence diagrams D and
DÕ is defined as

Wd,p(D, DÕ) =
C

inf
“

ÿ

xœD

d
!
x, “(x)

"p

D 1
p

,

where the infimum is taken over all bijections “ : D ‘æ DÕ.

Depending on the choice of the ground distance d, Definition 2.5 defines a family of
metrics, whose most prominent member in TDA literature is the LŒ–Wasserstein distance,
WLŒ , defined as:

WLŒ,p(D, DÕ) =
C

inf
“

ÿ

xœD

..x ≠ “(x)
..p

Œ

D 1
p

.
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When p = Œ, the distance WLŒ,Œ defined as

WLŒ,Œ(D, DÕ) = inf
“

sup
xœD

..x ≠ “(x)
..

Œ
,

takes the name of Bottleneck distance.
Despite being less popular in the TDA framework, another important choice of ground

distance is the L2–norm, especially in the case p = 2, for which Turner et al. (2014) proved
that WL2,2 is a geodesic on the space of persistence diagrams.

Proposition 2.1 (Turner et al.). The space of Persistence Diagrams D endowed with WL2,2
is a geodesic space.

The space D is separable and complete in both WLŒ and WL2 , hence is a Polish Space
Mileyko, Mukherjee, and Harer (2011).

2.2.2 Stability

Defining metrics on D allows for a notion of stability (Chazal et al. 2012), which, roughly
speaking, states that similar topological spaces must have similar diagrams.

Theorem 2.2 (Chazal et al.). Let f and g be two functions on a triangulable space X and
let Df , Dg be the Persistence Diagram built on their respective sublevel (or superlevel) set
filtrations, then

WLŒ,Œ Æ Îf ≠ gÎ
Œ

,

where ÎfÎ
Œ

= supx |f(x)| is the LŒ–norm.

In the special case of f = dX and g = dY two distance functions defined on two point–
clouds X and Y respectively, the stability result can be written in a more easily interpretable
way:

dB (DX, DY) Æ 2 dGH (X,Y) ,

where dGH(X,Y) is the Gromov–Hausdor� distance between two topological spaces X and
Y. Stability is a core result in TDA for two reasons:

• the persistence diagram is a topological signature: stability reassures us that if two
point-clouds X,Y are similar their Persistence Diagrams will be as well, and is therefore
instrumental for using them in statistical tasks such as classification or clustering;

• the persistence diagram is statistically consistent: stability reassure us that if we are
using a point–cloud Xn to estimate the topology of an unknown object X, if Xn æ X
as n æ Œ, then DXn converges to DX as well.

Stability is also a key result for distinguishing topological noise from topological signal.
Building on the core idea that features that are close to the diagonal are more likely to
be noise than those that are far away from it, B. T. Fasy et al. (2014) proposes a way
to define a bootstrap confidence band around the diagonal. Points of the diagram laying
outside the band are most likely signal, whereas those inside the band may be just noise. It
is worth noticing however, that as such bands are defined using the right-hand-side term of
the inequality, they are typically rather conservative.
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2.3 Persistence Landscape

Persistence Diagrams are defined in spaces endowed with only a metric structure, which
can be limiting in data analysis. A collection of Persistence Diagrams D1, . . . , Dn in fact
does not have a unique mean, nor a satisfying measure of variability Turner et al. (2014).
More critically, although it is possible to define a probability distribution on the space D
(Mileyko, Mukherjee, and Harer 2011), it is still not clear how to explicitly derive it (if it
is possible to derived it at all). In order to overcome these issues and to work with more
statistics-friendly spaces, several tools have been developed to convert Persistence Diagrams
into functional objects, the most famous being the Persistence Landscape (Bubenik 2015)
and the Persistence Silhouette (Chazal, Fasy, et al. 2014b). These topological summaries
are built by mapping each point x = (b, d) of a Persistence Diagram D to a piecewise linear
function called the “triangle” function Tx, which is defined as:

Tx(t) =

Y
__]

__[

t ≠ b + d t œ [b ≠ d, b],
b + d ≠ t t œ (b, b + d],
0 otherwise.

(2.1)

Informally a triangle function links each point of the diagram to the diagonal with segments
parallel to the axes, and then rotates them of 45 degrees.

The triangles Tx can be combined in many di�erent ways. If we take their k-max, i.e. the
kth largest value in the set Tx(y), we obtain the kth Persistence Landscape

⁄k

D(y) = k-max
zœD

Tx(y) k œ N+.

The Persistence Landscape ⁄D is a representation of the Persistence Diagram D as a collection
{⁄1

D
, . . . , ⁄K

D
} of piecewise linear functions, indexed by the order of the maximum to be

considered in defining the landscape, k. If we take the weighted average of the functions
Tz(y), we have the Power Weighted Silhouette

Âp(t) =
q

xœD
wp

x Tx(y)
q

xœD
wp

x

.

While the space of Persistence Diagrams D is only a metric space, Persistence Landscapes
are defined in a much richer Banach space L, endowed with the following norm

Î⁄DÎp

p
=

ÿ

k

...⁄k

...
p

p
,

where
...⁄k

...
p

is the Lp–norm
...⁄k

...
p

=
3⁄

⁄kdµ
41/p

.

It is not possible to go back from Persistence Landscapes to Persistence Diagrams,
meaning that there is a loss of information in going from Persistence Diagrams to Persistence
Landscapes. However the Persistence Landscape is still informative, since stability continues
to hold.
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Theorem 2.3 (Bubenik). Let f, g be two functions on X and let Df and Dg be the Persis-
tence Diagrams built from their superlevel (or sublevel) sets, then

d�
1
⁄Df , ⁄Dg

2
Æ Îf ≠ gÎ

Œ
,

where d�
1
⁄Df , ⁄Dg

2
=

...⁄Df ≠ ⁄Dg

...
Œ

is the LŒ–distance in the space of Persistence Land-
scapes, L.
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Figure 2.6: A Persistence Diagram (left) and its corresponding Persistence
Landscape (center) and Persistence Silhouette (right).

Persistence Landscapes are piece–wise linear functions, which makes it possible to define
a (unique) mean and a variance for any collection of them. The main advantage of the
Persistence Landscape over the Persistence Diagram is that it is defined in a Banach Space,
which is instrumental in statistical learning as it allows for a full characterization of the
Persistence Landscape as a random variable

2.3.1 Probability in Banach Spaces / A modicum

In order to better understand the desirable properties of topological summaries defined in a
Banach space rather than in just a metric one, we quickly review the basic of Probability in
Banach spaces; a more complete overview can be found in Ledoux and Talagrand (2013).
Let B be a real, separable Banach space with norm Î·Î. Let (�, F , B) be a probability space
and let

V : (�, F , B) ‘æ B,

be a Borel random variable with values in B.
We call an element of B the Pettis integral of V if E

!
f(V )

"
= f

!
E(V )

"
for all f œ Bı,

where Bı is the space of continuous linear real–valued functions on B, i.e. the topological
dual space of B. The Pettis integral is the analogous of the expected value for a B–valued
random variable. The following proposition gives us a su�cient condition for its existence.

Proposition 2.2. If E ÎV Î < Œ, then V has a Pettis integral and ÎE(V )Î Æ E ÎV Î.

Notice that ÎV Î is a real valued random variable.
The Pettis integral can be used to define an extension of the Law of Large numbers for a

B–valued random variable. Recall that for a sequence {Yn}n of B–valued random variables:



2.4. Persistence Flamelets 41

• {Yn}n converges almost surely to a B–valued random variable Y if P(limnæŒ Yn) = 1.

• {Yn}n converges weakly to a B–valued random variable Y if limnæŒ E
!
„(Yn)

"
=

E
!
„(Y )

"
for all bounded continuous functions „ : B ‘æ R.

Theorem 2.4 (Strong Law of Large Numbers). Let {Vn}nœN be a sequence of independent
copies of V and, for a given n, let Sn = V1 + · · · + Vn,

Sn

n
æ E(V ) almost surely ≈∆ E ÎV Î < Œ.

There is an extension of the Central Limit Theory as well, which states the convergence
to a Gaussian random variable. In a Banach Space B, a random variable G is said to be
Gaussian if for each f œ Bı, f(G) is a real valued Gaussian random variable with 0 mean.
The covariance structure of a B–valued random variable, which fully characterize a Gaussian
Random Variable in a Banach Space, is given by

E
#!

f(V ) ≠ E[f(V )]
"

·
!
g(V ) ≠ E[g(V )]

"$
,

where f, g œ Bı.

Theorem 2.5 (Central Limit Theorem). Assume B has type 2. If E(V ) = 0 and E(ÎV Î2) <
Œ then SnÔ

n
converges weakly to a Gaussian random variable G(V ) with the same covariance

structure as V .

The extension of these two result to the case of Persistence Landscapes is immediate.

2.4 Persistence Flamelets

Persistence Diagrams and Persistence Landscapes gives us a full characterization of any
function of data f in terms of the topology of its sub–levelset (or super–levelset) filtration,
however they do allow f to vary. In this section we focus on the case where rather than one
function f we are dealing with a family of functions F = {f(·; ‡), ‡ œ [0, 1]}, indexed by
some parameter ‡2, which represent the resolution or the scale of the object f(·; ‡). This is
a challenging yet common framework in statistics, where scale dependent tools are already
almost ubiquitous (smoothers being the most trivial example of it). Due to the ever–growing
complexity of data, being able to examine it at di�erent resolutions, hence obtaining di�erent
insights, has in fact become a crucial feature of statistical tools, however summarizing the
information coming from di�erent scales is non trivial.

Although traditional methods focus on selecting the optimal scale ‡ú, inspired by scale
space theory, we adopt the idea that there is no “real” resolution, but, as di�erent scales
yield di�erent information, all of them must be simultaneously take into account. We restrict
ourselves to the case where the F = {f(·; ‡), ‡ œ [0, 1]} is continuously indexed by the scale
parameter ‡. Example of this that we will explore more thoroughly in the following are
kernel smoothers, for which the resolution ‡ is given by the bandwidth parameter h, and
time–varying processes, whose scale ‡ is time, t.

2For the sake of simplicity we will assume ‡ œ [0, 1], but we only require ‡ to be bounded.
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Previous attempts at encoding a multi-resolution family F = {f(·; ‡), ‡ œ [0, 1]} into
the TDA framework is to consider the Persistence Diagram itself as a function of the scale
parameter ‡. The family of Persistence Diagrams D = {D‡, ‡ œ [0, 1]} corresponding to
F , is known as Persistence Vineyards (Cohen-Steiner, Edelsbrunner, and Morozov 2006)
and is a stable and continuous representation of the topology of the whole F , as shown in
Morozov (2008). Persistence Vineyards, however, share all the drawbacks and limitations
of Persistence Diagrams, more specifically they lack a unique average and a measure of
variability for a group of them (Turner et al. 2014), and, once again, since it is not yet clear
whether or not it is possible to explicitly define a probability distribution on the space of
Persistence Vineyards, their use in statistical inference is severely compromised (Mileyko,
Mukherjee, and Harer 2011).

Building on TDA’s toolbox, and Persistence Landscapes in particular, we introduce a
new topological summary, the Persistence Flamelets, which overvcomes most of these issues
while still being able to characterize both the topology at each resolution f(·; ‡) and how
it changes with ‡. The Persistence Flamelets is an easily interpretable tool, it allows for
visualization of arbitrarily high dimensional features and is a stable topological signature.

It is worth noticing that although in the following we focus on Persistence Landscapes,
the same results hold for Silhouettes as well. In order to explicitly take into account the
multiple resolutions of F , we consider the Persistence Landscapes ⁄D‡ corresponding to the
family F = {f(·; ‡), ‡ œ [0, 1]} as a function of the scale parameter ‡. Visually we can
think of such function as a “flow” of landscapes, one for each resolution, smoothly moving
and resembling a tiny fire (see, for example, Figure 2.10).

Definition 2.6 (Persistence Flamelets). Given a collection of Persistence Diagrams D‡,
continuously indexed by some parameter ‡ œ [0, 1], and k œ N+, we define the kth Persistence
Flamelets as the function

�k(‡, y) = ⁄k

D‡
(y) ’ ‡ œ [0, 1], y œ R, k œ N+.

As the Landscape itself, the Persistence Flamelets � is also a collection � = {�(k), k œ
N+} indexed by the order of the max we consider. The theoretical reassurance that the
Persistence Flamelets is a meaningful topological summary is its stability, which we will
prove in the following. Before doing so, however, we need to introduce a notion of proximity
between Persistence Flamelets.

Definition 2.7 (Integrated Landscape distance). Let D = {D‡, ‡ œ [0, 1]}, E = {E‡, ‡ œ
[0, 1]} two Persistence Vineyards and �D, �E the corresponding Persistence Flamelets. We
define the Integrated Landscape distance between �D and �E as

I�(�D, �E) =
⁄ 1

0
d�(⁄D‡ , ⁄E‡ ) d‡.

Theorem 2.6. Let D = {D‡, ‡ œ [0, 1]}, E = {E‡, ‡ œ [0, 1]} two Persistence Vineyards
and �D, �E the corresponding Persistence Flamelets, then:

1. �D and �E are continuous with respect to the Bottleneck distance;
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2. I�(�D, �E) Æ IB(D,E)

where IB(D,E) =
s 1

0 dB(D‡, E‡) dt is the Integrated Bottleneck distance for Persistence
Vineyards as defined in @Munch2013.

The proof is a direct consequence of the Stability Theorem for Persistence Landscapes
(Theorem 2.3) and the continuity of Persistence Vineyards, in fact:

1. For a fixed ‡, consider D‡ and D‡+Á (same applies for E). By 2.3 and the continuity
of D we have

0 Æ lim
Áæ0

d�
!
⁄D‡ , ⁄D‡+Á

"
Æ lim

Áæ0
dB (D‡, D‡+Á) = 0.

2. Since for a fixed ‡ we have, by Theorem 2.3 we have

d� (⁄D‡ , ⁄E‡ ) Æ dB (D‡, E‡)

integrating both terms is enough to prove the result.

The Persistence Flamelets is also a random variable defined in a Banach space. In analogy
with what Bubenik (2015) has done for Persistence Landscapes, we define a norm for
Persistence Flamelets, more specifically

Î�Îp

p
=

⁄ 1

0

ÿ

k

...⁄k(t)
...

p

p
dt

Then following Ledoux and Talagrand (2013), we can extend the Law of Large Numbers
and the Central Limit Theorem to this new object.

Corollary 2.1 (Strong Law of Large Numbers). Let {�n}nœN be a sequence of independent
copies of � and, for a given n, let Sn = �1 + · · · + �n, where the sum is defined pointwise.

Sn

n
æ E(�) almost surely ≈∆ E Î�Î < Œ.

Corollary 2.2 (Central Limit Theorem). Assume B has type 2. If E(V ) = 0 and E(Î�Î2) <
Œ then SnÔ

n
converges weakly to a Gaussian random variable G(�) with the same covariance

structure as �.

Proofs directly follow from Theorem 2.4 and Theorem 2.5.

2.4.1 Some intuition / EEG Dynamic Point–Clouds

A short example will clarify when this object, until now rather abstract, may be encountered
and fruitfully used. The easiest way to understand the need for topological characterization
of a continuously varying space is to consider the case where the scale parameter ‡ is time,
t. The Persistence Flamelets allows in fact for a characterization of a time–varying system
F = {f(·; t), t œ [0, 1]} in terms of its topology (Munch et al. 2015, Munch (2013)) by
allowing us to simultaneously study the shape of any time–dependent function ft and how it
evolves with time t.

Again, although this framework is general enough to cover any arbitrary function f(·; t),
as long as it is continuous with respect to time, we are especially interested in the case where
f(·; t) is a function of data.
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Figure 2.7: Persistence Flamelets of Dimension 1 for the EEG data of one
alcoholic (upper) and one control (lower) subject.



2.4. Persistence Flamelets 45

Assume that at each time t we observe a sample X(t) = {X1(t), . . . , Xk(t)} drawn from
some distribution Pt. The Persistence Flamelets � built on distance functions or kernel
density estimators estimate the topology of the whole continuous–time generating process
{Pt, t œ [0, 1]}. The trace of the sample in the time interval {X(t), t œ [0, 1]}, usually called
Dynamic Point Cloud, is just a high dimensional time series, hence the Persistence Flamelets
can be exploited as a tool to extract a new type of insights on time series of arbitrarily high
dimension. In the special case of dynamic point–clouds, the stability result of Theorem 2.6
can be restated as follows.

Corollary 2.3. Let {X(t),Y(t)} with t œ (0, 1) two continuous dynamic point clouds, �X
and �Y their corresponding Persistence Flamelets, then:

I�(�X, �Y) Æ IH(X,Y),

where IH(X,Y) =
s 1

0 dH

!
X(t),Y(t)

"
dt is the Integrated Hausdor� distance for dynamic

point–clouds, as defined in Munch (2013).

Figure 2.7 shows two Persistence Flamelets built from electroencephalography (EEG)
tracks, freely available on the UCI Machine Learning Repository. EEG are electric im-
pulses recorded at a very high frequency (256 Hz) through multiple electrodes (64 in this
study), located in di�erent areas of the skull. The topology of EEG data has successfully
being investigated by Wang, Ombao, and Chung (2018), who characterized epilepsy in terms
of local peaks, through the Persistence Landscape. Their findings are encouraging, as they
detect significative di�erence between the signal during an epilepsy attack and in a control
state, however they are limited by the fact that they can consider only one EEG channel at
the time, being unable to deal with the spatial and the temporal resolution simultaneously.
Both the domains retain relevant information: at each time t, connected components and
loops represent area of the brain that share the same behavior, which is relevant information
per se, but since it is also important to assess whether or not these connection persist in
time, this kind of data fits perfectly in our framework. The Persistence Flamelets highlights
di�erences in the brain’s behavior of the two groups, as illustrated by Figure 2.7, which
represents the Persistence Flamelets, for one alcoholic and one control patient. The signal
from the control patient, in fact, is strongly characterized by a few persistent features. In the
alcoholic patient instead there is less structure; there seems to be more features than in the
control patient, but they all have a smaller persistence, and could therefore be interpreted
as noise.

In order to understand whether this di�erence is just circumstantial or it may be more
grounded, we compare the EEGs of ten alcoholic and ten control patients from the same
repository, all subject to the same stimulus. For each of them we have 5 trials of 1 second;
EEG are typically very noisy hence we average them across repetition before computing their
topological summaries. For this application we compare Flamelets based on the Persistence
Silhouette rather than the Persistence Landscape, as the erratic behavior of the loops makes
it di�cult to choose the order k of the max. We performs a simple permutation test to
compare the two groups, using the Integrated Landscape Distance, and results shown that
while there may not be significative di�erence between the dimension 0 Flamelet, the two
groups are significatively di�erent when compared through their dimension 1, which could
motivate further investigation on the presence and formation of loops in brain activity.

https://archive.ics.uci.edu/ml/datasets/eeg+database
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2.5 Data Smoothing / Applications & Comparisons

In the statistical literature, scale–space ideas have been especially popular in the context
of data smoothing. In its broader definition, data smoothing is a family of methods aimed
at recovering some structure in the data. Depending on their scale, however, smoothing
methods may enhance noise or neglect relevant features, so that it is crucial to understand
the impact of the smoothing level on the smoothed object.

Persistence Flamelets can be used to summarize and evaluate the evolution of the whole
smoothing process. The two main features of the Persistence Flamelets is that they allow
for an intuitive visualization of the dynamics of the smoothing process and that they can be
exploited to track the appearance and disappearance of feature of arbitrary dimension.

Among all the smoothing methods, we focus on Kernel Density Estimation (KDE)
(Scott 2015), for which the role of topological features (especially that of 0th dimensional
Homology Groups) is a well established problem, see for example Chaudhuri and Marron
(1999). Features a�ected by the smoothing process such as local peaks (or, in topological
terms, 0th dimensional Homology Groups), are in fact especially meaningful in the case of
KDE; local modes of a density and their basin of attraction represent for example one way
of defining clusters (Ester et al. 1996,Comaniciu and Meer (2002)). Persistence Flamelets
allows us to explore also higher dimensional features, such as cycles or voids, which have
been noticeably neglected.

Given a sample {X1 . . . , Xn}, drawn from some smooth density p, a Kernel Density
Estimator ‚ph is defined as

‚ph(x) = 1
n

nÿ

i=1
Kh(x ≠ Xi),

where Kh(x ≠ y) = 1
h
K(x≠y

h
) is a scaled kernel, h is the bandwidth parameter and K(·), the

kernel, is a non-negative, symmetric function that integrates to 1.

While any kernel function K(·) may be used without compromising the performance
of the estimator, the bandwidth parameter represent the level of smoothing and needs to
be finely tuned. In the scale-space approach, given some bounded range of bandwidths
H µ R+, all the estimators ‚ph are simultaneously considered, so that the object of interest
becomes the family of smooths F = {‚ph : h œ H}. Since Kh is continuous with respect to h
by definition, it is immediate to see that the Persistence Flamelets can be used to investigate
and characterize F .

From an exploration perspective, the first attempt at investigating the relation between
the bandwidth of a kernel density estimator and its topology was SiZer (Chaudhuri and
Marron 1999). Roughly speaking, given a sample {X1, . . . , Xn} drawn from a univariate
density p, SiZer (SIgnificant ZERo crossings of derivatives) is a map showing where in space,
x, and scale, h, the kernel density estimator ‚ph(x) is significantly increasing or decreasing.
Since local peaks of a curve can be thought of as points where its derivative changes sign,
the basic idea of SiZer is assess where this change happens, by testing whether the sign
of the derivative ‚pÕ

h
(x) for each couple of values (x, h) is positive or negative. Values (x, h)

corresponding to significantly positive derivatives are shown in blue and significantly negative
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are shown in red, as in Figure 2.10.

SiZer is intrinsically 1–dimensional and even though it has been extended to
2–dimensional densities, especially in the context of image analysis as in Godtliebsen,
Marron, and Chaudhuri (2004), the features it hunts for are always and only local modes.
The Persistence Flamelets provides a further extension in two di�erent directions:

• it can be used to investigate topological features of any dimension, rather than only
feature of dimension 0, i.e. local peaks;

• it does not depend on the dimension of the data and can thus be used to investigate
kernel densities for very high dimensional data.

Finally, even though, with respect to SiZer, the Persistence Flamelets lacks of statistical
testing to asses the significance of each peak, it provides a measure of the relevance of each
feature, its persistence.

Figure 2.8: 1st (left) and 2nd (right) Persistence Flamelets of dimension 0.

2.5.1 Bandwidth Exploration

We now show two real–data applications. In the first univariate one we quickly compare
the Persistence Flamelets with SiZer and show that, when both are available they yield
similar insights. The second is a bivariate example, which motivates investigating higher
dimensional features and highlights the potential of the Persistence Flamelets when other
tools are not available.

Eartquakes I / Depth In our first example we consider a classical dataset in kernel
density estimation, the depth of the 512 earthquakes beneath the Mt. St. Helens volcano in
the months before the eruption of 1982 (more details can be found in Scott (2015)). Figure
2.8 shows the 1st and the 2nd Persistence Flamelets for the 0 dimensional topological feature
of the density estimator ‚p built with the Gaussian Kernel:

‚ph(x) = 1
n

nÿ

i=1
Kh(x ≠ Xi) = 1

n

nÿ

i=1

1Ô
2fih

exp
; 1

2h
(x ≠ Xi)2

<
.
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The 1st Persistence Flamelets consists of only one peak, representing the global maximum,
which, as we can expect, always persists. This is not very informative, and when analyzing
dimension 0 topological features, it is thus advisable to consider 2nd Persistence Flamelets,
which represents the most relevant local peaks.
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Figure 2.9: From left to right: Kernel Density Estimator of the Mt. St.
Helens dept data (with h = 0.1) and corresponding Persistence Diagram.
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Figure 2.10: SiZer, the 1st and 2nd Persistence Flamelets of dimension 0. In
order to facilitate the comparison with SiZer, the Persistence Flamelets is
projected and represented as a matrix.

In this case we can see that the two peaks appearing in the 2nd Persistence Flamelets
correspond to the two points in the diagram (which in turn correspond to the two bumps
we can see in the KDE in Figure 2.10). As we can see from Figure 2.8, the 2nd Persistence
Flamelets behaves di�erently than 1st Persistence Flamelets; when the bandwidth grows in
fact, the two secondary peaks are smoothed away.
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Figure 2.10 shows the comparison with SiZer, and it is easy to see that the two approaches
lead to very similar conclusions. The three peaks appear for h = 0.05, then one of them
disappear at around h = 0.25, one other around h = 0.35 and, the last one always survives
(in the given range of bandwidths).

Earthquakes II / Locations For our second example we consider earthquake data
coming from the USG catalog. Our sample consists of the locations, expressed in latitude
and longitude, of 6500 events with magnitude higher than 5, taking place between June
2013 and June 2017. The 2–dimensional density p generating the data {X1, . . . , Xn}3 can
still be estimated using the kernel density estimator with a Gaussian Kernel:

‚p(x) = 1
n

nÿ

i=1
KH(x ≠ Xi)

= 1
n

nÿ

i=1

1
2fi|H|1/2 exp

;
≠1

2(x ≠ Xi)t
H

≠1(x ≠ Xi)
<

.

Notice that in the multivariate case, the bandwidth is not a scalar but rather a matrix H,
however we chose an isotropic Gaussian Kernel, which corresponds to imposing a spherical
structure to the covariance matrix

H = h

A
1 0
0 1

B

, h œ R+,

so that the kernel density estimator expression can be simplified as follows:

‚p(x) = 1
n

nÿ

i=1

1
2fih

exp
;

≠ 1
2h2 (x ≠ Xi)t(x ≠ Xi)

<
.
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Figure 2.11: Dimension 1 Persistence Flamelets for earthquakes locations
KDE (left) and its projection (right).

3Since we are trying to highlight the di�erence between univariate and multivariate densities, (only) in
this section we will use the bold notation for vectors.

https://earthquake.usgs.gov/earthquakes/search/
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Earthquakes are concentrated around circular structures, also known as plates. According
to Plate Tectonics, in fact, the Earth’s lithosphere is broken into 7 main plates, plus a
number of minor ones. Since earthquakes are caused by the movements of neighboring plates,
the density p naturally inherits the Earth’s plates structure. In terms of topology, plates
can be thought of loops, or dimension 1 Homology Groups.

The dimension 1 Persistence Flamelets of the kernel density estimator ‚p can be employed
to assess whether or not kernel density estimators are able to recover these loops. The
Persistence Flamelets shown in Figure 2.11 presents 7 crests, each of them representing
one persistent loop in F ; this seems to suggest that at, di�erent resolution, the kernel
density estimator is able to recover all the 7 main plates. Notice that as opposed to the 0th

dimensional case, where there is always one feature, the global maximum, dominating all
the others, when analysing loops we can limit our analysis to the 1st Persistence Flamelets.
In this example specifically, the Persistence Flamelets shows that there is one loop that
persists noticeably more than all the others; as persistence is a measure of the importance
of a feature, this suggests that there is one plate which is more neatly detected than all
others. This is represent the contour of the Philippine plate, which is not surprising, since
more than 26% of the seismic activity in the given time interval was concentrated in the
area between Philippine and Japan.

2.5.2 Bandwidth Selection

As the Persistence Flamelets is defined as the topological summary of a scale space, it is
immediate to see that it can be exploited in the exploration approach, to asses the impact of
the level of smoothness. However, as picking an optimal level of smoothing can be though of
as a way of assessing whether or not a feature in a smooth is relevant, it may also play a role
in the context of bandwidth selection, and it can be used to choose a “topologically–aware”
bandwidth.

If evaluating the importance of higher dimensional topological features such as loops or
voids is challenging from the point of view of exploration, this is even more true for the
selection approach, where the topological structure is usually ignored (with the exception of
local modes as in Genovese et al. (2016)). More critically, standard approaches for such as
cross validation methods have proven to fail when the density is singular, i.e. concentrated
around lower dimensional structures (Genovese et al. 2016).

Intuitively, since persistence can be interpreted as a measure of the importance of each
feature, bandwidths corresponding to peaks in the Persistence Flamelets result in estimators
that highlight the most prominent features in the density. By selecting the value of h that
maximise the Persistence Flamelets, the topologically–aware ‚hTA, we are forcing the density
estimator to retain the most relevant topological treats.

Let us consider again the Earthquake II example. By choosing the value of h that
maximise the Persistence Flamelets, we are forcing the density estimator to emphasize the
most persistent loop. The kernel density estimator ‚phTA , shown in Figure 2.12, is in fact
concentrated around the Philippine plate, as we could expect.

To understand why such a topologically–aware bandwidth selection heuristic may be
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Figure 2.12: Density estimation with the topologically aware bandwidth ‚hTA.
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Figure 2.13: Density estimation with extended Silverman Normal bandwidth
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Figure 2.14: Density estimation with anisotropic Plug–in bandwidth matrix
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useful, let us compare it with more established methods for bandwidth selection: Silverman’s
Normal Rule and a Plug–in bandwidth selection criterion. We intentionally ignore cross
validation methods because, as we stated in the previous section, they show poor behaviour
in this setting.

The first alternative we consider is an extension of Silverman Normal Rule, one of the
most famous “rule of thumb” for bandwidth selection, to the case of densities with singular
features, as detailed in Genovese et al. (2017) and Chacón, Duong, and Wand (2011). More
specifically, given a sample {X1, . . . , Xn} œ RD, from some distribution P , the optimal
bandwidth h for recovering the d–dimensional features is

‚hS =
3 4

n(d + 2)

4 2
4+d

s,

where s = D≠1 q
D

j=i
s2

j
and s2

j
is the variance of the jth variable. Despite the fact that we

set d = 1, in order to take into account the loop structure, the density estimator, shown in
Figure 2.13, does not seem to recover any of the plates at all.

The second approach we consider is a Plug–in bandwidth estimator „HPI, obtained by
minimizing the AMISE (Asymptotic Mean Integrated Square Error) w.r.t. the bandwidth h;
details are given in Chacón, Duong, and Wand (2011)}. Since limiting the case of scalar
bandwidths, as we did until here, may seem too restrictive, in this final example we relax
the hypothesis of spherical covariance and do not impose any structure on the bandwidth
matrix H. The additional complexity of the estimator does not however result in a better
estimation: as we can see in Figure 2.14, the plates structure of the true density is still not
recognizable.



Chapter 3

Topological Supervised Learning

3.1 Topological Kernels

Persistence diagrams have several drawbacks that have limited their popularity in statistical
inference. For example, a collection of Persistence Diagrams {D1, . . . , Dn}, does not have a
unique mean (Turner et al. 2014); perhaps even more critically, despite the fact that D is a
Polish space and that the existence of a probability distribution on it has been proved by
Mileyko, Mukherjee, and Harer (2011), it is still not clear how to derive it. In general, the
metric structure of the space of persistence diagrams may not be rich enough for statistical
learning.

We approach supervised learning with Persistence Diagrams as covariates by translating
Persistence Diagram into inner product spaces using kernels. A kernel K on a space X is a
symmetric binary function K : X ◊ X ‘æ R+ that can roughly be interpreted as a measure
of similarity between two elements of X . Every kernel is associated to an inner product
space (Scholkopf and Smola 2001); exploiting this correspondence, kernels allow to perform
directly most statistical tasks such as classification (Cristianini and Shawe-Taylor 2000),
regression (Härdle 1990), or testing (Gretton et al. 2012), without explicitly computing, or
explicitly knowing, the probability distribution that generated the observations.

One popular family of kernels for a geodesic metric space (X, d) is the exponential kernel

k(x, y) = exp
)

≠ d(x, y)p/h
*

p, h > 0

where h > 0 is the bandwidth parameter; for p = 1 this is the Laplacian kernel and for p = 2
this is the Gaussian kernel. As the space of Persistence Diagrams is a Geodesic Space, it is
possible to use this class to define a Topological kernel to be deployed in statistical learning.

Definition 3.1 (Geodesic Topological Kernel). Let D be the space of persistence diagrams,
and let h > 0, then the Geodesic Gaussian Topological (GGT) kernel KGG : D ◊ D ‘æ R+ is
defined as

KGG(D, DÕ) = exp
;

≠ 1
h

WL2,2(D, DÕ)2
<

’ D, DÕ œ D.

Analogously, the Geodesic Laplacian Topological Kernel (GLT), KGL is defined as:

KGL(D, DÕ) = exp
;

≠ 1
h

WL2,2(D, DÕ)
<

’ D, DÕ œ D.
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It may seem natural to extend the properties of the standard (Euclidean) Gaussian and
Laplacian kernels to their geodesic counterpart on D, however, it turns out that the metric
structure of the space D may introduce some limitations, especially with respect to positive
definiteness; as shown in Feragen, Lauze, and Hauberg (2015), in fact, a Geodesic Gaussian
kernel on a metric space is positive definite only if the space is flat.

Theorem 3.1 (Feragen et al.). Let (X, d) be a geodesic metric space and assume that the
Geodesic Gaussian kernel on X k(x, y) = exp{≠d2(x, y)/h} is positive definite for all h > 0.
Then (X, d) is flat in the sense of Alexandrov (see Bridson (1999) for more information).

This is not the case for the space of Persistence Diagram, which has been proved to
be curved by Turner et al. (2014). We say that a geodesic metric space is CAT(k) if its
curvature is bounded from above by k.

Theorem 3.2 (Turner et al.). The space of persistence diagrams D with WL2,2 is not
CAT(k) for any k > 0, and it is a non–negatively curved Alexandrov space.

We can now characterize the Geodesic Gaussian Kernel.

Lemma 3.1. The Geodesic Gaussian Kernel on D is not positive definite.

The proof is a trivial consequence of Theorem 3.1 and Theorem 3.2. Characterizing the
Geodesic Laplacian kernel is not as easy, although it has shown empirically to be indefinite
as well (Reininghaus et al. 2015).

3.1.1 The competition

This is not the only, nor the first, attempt to transform persistence diagrams into a more
“inferential–friendly” object. Previous works in this direction however followed a di�erent
strategy and tackled the problem by explicitly deriving a feature map � : D ‘æ H from
persistence diagrams to some Hilbert space H. The link between this and our approach
is that any feature map � corresponds to a kernel K (Cristianini and Shawe-Taylor 2000,
Scholkopf and Smola (2001)) defined as K(D, DÕ) = È�(D), �(DÕ)ÍH, for every D, DÕ œ D.

We briefly review the two main families of feature maps �: 1. feature maps derived
from the Triangle function and 2. feature maps derived from the Dirac Delta function.
A common element to the methods presented in the following is that the embedding is
defined point–wise, for each element of the persistence diagram, at first. The structure of
the diagram must be later recovered as a summary, whereas the geodesic kernel maintains it
directly, as it always consider the persistence diagram as a whole.

Triangle Function As we have already seen in Section 2.3, the first way of translating
each point x œ D into a space of function is through the triangle function Tz(y) defined in
Equation (2.1), which allows to represent a persistence diagram as a collection of piecewise
linear functions; for any k œ N+, Persistence Landscapes ⁄k

D
(y) are defined by taking the

kth outermost line of the collection. It immediately follows that for any given k œ N+ the
feature map �(D) is defined as t ‘æ ⁄D(k, t), meaning that it is possible to define a kernel
from the Persistence Landscape K⁄(D, DÕ) (and analogously for the Silhouette), but since
in practice it has shown poor performances (as shown in Reininghaus et al. (2015)), these
tools are typically used as they are or summarized in some other way.
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Dirac Delta Functions The second way of mapping each x œ D to a space of function is
through Dirac delta functions ”x. Every Persistence diagram D can be uniquely represented
as the sum of Dirac delta functions ”x, one for each x œ D; since ”x are defined in a Hilbert
space, their sum will as well.

Reininghaus et al. (2015) use this representation as initial condition for a heat di�usion
problem, and define a new feature map �(D) as

t ‘æ 1
4fi‡

ÿ

xœD

e≠
Ît≠xÎ2

4‡ ≠ e≠
Ît≠x̄Î2

4‡ ,

where if x = (b, d) then x̄ = (d, b). The feature map �(D) defines the Persistence Scale
Space kernel KPSS:

KPSS(D, DÕ) = 1
8fi‡

ÿ

xœD

ÿ

yœDÕ
e≠

Îx≠yÎ2
8‡ ≠ e≠

Îx≠ȳÎ2
8‡ ’ D, DÕ œ D,

which is the most similar in spirit to the Geodesic Kernels. KPSS is a heat kernel, and is
stable with respect to WLŒ,1.

Another kernel built from Dirac Delta functions is the Persistence Weighted Gaussian
Kernel (Kusano, Hiraoka, and Fukumizu 2016), defined as

KPWG(D, DÕ) = exp
A

≠dG(D, DÕ)2

2 ‡2

B

where

dG(D, DÕ) =
ÿ

xœD

ÿ

xÕœD

warc(x) warc(xÕ) kG(x, xÕ)

+
ÿ

yœDÕ

ÿ

yÕœDÕ
warc(y) warc(yÕ) kG(y, yÕ)

≠ 2
ÿ

xœD

ÿ

yœDÕ
warc(x) warc(y) kG(x, y),

warc(x) = arctan
!
C · pers(x)q

"
,

and kG is the Euclidean Gaussian kernel with variance · . The Persistence Weighted
Gaussian Kernel, much like the Persistence Silhouette, allows to explicitly control the e�ect
of persistence. However, the choice of the di�erent 4 tuning parameters (q, ‡, ·, C) may be
unfeasible in most real data applications.

The main di�erence with respect to our Geodesic Kernels is that KPSS, KPWG and even
K⁄ are positive definite by construction. Despite being indefinite, however, the Geodesic
Kernels are a more sensible measure of similarity.
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D DÕ Dÿ

D 1.000 0.040 0.483
DÕ 0.040 1.000 0.006
Dÿ 0.483 0.006 1.000

Table 3.1: Geodesic Gaussian Kernel matrix for the three diagrams shown in
Figure 3.1.

D DÕ Dÿ

D 0.005 0.023 0.000
DÕ 0.023 0.119 0.000
Dÿ 0.000 0.000 0.000

Table 3.2: Persistence Scale Space Kernel matrix for the three diagrams
shown in Figure 3.1.
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Figure 3.1: (From left to right) Three Persistence diagrams: D, DÕ, Dÿ.

Let us examine the behavior of the kernels with respect to the empty diagram Dÿ to make
this more clear. This will be especially relevant later, when analyzing posturography data
(see Section 3.3). Although not all diagrams are equally di�erent from the empty diagram
Dÿ, KPSS and KPWG do not capture this diversity as neatly as the Geodesic Kernels.

In the PSS approach, for example, �(Dÿ) = 0 by definition. This results in
KPSS(Dÿ, D) = È�(Dÿ), �(D)Í = 0, for every D œ D, including Dÿ itself, leading to the
paradoxical conclusion that KPSS(Dÿ, Dÿ) = 0, as shown in Table 3.2.

The Geodesic Kernels, on the other hand, are built on the Wasserstein distance and since
WL,p(D, Dÿ) ”= 0 for any D ”= Dÿ, they retain more information, as can be seen in Table 3.1.

Although positive definiteness is a rather attractive quality in a kernel (Scholkopf and
Smola 2001), the indefiniteness of our kernel does not a�ect its performances in supervised
settings. Notice that we are not claiming that our kernel is superior in general, in fact due to
their positive definiteness KPSS and KPGW can be used outside supervised learning, we are
instead proposing an alternative that exploiting the predictive power of the negative part of
the kernels can perform better in this class of problems. We now show some applications to
real data to support our thesis.
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3.2 Regression / Fullerenes

Buckyballs fullerenes are spherical pure carbon molecules artificially synthesized in the ‘70,
then discovered in nature in the’90, which have recently gained much attention after C60
has being identified as the largest molecule detected in space (Berné and Tielens 2012). The
typical trait of Buckyballs fullerenes is that atoms’ linkage can form either pentagons or
hexagons, so that the configuration of the molecule resembles a soccer ball (hence the name).
Our goal is to show that the topology of the molecule can be used directly to explain its
Total Strain Energy (measured in Ev); given a sample {X1, . . . , Xn} of Fullerenes we model
their Total Strain Energy, Y as a function of their Persistence Diagrams {D1, . . . , Dn}:

Yi = m(Di) + Ái ’ i œ {1, . . . , n},

where Ái is the usual 0–mean random error.

As in standard nonparametric regression, we can estimate the regression function m(·)
with the Nadaraya–Watson estimator (Härdle et al. 2012), defined as:

‚m(D) =
q

n

i=1 Yi K(D, Di)q
n

i=1 K(D, Di)
,

where D is a generic persistence diagram. Since the kernel function K involved in the
Nadaraya–Watson estimator, needs not be positive definite, we can use the Geodesic kernels
to extend nonparametric regression to the case of persistence diagrams as covariate.
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Figure 3.2: Topological configurations of some fullerenes (top) and corre-
sponding persistence diagrams (bottom). From left to right: C38(C2v),
C40(C1), C44(C1), C52(C2), C90(C1).
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C38 C40 C42 C44 C48 C52 C84 C86 C90 C100
n 17 40 45 89 79 96 24 19 46 80
Ȳ 27.50 28.29 28.46 29.12 31.21 32.59 29.34 29.88 31.29 34.41
‚‡ 1.35 1.62 1.35 1.78 1.56 1.57 1.29 0.80 1.21 1.24

Table 3.3: Number of observations (n), mean (Ȳ ) and standard deviation (‚‡)
of TSE for each type of fullerenes in the sample.
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Figure 3.3: Energies for the 10 di�erent classes of isomers. It is worth noticing
that Fullerenes with higher numbers of atoms do not necessarily have higher
energy.

We fit the model using data from n = 535 molecules of 10 di�erent types of Fullerenes.
The sample is unbalanced, as the number of configurations available for each Fullerene
depends on the number of atoms composing it and advances in research (Table 3.3). For
each molecule, the data (freely available at http://www.nanotube.msu.edu/fullerene/
fullerene-isomers.html consists of the coordinates of the atoms taken from Yoshida’s
Fullerene Library and then re–optimized with a Dreiding–like forcefield. We carry our
analysis using both the R package TDA (Fasy et al. 2014) and the C++ library it refers to
Dionysus (Morozov 2012).

Since there is no clear pattern for connected components and, as we could expect, there
is only one relevant void for each molecule, we decided to focus on features of dimension 1,
which seem to be the most informative. As we can see from Figure 3.2, loops in the diagrams
are, in fact, clearly clustered around two centers, which represent the pentagons and the
hexagons formed by the carbon atoms. Interestingly enough, the Wasserstein distance and,
hence, both the geodesic kernels, fully recover the class structure induced by the isomers, as
we can see in Figure 3.4.

http://www.nanotube.msu.edu/fullerene/fullerene-isomers.html
http://www.nanotube.msu.edu/fullerene/fullerene-isomers.html
http://www.mrzv.org/software/dionysus
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Geodesic Gaussian Kernel Geodesic Laplacian Kernel
Nonparametric regression 339.89 342.14
Semiparametric regression 1049.02 331.04

Table 3.4: Residual Sum of Squares.
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Figure 3.4: Kernel Matrix for the Geodesic Gaussian Kernel (left), Geodesic
Laplacian Kernel (center), Hierarchical Clustering built from the Wasserstein
distance with complete linkage (right). Colors represent the di�erent isomer
classes as shown in Figure 3.3.

We estimate the regression function m(D) using both the Laplacian and the Gaussian
geodesic kernels; the estimator resulting from the GGT kernel is

‚mGG(D) =
q

n

i=1 Yi exp
Ó

≠ 1
h
WLŒ,2(D, Di)2

Ô

q
n

i=1 exp
Ó

≠ 1
h
WLŒ,2(D, Di)2

Ô ’ D œ D;

analogously for the LGT kernel. Moreover, in order to take into account the group structure
naturally induced by the isomers, we considered a model with a fixed group intercept, i.e:

Yij = –j + m(Dij) + Áij ,

where Dij denotes the persistence diagram of the ith isomer of the jth molecule. We fit the
resulting partially linear model using Robinson’s trimmed estimator, as detailed in Li and
Racine (2007).

After choosing the bandwidth h via Leave–One–Out cross validation, we compare the
di�erent models in terms of Residual Sum of Squares (RSS). As we can see from Table 3.4,
the two kernels yield similar results when used in a fully nonparametric estimator, while the
Laplacian kernel performs better when adding the group intercept to the model. This can
be understood by looking at the kernel matrices (Figure 3.4); the Gaussian Kernel has a
sharper block structure than the Laplace Kernel, which makes it better at discriminating
the 10 molecule classes. However, when the group structure is taken into account by the
model itself, this clustered structure leads to worse prediction.
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Figure 3.5: Observed vs fitted plot for the fully nonparametric model fitted
with the Geodesic Gaussian (left), Geodesic Laplacian (center) and the
Persistence Scale Space kernel (right). Colors represent the di�erent isomer
classes as shown in Figure 3.3.

Finally, we compare the performance of our geodesic kernels with the Persistence Scale
Space kernel KPSS by using the same data to fit

‚mPSS(D) =
q

n

i=1 Yi KPSS(D, Di)q
n

i=1 KPSS(D, Di)
.

As we can clearly see from the fitted-vs-observed plots in Figure 3.5, the positive definiteness
of the PSS kernel does not result in more accurate prediction, as both KGG and KLG
outperform it.

3.3 Classification / Posturography

For our second example we analyze data from a posturography experiment available at
https://physionet.org/physiobank/database/hbedb/. Subjects standing on a platform
were asked to close their eyes and stand still for some time. Researcher then recorded the
center of pressure on the platform over a period of 60 seconds; details are available in Santos
and Duarte (2016). In order to characterize the oscillation’s pattern using TDA, we build
a Persistence Diagram for each of the 320 traces, 160 of which were recorded on a rigid
platform, and 160 on a soft one.

We focus on dimension 1 topological features. Intuitively, in fact, a loss of equilibrium
results in sudden movements, which generate cyclical structures; we can consider the number
and the persistence of loops as a measure of the signal’s variability. Figure 3.6 shows one
trajectory for each of the conditions. Data coming from the rigid platform do not present
any loop at all, causing the diagram to be empty (as we are only considering dimension 1
features).

Although not all observations are quite as well distinguishable, it is generally true that
subjects standing on the rigid platform are more stable and their persistence diagrams are
more likely to be empty.

https://physionet.org/physiobank/database/hbedb/
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This kind of data fits perfectly in the TDA framework, as coordinates, which in this
case represent the direction and the time of the loss of equilibrium, are not relevant to our
problem and may be misinterpreted.

We show how the Persistence Diagram of a trace can be used to infer whether each
trajectory was recorded on a soft or a rigid platform. This is a binary classification problem,
which we solve using the Geodesic Kernels. Standard kernel–based classifiers such as Support
Vector Machines require a positive definite kernel, we thus consider an extension to SVM for
indefinite kernels proposed by Loosli, Canu, and Ong (2016), KSVM. Details are given in
Appendix C.

As we can see from Table 3.5, the accuracy of the classification is far superior when using
KSVM with the Geodesic Gaussian Kernel KGG (and results are identical for KLG) rather
than the standard SVM with the positive definite KPSS, and this result is not surprising
because several of the diagrams corresponding to trajectories on the Rigid Platform are empty.
Although there are algorithms, such as KSVM and others (Luss and d’Aspremont 2008),
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Figure 3.6: Trajectory of a subject standing on a soft platform (in pink)
and on a rigid one (in purple). On the left, the corresponding persistence
diagrams.

KSVM PSS–SVM Clip Flip Square
Mean 2.82% 3.31% 2.84% 2.86% 2.87%
Standard Deviation 0.087 0.198 0.159 0.141 0.166

Table 3.5: Average Misclassification Rate for the 10–fold Cross Validation
and corresponding variance.
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designed to explicitly solve the SVM optimization problem when the kernel is indefinite, a
very common way to deal with indefinite kernels K is to just substitute the kernel matrix K,
whose (i, j)th entry is defined as Kij = K(Di, Dj), with some positive definite approximation
of it. Denote by K = U � Ut the spectral decomposition of the indefinite matrix K, where U is
an orthogonal matrix and � = diag(⁄1, . . . , ⁄n) is the diagonal matrix of (real by symmetry)
eigenvalues {⁄1, . . . , ⁄n}. We consider the following heuristics to obtain a positive definite
kernel matrix ÂK:

• clip: set to 0 negative eigenvalues of K; that is, ÂKc = U Â�c Ut where

Â�c = diag
!

max(⁄1, 0), . . . , max(⁄n, 0)
"
;

• flip: take the absolute value of the eigenvalues of K; that is, ÂKf = U Â�f Ut where

Â�f = diag
!
|⁄1|, . . . , |⁄n|

"
;

• square: square the eigenvalues of K; that is, ÂKs = U Â�s Ut where

Â�s = diag
!
⁄2

1, . . . , ⁄2
n

"
.

We compare the performance of KSVM with that of a standard SVM trained on ÂK. The
three heuristics we consider in order a positive definite version of the kernel matrix K.
Results in Table 3.5 are rather reassuring, since they suggest that the good performance of
the KSVM with KGG it does not depend on the complexity of the specific solver, but rather
on the discriminative power of the Geodesic Kernels themselves.

3.4 Topological Determinants of Brain Activity

Having so far analysed quantile and topological separately, we now propose a joint application
of the previously introduced techniques, focusing on brain imaging data. In addition to
providing an interesting question per se, as there is an obvious fascination with the quest
for insights on how human minds work, their complexity encourages the development of
new statistical tools, making neuroimaging a statistical goldmine in the last decades. Brain
imaging exhibits in fact complex temporal and spatial dependency, which is non trivial to
assess, especially because of the rather complex and still not entirely known geometry of the
brain.

On top of the modelling challenges that naturally arises when studying such a complex
object, neuroimaging data present the additional obstacle of being extremely high dimensional.
We do not by any means claim to provide a complete analysis of such a complicated problem,
but we consider section as a proof of concept instead. Our goal is twofold: 1. to show that
there is something to be gained by adopting Topological Tools in the analysis of fMRI data,
2. provide a pipeline for recasting topological summaries in the framework of parametric
modeling.

The first studies revolved around Structural imaging tools such as CT (Computer axial
Tomography) or PET (Positron Emission Tomography). However, in addition to being
potentially harmful to the patient due to the radiation involved, these tools only provide a
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static characterization of the brain and may not be used to investigate its activity, which is
why in recent years, the interest shifted towards less invasive Functional imaging tools, most
noticeably functional Magnetic Resonance Imaging (fMRI), ElectroEncephaloGram (EEG)
or Di�usion Tensor Imaging (DTI) which are intended to capture the brain “in action”. In
this example we try to exploit the tools introduced in the previous sections to investigate
brain activity, hence we turn to this second class of neuroimaging data, focusing on fMRI in
particular.

The principle behind fMRI is that brain activation can be detected by analyzing the
changes in blood oxygenation and blood flow corresponding to some task. fMRI data consists
of collection of 3-dimensional magnetic resonance images acquired on a tight time grid. Each
pixel, also called voxel, represent the intensity of the nuclear spin density, which is strictly
related to the blood oxygenation and flow. More precisely, the most popular approach for
performing fMRI is based on the Blood Oxygenation Level Dependent (BOLD) contrast,
which allows to study the hemodynamic response to neural firing.

The biological justification for the BOLD is that the metabolic demand for oxygen and
nutrients increases in relation to increases in neural activity increases, only in the a�ected
regions of the brain. The Neural firing thus signals the extraction of oxygen from hemoglobin
in the blood, which can be detected by the BOLD signal. It is worth highlighting that the
BOLD signal is not a direct quantification of neural activation, as there may be changes in
neural activity that do not necessarily change the metabolic demand of the region, hence
they may not result in an increased need of hemoglobin. Despite being rather informative,
the BOLD signal thus captures only partially the e�ect of a change of the neuronal activities
corresponding to a task.

Statistical analysis of fMRI scans were initially aimed at investigating how the brain
reacted to a specific stimulus, hence they drew on fMRI recorded during the execution of a
given task. In recent years and despite initial skepticism, resting state fMRI, that is fMRI
recorded while the patient is at rest, have started gaining momentum in the neuroimaging
community (Van Dijk et al. 2009; Biswal et al. 2010), as they provide insights on deeper
forms of brain activity.

3.4.1 Why Topology

The most common framework for investigate and model brain activity from a functional
rather than structural standpoint is to represent the brain as a graph. In this setting, di�erent
brain areas, taken to be the nodes of the network, are connected by an edge when they show
a similar behavior. The main advantage in adopting this approach is that brain activity
can be analysed by exploiting tools from network analysis. Connectivity, hence topological
characterization, is a core notion in this class of methods, as connected components of brain
network consist of areas of the brain that show a similar behavior, regardless of their spatial
proximity, and it is typically analysed by assessing network properties (e.g. small-world, scale
free connectivity). We refer to Bullmore and Sporns (2009) Lee, Smyser, and Shimony (2013)
and references therein for a general review of comparisons made using network summary
statistics.
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Figure 3.7: Data collection centers.
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Figure 3.8: Raw time series for one ROI of each atlas, with open (top) and
closed eyes (bottom).
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Figure 3.9: Correlation matrices (top) and corresponding Persistence Diagram
(bottom) for one subject of the study with open eyes, with the area of the
diagram highlighted in pink representing the confidence band around the
diagonal.

Since building the brain network typically requires inducing some sparsity in the associa-
tion structure of brain regions, as a fully connected graph would be di�cult to interpret,
techniques such graphical lasso or something are deployed to threshold the dependency
measure. Our first aim is thus to assess whether the additional information provided by the
persistence approach, that does not require any arbitrary thresholding choice, is relevant by
trying to exploit Persistence Diagram for characterizing the brain activity.

Region of Interest The first challenge faced in building persistence diagrams on fMRI is
the definition of “brain areas”, or unit of observation.

Considering individual voxel of fMRI scans as unit of analysis has the obvious advantage
of preserving all the information contained in the data, however, as the number of voxel
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in a scan can be of the order of millions, treating voxel directly can be computationally
prohibitive. Moreover much of the information contained in the fMRI scan is redundant,
as close voxel typically exhibit almost identical behavior, therefore neighboring voxel are
typically aggregated into Region of Interest (ROI). One way to do so is to exploit fully
data-driven tools such as Principal Component Analysis (Andersen, Gash, and Avison 1999)
or Independent Component Analysis (Calhoun et al. 2001). This dimensionality reduction
techniques identify the ROIs as lower-dimensional structures in the data, but are not easily
interpretable. Regions defined following this approach may vary according to the activity
performed during the scan and, even more critically, according to the subject performing it.
Making comparison di�cult, this kind of ROI may be more indicated for studies aimed at
investigating subject specific behaviors rather than modelling multiple individuals, as in our
case.

In order to make result comparable across subjects, we use a parcellation in Region of
Interest defined by practitioners from anatomical proximity. The use of anatomical atlases
allows an appealing interpretation of the results, since a brain division that corresponds to
criteria defined by experts in the field should be more coherent with the state-of-the-art
knowledge. Furthermore, a standardized parcellation has the additional benefit to permit
comparison of results from di�erent methodologies and di�erent datasets. As results may
depend on the specific atlas considered, we perform our analysis on multiple atlases and
compare our findings. More specifically we compare the following three parcellations.

• Automated Anatomical Labeling (AAL) Adopted in more than three-quarters
of the publications on functional brain networks, the Automated Anatomical Labeling
(AAL) is the most popular anatomical template for fMRI. The AAL atlas distributed
with the AAL Toolbox was fractionated to functional resolution (3x3x3 mm3) using
nearest-neighbor interpolation, resulting in 116 regions.

• Eickho�-Zilles (EZ) The EZ atlas was derived from the max-propagation atlas
distributed with the SPM Anatomy Toolbox. The atlas was transformed into template
space using the Colin 27 template (also distributed with the toolbox) as an intermediary
and fractionated into functional resolution using nearest-neighbor interpolation.

• Harvard Oxford (HO) The HO atlas distributed with FSL is split into cortical
and subcortical probabilistic atlases. A 25% threshold was applied to each of these
atlases and they were subsequently bisected into left and right hemispheres at the
midline (x=0). ROIs representing left/right WM, left/right GM, left/right CSF and
brainstem were removed from the subcortical atlas. The subcortical and cortical ROIs
were combined and then fractionated into functional resolution using nearest-neighbor
interpolation.
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Figure 3.10: Correlation matrices (top) and corresponding Persistence Dia-
gram (bottom) for one subject of the study with closed eyes, with the area
of the diagram highlighted in pink representing the confidence band around
the diagonal.

Association Measure The second choice to be made to build Persistence Diagram from
fMRI data is that of association measure between brain areas, which determines how “close”
two regions are. In this preliminary analysis, in which we are more interested in assessing
whether there is potential for TDA rather than fully exploit it, we adopt the most basic
measure dependency measure, correlation. We summarize the topology of each fMRI scan
by computing Persistence Diagrams from the Rips complex defined using as distance

d(Xi, Xj) = 1 ≠ (Cn(Xi, Xj)2

where Cn(Xi, Xj)2 is the empirical correlation between the fMRI time series corresponding
to the ith and jth ROI.

We are aware that a naive correlation-based approach happens to be approximate in
describing the functional connectivity, since it neglects the influence of all the other variables
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and it may lead to nonzero estimates even when the brain regions are independent (Smith
et al. 2006) and that several alternative approaches have been investigated to obtain more
reliable representations and robust descriptions of the functional networks, such as wavelet
based correlation analysis (Achard et al. 2006) and graphical models (Craddock et al. 2013).
We plan to investigate this point further in the future.

3.4.2 Phenotipical determinants of Brain Topology

Data analysed in this section are taken from the Autism Brain Imaging Data
Exchange (ABIDE) project (http://preprocessed-connectomes-project.org/
abide/index.html). ABIDE is part of the 1000 Functional Connectome project
(http://fcon_1000.projects.nitrc.org), a freely accessible collection of resting
state fMRI data collected independently by over 33 institution across the world. For
our analysis, we consider 794 scans (380 of which correspond to patients a�ected by
autism while the remaining 414 are taken from a healthy control group) taken from 14
institutions. The raw signal was preprocessed using the C-PAC (Configurable Pipeline
for the Analysis of Connectome - https://fcp-indi.github.io) pipeline for time and
motion correction, space registration, intensity normalization and noise removal (see
http://preprocessed-connectomes-project.org/abide/cpac.html for more details).

An extensive collection of covariates describing the patients’ phenotype are additionally
provided for each subject (a complete list can be found at http://fcon_1000.projects.
nitrc.org/indi/abide/ABIDE_LEGEND_V1.02.pdf), however, their use it is strongly com-
promised by the presence of missing values. Discarding all variables with more than 20% of
missing observations, we are left with the only the following 5:

• age: age of the subject at time of the scan, raging from
• diagnosis type: either 1 for patient with disease or 2 for control subject
• sex: gender of the subject, either 1 for male or 2 for female
• intelligence measures: IQ scores
• eye status: whether the fMRI was recorded with the patient

In order to understand what kind of information Persistence Diagrams retain about
brain activity, if any at all, we perform a supervised analysis tackling two di�erent sources
of variability, one somehow constitutional, while the other more contingent. Following the
approach described in Section 3.3, we use Topological classification to discriminate between
scans recorded with closed eyes and open eyes at first, and then between healthy and patients
a�ected by autism. Average misclassification rates on 10 fold cross validation for the KSVM
performed with the Geodesic Laplacian Kernel introduced in Section 3.1 are shown in Figure
3.11.

Our results are encouraging as the Persistence Diagrams seem to be partially able to
recover the congenital di�erence between closed eyes and open eyes scans, while being robust
to the presence or not of a disease. Moreover, we see once again that our Kernel performs
better than the competition (misclassification rates shown in Figure 3.11 refer only to the
classification of eye status, but analogous results holds for the disease detection).

http://preprocessed-connectomes-project.org/abide/index.html
http://preprocessed-connectomes-project.org/abide/index.html
http://fcon_1000.projects.nitrc.org
https://fcp-indi.github.io
http://preprocessed-connectomes-project.org/abide/cpac.html
http://fcon_1000.projects.nitrc.org/indi/abide/ABIDE_LEGEND_V1.02.pdf
http://fcon_1000.projects.nitrc.org/indi/abide/ABIDE_LEGEND_V1.02.pdf
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Figure 3.11: Average Misclassification rates for Eye status (top) and Disease
status (bottom). Solid lines represent the performance of the Geodesic
Laplacian Kernel while the dotten line represents the Persistence Scale Space
Kernel.

For our second goal, we now present a strategy to assess how the phenotype a�ects
its composition. We consider as a response variable the number of dimension 1 elements,
the loops, of the diagram, which we have just seen retaining some predictive power. The
reason we are especially interested in loops is that, while there is a clear interpretation for
connected components, in this case, as opposed to the previous examples, it is not equally
immediate to understand what higher dimensional topological features may represent. We
try to shed some light on this, addressing the problem of assessing phenotypical determinants
of topological features. As these are counts data, we model the number of loops in a diagram
as a Poisson, and, to keep the notation consistent with the previous chapters, we denote
them as Y from here on.

We are aware of the fact that some of the loops that appear in the diagram are not
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relevant information but they are most likely noisy artifacts, however, in this application
trying to clean the diagrams using confidence bands as introduced in Section 2.2.2 turns out
to be unsuccessful. Confidence bands may in fact be too conservative and classify as noise
even relevant feature (as can be seen in Figure 3.10, where nothing is spared by the band).
For this reason we introduce the Degree 1 Total Persistence of the diagram, i.e. the sum of
persistence of all features, as Exposure set E. Moreover, the use of the Total Persistence
allows to retain part of the information contained in the persistence diagram, while regressing
on the number of loops only, would inform us on the determinants of the persistent Betti
numbers. While Betti numbers have been shown to be useful in other contexts, Figure 3.12
warns us that in this case they seem to have similar distributions among the two di�erent
groups of interest and may not be informative enough.

In order to better approach this issue, we turn, once again, to Quantile regression.
The main advantage in doing so, in fact, is that we can assess whether a cleaner diagram
(corresponding to a lower level quantile) can actually be better explained, and, if this is the
case, we can also see when does the topological noise start to hide the e�ect of the covariates.
On the other hand, if there seems to be signal even at low quantiles, it is a good indication
that even less persistent features are actually meaningful. For a fixed quantile level –, our
model can be formalized as:

Y |⁄ ≥ Poisson(E⁄)
⁄

E
= �≠1(q– + 1, 1 ≠ –)

�(q– + 1)
q– = exp ÷–

where ÷ is the linear predictor, containing fixed and random e�ect. We compare the following
specifications:

• Model 1: ÷ = —0 + —sexX1 + —ageX2 + —eyeX3 + —diagX4
• Model 2: ÷ = —0 + —sexX1 + —ageX2 + —eyeX3 + —diagX4 + —IQX5
• Model 3: ÷ = —0 + —sexX1 + —ageX2 + —eyeX3
• Model 4: ÷ = —0 + —sexX1 + —ageX2 + —eyeX3 + —diagX4 + b
• Model 5: ÷ = —0 + —sexX1 + —ageX2 + —eyeX3 + —diagX4 + —IQX5 + b
• Model 6: ÷ = —0 + —sexX1 + —ageX2 + —eyeX3 + b

where b is a Gaussian random e�ect. In general, the introduction of the random e�ect seems
beneficial to the model, as attested by the lower Deviance Information Criterion (DIC)
values (shown in Table 3.6). The main result is that the variable diagnosis type does not
seem to be significant. Not only the model containing it has worse performance in terms of
DIC, but, as shown in Table 3.8 the credibility intervals for —eye contain the 0 at every level
of the quantile. This indicates some kind of robustness of our topological characterization
with respect to the disease condition instead, as already hinted by the poor performance of
the classifier shown in Figure 3.11. The variable eye status on the other hand, is clearly
the one binary variable with the highest impact, which is yet another confirm of the results
of the classification.

As the results are robust with respect to the choice of atlas, not only in terms of DIC
(Table 3.6), but also in terms of coe�cients values, we show only those corresponding to
the AAL atlas and Model 4 (Table 3.7 and 3.8). It is worth pointing out that higher level
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Figure 3.12: Empirical distributions of the Number of Loops per Diagram
(left) and Total Persistence (right). Orange corresponds to Open Eye status,
while Pink to Closed Eye.
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of the quantiles, or diagrams with more features than expected, correspond to estimates
for fixed e�ects coe�cients closer to zero. Intuitively this can be seen as a sign that the
more components there are, the more noise there is. On the other hand, the coe�cients
are always larger corresponding to the lower quantiles, meaning that the signal seems to be
easier to pick up when the diagram is cleaner and that lower persistent features may in fact
be considered noise.
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Atlas Model – = 0.05 – = 0.25 – = 0.5 – = 0.75 – = 0.95
AAL 1 11604.45 11602.48 11600.99 11599.43 11597.06

2 11559.19 11557.07 11555.51 11553.88 11551.44
3 11605.50 11603.51 11602.02 11600.45 11598.07
4 7651.30 7651.87 7652.19 7652.47 7652.77
5 7650.95 7651.47 7651.79 7652.07 7652.37
6 7651.05 7651.58 7651.91 7652.19 7652.49

HO 1 11709.04 11707.86 11706.86 11705.73 11704.01
2 11702.87 11701.61 11700.55 11699.38 11697.61
3 11709.98 11708.80 11707.79 11706.65 11704.92
4 7580.95 7581.38 7581.63 7581.86 7582.11
5 7581.21 7581.64 7581.89 7582.11 7582.38
6 7580.62 7581.05 7581.31 7581.53 7581.79

EZ 1 12238.24 12235.91 12234.17 12232.34 12229.59
2 12187.43 12184.96 12183.15 12181.26 12178.44
3 12244.07 12241.73 12239.98 12238.15 12235.40
4 7668.52 7668.90 7669.13 7669.31 7669.56
5 7668.40 7668.78 7669.01 7669.19 7669.44
6 7668.38 7668.76 7669.00 7669.18 7669.43

Table 3.6: DIC values for Model 1-6.

– = 0.05 – = 0.25 – = 0.5 – = 0.75 – = 0.95
(Intercept) 3.875063 4.014613 4.104414 4.189111 4.303126

Sex (Female) 0.009358 0.008636 0.008212 0.007839 0.007373
Age 0.008317 0.007779 0.007455 0.007166 0.006798

Diagnosis (Healthy) -0.003538 -0.003364 -0.003254 -0.003153 -0.003021
Eye Status (Closed) -0.109502 -0.102413 -0.098150 -0.094330 -0.089480

Table 3.7: Posterior means of fixed e�ect coe�cients of Model 4; for categorical
variables the coe�cients refer to the variable in the parenthesis, while the
reference modalities are, respectively: Male, Autism, Open.
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– = 0.05 Mean St. Dev. 0.025 Quant Median 0.975 Quant Mode
(Intercept) 3.8750 0.0142 3.8469 3.8750 3.9030 3.8750

Sex (Female) 0.0093 0.0160 -0.0222 0.0093 0.0409 0.0093
Age 0.0083 0.0006 0.0070 0.0083 0.0096 0.0083

Diagnosis (Healthy) -0.0035 0.0112 -0.0256 -0.0035 0.0186 -0.0035
Eye Status (Closed) -0.1095 0.0123 -0.1336 -0.1095 -0.0853 -0.1095

– = 0.25 Mean St. Dev. 0.025 Quant Median 0.975 Quant Mode
(Intercept) 4.0146 0.0133 3.9883 4.0146 4.0407 4.0146

Sex (Female) 0.0086 0.0150 -0.0208 0.0086 0.0381 0.0086
Age 0.0077 0.0006 0.0065 0.0077 0.0090 0.0077

Diagnosis (Healthy) -0.0033 0.0105 -0.0240 -0.0033 0.0173 -0.0033
Eye Status (Closed) -0.1024 0.0115 -0.1249 -0.1024 -0.0798 -0.1024

– = 0.5 Mean St. Dev. 0.025 Quant Median 0.975 Quant Mode
(Intercept) 4.1044 0.0127 4.0793 4.1044 4.1294 4.1044

Sex (Female) 0.0082 0.0143 -0.0200 0.0082 0.0364 0.0082
Age 0.0074 0.0005 0.0062 0.0074 0.0086 0.0074

Diagnosis (Healthy) -0.0032 0.0100 -0.0230 -0.0032 0.0165 -0.0032
Eye Status (Closed) -0.0981 0.0110 -0.1197 -0.0981 -0.0765 -0.0981

– = 0.75 Mean St. Dev. 0.025 Quant Median 0.975 Quant Mode
(Intercept) 4.1891 0.0122 4.1649 4.1891 4.2131 4.1891

Sex (Female) 0.0078 0.0138 -0.0192 0.0078 0.0349 0.0078
Age 0.0071 0.0005 0.0060 0.0071 0.0082 0.0071

Diagnosis (Healthy) -0.0031 0.0096 -0.0221 -0.0031 0.0158 -0.0031
Eye Status (Closed) -0.0943 0.0105 -0.1151 -0.0943 -0.0735 -0.0943

– = 0.95 Mean St. Dev. 0.025 Quant Median 0.975 Quant Mode
(Intercept) 4.3031 0.0116 4.2802 4.3031 4.3259 4.3031

Sex (Female) 0.0073 0.0130 -0.0183 0.0073 0.0330 0.0073
Age 0.0067 0.0005 0.0057 0.0067 0.0078 0.0067

Diagnosis (Healthy) -0.0030 0.0091 -0.0210 -0.0030 0.0150 -0.0030
Eye Status (Closed) -0.0894 0.0100 -0.1091 -0.0894 -0.0698 -0.0894

Table 3.8: Summary of the posterior distribution of fixed e�ect coe�cients of
Model 4; for categorical variables the coe�cients refer to the variable in the
parenthesis, while the reference modalities are, respectively: Male, Autism,
Open.



Conclusions

Interpretability has always been a key feature of learning, but it has been even more central
in the last years, as a byproduct of the rise of Machine Learning. While (part of) the
Statistical community uses this as an argument to distance itself from the overlapping
community of Machine Learners, Machine Learning people are quickly catching up. As
opposed to most of the literature on interpretable learning, which focuses on interpretable
algorithms for learning, we focus on the interpretability of the inputs of such procedures,
i.e. on interpretable statistics or summaries of data. We investigated two di�erent approaches
of providing accessible characterizations: quantile learning and topological learning.

Quantile Learning The first approach we adopted to provide an intelligible character-
ization of data was to propose a quantile based parametrization of parametric models.
Building on this idea, we recasted Quantile Regression in the more familiar framework of
GLM. We explored thoroughly the implication of this link in the Bayesian paradigm, and
we showed how the coupling between Quantile Regression and GLM could be exploited
in terms of e�ciency (thanks to INLA) and (posterior) uncertainty quantification. Our
second contribution to quantile learning was to provide a model-aware approach to deal
with discrete data, thus extending the notion of quantile parametrization beyond continuous
models.

Much room is left for improvements. Among the many possible open research question,
the first one we plan to investigate is how to borrow strength from the estimation of
neighboring quantile in the simultaneous fitting of multiple quantiles. The approach we
presented falls in fact into the Conditional Quantile Models, where the estimation procedure
is carried out separately for each quantile of interest, as opposed to Joint Quantile Models.
Its advocates, such as Reich, Fuentes, and Dunson (2011) and Tokdar and Kadaney (2012)
stress the fact that joint modeling results in ordered quantile curves, hence it is noticeable
immune to quantile crossing, however as of now Joint Models have been only explored in the
Nonparametric Bayesian framework, which requires stronger assumptions on both covariates
and responses, does not allow for linear modeling of the quantiles and it is computationally
intensive even when using rough approximations. Our model-based approach could be
extended to the case of multiple quantiles by fitting a spline between quantile curves of
di�erent levels. thus gaining the advantages of the joint modeling but still keeping a
parametric component in the regression model. Additionally, we intend to explore the
potential of this new formulation of Quantile Regression in applications, with a special
emphasis on Survival Analysis.
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Topological Learning In the second part of the thesis we opted for representing data
through their connectivity structure, using tools from Topological Data Analysis (TDA),
an exciting new field that has seen a tremendous growth in the last couple of years. The
theoretical developments have, however, yet to be matched with popularity in applications.
In contrast with most of the TDA literature we thus presented a practical framework for this
new set of tools.

As far as exploration is concerned, we have introduced the Persistence Flamelet, a new
multiscale topological summary, we have characterized it in a probabilistic framework and
we have shown how to use it to explore multidimensional time series and the relationship
between the bandwidth and the topology of a kernel estimator. In the future we wish to
exploit its good probabilistic properties to use it for statistical inference in addition to data
description. More specifically, we intend to exploit the CLT for Persistence Flamelets to
implement a bootstrap–based testing procedure to assess the significance of topological
features and since we characterized the Persistence Flamelets in the context of multivariate
time series, we plan to examine their use in testing for change point detection.

Moreover we plan to investigate further the properties of Persistence Flamelets???-related
heuristics for bandwidth selection. We have already seen how picking the bandwidth that
maximize the persistence seems to be promising, we plan to investigate it even further and
to also consider using the Persistence Flamelets to select a bandwidth that stabilizes the
topology, in a similar spirit as to Casa and Menardi (2018), possibly by detecting plateau in
the Flamelets, or one that reflects some previous knowledge on the topology of the object of
interest. Finally, since we can think of the features that appears at many di�erent resolution
as the most relevant ones, we also intend to explore persistence in bandwidth ranges as an
additional measure of relevance for topological traits.

From a more inferential perspective, we adopted a kernel approach to recast Persistence
Diagrams in ready-to-use statistical procedure. We defined a new class of kernels, the
Geodesic Topological kernels, which retains more information than other previously defined
kernels, and we showed how to exploit them in the context of supervised learning, where
their indefiniteness can be easily overcome. Results presented here are encouraging not only
for our proposal, which outperforms previously introduced kernels, but for TDA in general.
To the best of our knowledge, this is, in fact, the first time that persistence diagrams
are used as covariates and highlights the potential of TDA in yet another setting. In the
(immediate) future we will release an R-package implementing topological kernels as well as
the classification algorithm of Appendix B.

A tale of one thesis In the last part we showed that, in addition to being inspired
by the same principles, the set of tools define in this thesis can also benefit from being
combined. We illustrated one approach for investigating topological determinants making
this, to the best of our knowledge, the first example in which Persistence Diagrams are used
as a response variable. Rather than standard regression, we approached the problem by
modeling quantiles. This allows for a better control of whether diagram richer in features
are also richer in information. While the pipeline provided is well defined, the application
we used to introduce it it is still very much work in progress; interestingly, however, we can
already elucidate some conclusions. First, and most importantly we can see that there is
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some predictive power to be exploited in topological characterization per se, and that it is
able to capture more “structural” brain activity while being robust to more contingental
conditions such as diseases. Secondly, quantile regression does give us a better insight on the
noise component in Persistence Diagrams. We now intend to explore more sensible measures
of association such as mutual information and distance correlation to properly take into
account the temporal component of fMRI signal and add structural connectivity information
in order to explore the topological characterization of brain activity to its full potential.





Appendix A

Integrated Nested Laplace

Approximation (INLA)

The Integrated Nested Laplace Approximation (INLA) is a computational method to perform
(approximate) Bayesian inference based on Laplace Approximation.

Laplace method is a numerical technique to approximate integrals of the form

I =
⁄

f(x)dx =
⁄

exp{log(f(x))}dx.

by approximate the target with a Gaussian, matching the mode and the curvature at the
mode. The idea is simple and it to use 2nd order Taylor expansion the function in the
exponential

⁄
f(x)dx =

⁄
exp{log(f(x0))}dx

¥
⁄

exp
I

log(f(x0)) + (x ≠ x0)2

2
ˆ2 log(f(x))

ˆx2 |x=x0

J

where x0 is the arg max of the function f . By setting

‡ = ≠ 1
ˆ2 log(f(x))/ˆx2|x=x0

we can approximate I with

⁄
f(x)dx ¥ exp{log(f(x))}

⁄
exp

I

≠(x ≠ x0)2

2‡2

J

dx

from which we can clearly see a Gaussian Kernel with mean x0 and variance ‡2.

The reason behind the e�ciency of INLA is that it is taylored for a specific class of
models, Latent Gaussian Models, as opposed to simulation methods, which, in order to be
more generic pay a price in e�ciency. Formally, the Latent Gaussian models for which INLA
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is designed are hierarchical model of the form:

y|x, ◊1 ≥ f(y|x, ◊1) Likelihood
x|◊2 ≥ GMRF(µ, ◊2) Latent Field

◊ = (◊1, ◊2) ≥ fi(◊) Hyperpriors

where the latent field is a Gaussian Markov Random Field (GMRF), whose sparsity con-
tributes to the speed of INLA. Other, less stringent, assumption needed in the INLA approach
are:

• the number of hyperparameters |◊| is small
• the data y are mutually conditionally independent of x and ◊, meaning that each

observation yi depends only on one component of the latent field xi.

Despite the assumption of having a Gaussian Latent field may seem limiting, this is a
rather general framework, as there are no restriction on the form of the sampling distribution
f nor on the shape of the distribution on the hyperparameter ◊, and it includes most common
additive models (generalized or not). Additive models are in fact typically defined from a
linear predictor of the form

÷i =
ÿ

j

—jzij +
ÿ

k

fk(i)

where the — are the coe�cient corresponding to the fixed e�ects, while fk are model
components taking into account spatial or temporal structure, measurement errors and other
latent structures in the data. The linear predictor is then related to the likelihood via some
link function g, to adapt this framework to any kind of response variable. By assuming the
model components fk to be independet Gaussian processes and by choosing Gaussian priors
on the fixed e�ects —, the latent field x = (÷, —, f1, f2, . . . ) is a GMRF, with precision given
by the sum of the precision matrices of all the components. Notice that depending on the
structure of its precision matrix, fk can be defined as an autoregressive process, smoothing
spline, spatial random e�ect, measurement error correction and so on.

A.1 The Method

The two key quantity INLA is concerned with are the posterior marginals:

fi(xi|y) =
⁄

fi(xi|◊, y)fi(◊|y)d◊ and fi(◊j |y) =
⁄

fi(◊|y)d◊≠j

which INLA provides a three step procedure to approximate. More specifically, the INLA
algorithm can be specified as follows:

1. Approximate fĩ(◊|y) and get the marginals of the hyperparameters fĩ(◊j |y) Opera-
tionally, the first step in the INLA methodology is to compute an approximation fĩ(◊|y)
to fi(◊|y), which appears in both Equations.

2. Approximate fi(x|◊, y) with another round of Laplace approximation at a given set of
points ◊(k)
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3. Combine the above to get fĩ(x|y)

fĩ(xi|y) =
⁄

fĩ(xi|◊, y)fĩ(◊|y)d◊ =
ÿ

k

fĩ(xi|◊(k), y)fĩ(◊(k)|y)�k

While Step 3 is a rather standard procedure, Step 1 and 2 are the hearth of the INLA
methodology, hence we provide some additional details.

Step 1 The first step in the INLA methodology is to compute an approximation fĩ(◊|y) to
fi(◊|y), which appears in both Equations. The key relation here is

fi(◊|y) = fi(◊, x|y)
fi(x|y, ◊) = fi(y|x, ◊)fi(x|◊)fi(◊)

fi(y)fi(x|y, ◊) Ã fi(y|x, ◊)fi(x|◊)fi(◊)
fi(x|y, ◊)

The terms of the numerator are all known, in order to approximate fi(◊|y) is enough to
substitute the denominator with the Gaussian approximation on the mode (xú) obtained
using Laplace method:

fĩ(◊|y) = fi(y|x, ◊)fi(x|◊)fi(◊)
fĩG(x|y, ◊)

----
x=xú

(A.1)

In practice, the procedure can be described as:

1. find the mode of fĩ(◊|y) with quasi-Newton methods in order to avoid computation
the Hessian at each iteration;

2. compute the Hessian at the modal configuration and invert it to get the matrix �;
3. reparametrize ◊ as

◊(z) = ◊ú + V �1/2z

where � = V �1/2V ‘T is the eigenvalue decomposition of �, in order to corrects for
scale and location;

4. evaluate fĩ(◊|y) on a grid and then approximate the marginals fĩ(◊i|y) using an inter-
polant. Notice that the standardization of the previous step greatly simplifies the
choice of grid for the exploration of fĩ(◊|y), as one grid, typically with unit steps can
be used for all distributions.

Step 2 The second ingredient needed to compute the marginal posterior of the latent
field is fĩ(xi|◊, y). Rue, Martino, and Chopin (2009) proposes three strategies to do so: a
Gaussian approximation, a Laplace approximation and a simplified Laplace approximation.

• Gaussian approximation. This is by far the cheapest in terms of computation, as it
takes the marginals of the already computed fĩG(x|y, ◊) as approximation of fi(xi|y, ◊).
Since fĩG(x|y, ◊) is normal then all the marginals will be normal and by exploiting the
structure of GMRF it is relatively easy to determine the corresponding means and
variances. These results can be computationally very cheap and the approximation
often gives reasonable results, but there can be errors in the location or/and errors due
to the lack of skewness. This is however a rather coarse approximation, as fi(x|y, ◊)
needs not being Gaussian.

• Laplace approximation. A more accurate way to approximate all marginals is to use
Laplace method for each of the marginals separately:

fĩLA(xi|◊, y) Ã fi(y|x, ◊)fi(x|◊)fi(x)
fĩGG(x≠i|xi,◊,y)

----
x=xú

(A.2)
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however, this would require an additional approximation step for the denomina-
tor, making the whole procedure computationally intensive. fĩGG(x≠i|xi, ◊, y) Ã
fi(y|x, ◊)fi(x≠i|◊, xi) where the first term of the second side is the likelihood which is
not normal but can be approximated with the Laplace method. The second term is
Gaussian, and thus by using properties of the GMRF we could calculate the corre-
sponding mean and covariance matrix. This implies that fĩGG must be recomputed for
each value of xi and ◊ since each precision matrix depends on xi and ◊. This is far too
expensive because one needs to repeat all the steps before for the entire latent field
(depends on the number of lets say spatial units on the plane).

• Simplified Laplace approximation. This is the default option in R-INLA and it is a
compromise between the two approaches shown above. Using Taylor expansion of the
proper Laplace approximation, it is possible to correct the Gaussian approximation
fĩG(x|y, ◊) for skewness and kurtosis. This strategy is computationally much more
convenient than performing a full Laplace approximation but empirically it has shown
excellent performances for standard models.



Appendix B

Topological Invariants

In order to better understand what we are trying to recover when estimating topological
invariants of some object, it may be useful to recall the basics of topology and what do
we mean by topological invariants. According to Klein’s definition (Erlangen Program -
1872) topology classifies together objects which can be deformed into one another without
cutting or gluing, so basically all the objects that can be deformed into one another without
changing the way they are connected. Topology is mostly concerned with connectivity, hence
the topological space is the most general space that retains the notion of connectivity.

Definition 1. Topology Given a set X a topology on X is a collection O of subsets of X,
called open sets, such that:

• X and ÿ œ O

• if O1 and O2 are open sets, then O1 fl O2 œ O (O is closed with respect to the
intersection of a finite number of its elements)

• O is closed with respect to the union of an infinite (possibly uncountable) number of
elements.

The topology of a set X allows us to determine which elements of X are near, without
specifying how distant they are, i.e. without specifying a metric. The pair (X, O) is known
as Topological space, a space where each point knows its neighbors. When the topology
is clear in the context, we denote the topological space just by X to keep the notation
simple. We have already stated that two topological spaces X,Y are equivalent if one can be
continuously deformed into the other without changing the way it is connected, i.e. without
creating self intersection or holes; the more rigorous definition of this concept is the notion
of homeomorphism.

Definition 2. Homeomorphism Two topological spaces X,Y are homeomorphic if there
exist a continuous bijection f : X æ Y such that its inverse f≠1 is also continuous. f is
called a homeomorphism.

Homeomorphy, denoted by ¥, induces the finest level of classification in topology, the
topological type. However, it has been proved that is not possible to determine the topological
type for spaces whose dimension is larger than 3 (which may be a big limit, when dealing
with real data) and so we need to introduce other tools to define equivalence relationship
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among topological spaces. In practice this tools are maps f , called topological imvariants,
that assign the same object to homeomorphic spaces, i.e:

X ¥ Y ∆ f(X) = f(Y)

As we can easily imagine, depending on the choice of f , we can get di�erent topological
invariants, ranging from the trivial map, which assigns the same object to every topological
space, and thus correspond to the less precise level of classification possible, to the topological
type, which is a topological invariant as well, and correspond to the finest level of classification.
In between those two extremes, there are infinitely many topological invariants, which may
not be as precise as the topological type but are actually computable and are still pretty
accurate. We now introduce only a couple of them: homotopy type and homology groups.

In general we say that given two topological spaces X,Y, two maps f0, f1 : X æ Y are
said to be homotopic if there exist a continuous map F : X æ Y given by F (x, t) = ft(x)
such that f0 = F (x, 0) and f1 = F (x, 1).

Definition 3. Homotopy Equivalence Two topological space X,Y are homotopy equivalent
and have the same homotopy type, denoted by X ƒ Y if there exist two continuous maps
f : X æ Y and g : Y æ X such that g ¶ f is homotopic to the identity map in X and f ¶ g is
homotopic to the identity map in Y.

Classification based on homotopic type is less refined than the one based on the topological
type, but homotopy can still be intractable. This is why we introduce an ever coarser
topological invariant, the homology groups, which are based on the idea that a topological
object can be described in terms of its “holes”.

The homology groups of a topological space X are a set of groups H0(X), H1(X), . . .,
where H0(X) represents the connected components of X, H1(X) represents its 1-dimensional
cycles and the k-th group Hk(X) represent the k-th dimensional holes of X. Homology is
particularly e�ective in this settings because not only they are easy to compute but also
they are discrete by nature (while homeomorphy and homotopy are continuous) and thus it
is a better fit for application such as TDA, in which the topological information has to be
stored in the memory of a computer (which is discrete). %Homology groups are topological
invariants since if K and K Õ are two simplicial complexes with homeomorphic supports
|K| ¥ |K Õ| (or even only homotopic), then their homology groups are isomorphic and their
Betti numbers are equal. The proof of this is not trivial and relies on the notion of singular
homology, which is something more general than

B.1 Simplicial Homology

The easiest way to define homology is to consider the special case of a topological space
which consists of simplexes, or special collections of them called simplicial complexes Simplex
A k-Simplex ‡ = [v1, ..., vk] is the convex combination of k a�nely independent points
{v1, ..., vk}

‡ =
kÿ

i=1
⁄ivi where

kÿ

i=1
⁄i = 1 and ⁄i Ø 0.
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The number of a�nely independent points, k is dimension of the simplex ‡. The convex hull
· of a subset of {v1, ..., vk} is called a face of ‡ and we write · Æ ‡; if · ”= ‡ we say that ·
is a proper face and we write · < ‡. If · is a proper face of ‡, ‡ is a proper coface of · .

Figure B.1: Example of simplices; a 0-dimensional simplex is a point ‡1 = [A], a
1-dimensional simplex is a segment, ‡2 = [A, B], a 2-dimensional simplex is a triangle
‡3 = [A, B, C] and so on. Notice that the triangle on the right can be also seen as a
simplicial complex K if we consider it as the set of all the simplices that form it, i.e.
K = {[A], [B], [C], [A, B], [A, C], [B, C], [A, B, C]} or alternatively K = [A] + [B] + [C] +
[A, B] + [A, C] + [B, C] + [A, B, C]

Simplicial complex A simplicial complex is a finite collection of simplices K such that
‡ œ K and · Æ ‡ implies · œ K and ‡, ‡0 œ K implies ‡ fl ‡0 is either empty or a face of
both. The dimension of the simplicial complex K is the highest dimension of a simplex
belonging to K. Using a simplicial representation it is easier to compute the homology groups
of a topological space. It is relatively easy to represent arbitrary objects as a collection of
simplicial complexes (this operation is called triangulation 1), so that simplicial homology is
often enough.

Homology describes the topology of a space through a set of finitely generated Abelian
groups. Since Abelians groups are commutative groups, we use an additive notation to
denote a set of simplices, as shown in Figure B.1.

Chain Given a set of p-simplexes {‡1, . . . , ‡m}, a p-chain c with coe�cients in some ring
k is the formal sum:

c =
mÿ

i=1
ai‡i

with ai in the ring k. If we have a simplicial complex K, the space of p-chains generated
by the p-simplexes in K is denoted by Cp(K) and it is an Abelian group. A k-dimensional
simplicial complex K has a chain group for every dimension C1(K), C2(K), . . . , Cp(K), . . .,
even for p > k (in this case the group will be empty, but it is still well defined). In TDA the
coe�cients are in Z/2Z = {0, 1}, hence we can interpret chain groups as sets whose elements
are the simplex with non-zero coe�cients. Sum between chains is defined component-wise;

1In this context a triangulation of a topological space X is a simplicial complex K such that X and K are
homeomorphic, X ¥ K
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recall that since in Z/2Z we have that 1 + 1 = 0, the sum of two chain is a third chain whose
elements are all the simplices which are not in both chains. The most important operator
defined on chain groups is the boundary.

Boundary The boundary ˆ of a k-simplex ‡ = [v1, ..., vk], is defined as

ˆ‡ =
kÿ

i=1
[v1, ..., v̂i, ...vk]

where v̂i means that the vertex vi is left out of the sum.

Figure B.2: Chain of complexes (image taken from Edelsbrunner et al. (2010))

The boundary of a k-simplex is the sum of all its (k ≠1)-faces, and so it is a (k ≠1)-chain.
In order to underline this dependence on the dimension of the simplex we will denote the
boundary for a k-simplex by ˆk, and so on. More in general we can define the boundary as
an homomorphism between chain groups.

Definition 4. Boundary homomorphism Let K be a simplicial complex and ‡ œ K,
‡ = [v1, ..., vk]. The boundary homomorphism ˆk‡ : Ck(K) æ Ck≠1(K) is

ˆk‡ =
kÿ

i=1
[v1, ..., v̂i, ...vk]

Notice that in our case, since we define chains with coe�cients in Z/2Z, the chain groups
are actually vector spaces, which means that the boundary is a linear operator. As for
chains, the boundary homomorphism is also well defined for any dimension (if the chain
group is empty, then it will just be the trivial map)

0 æ Ck(K) æ Ck≠1(K) æ ... æ C0(K) æ 0

The boundary ˆk allows us to define two important subgroups of the chain groups, Cycle
groups and Boundary groups.

Definition 5. Cycle groups A p-cycle c is a p-chain such that ˆc = 0. It immediately follows
that, given a simplicial complex K the associated group of p-cycles Zp is a subgroup of the
chain group Cp(K) defined as

Zp(K) = {c œ Cp(K)|ˆc = 0}

By definition the group of cycles is the kernel of the homomorphism ˆp, Zp = ker ˆp
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Definition 6. Boundary groups A p-boundary c is the boundary of a (p + 1)-chain cÕ,
ˆp+1cÕ = c. Given a simplicial complex K the associated group of p-cycles Bp is a subgroup
of the chain group Cp(K) and by definition the group of p-boundaries is the image of the
homomorphism ˆp+1, Bp = Im ˆp+1

Since Cycle and Boundary groups are part of the Chain group, which is Abelian, they
are Abelian groups as well. Once again, when we work with coe�cients in Z/2Z they are
vector spaces.

Figure B.3: A 2-Simplicial complex K = [A] + [B] + [C] + [D] + [A, B] + [A, C] + [B, C] +
[B, D] + [C, D] + [A, B, C] (on the left) and its 2-boundary, ˆ2K (on the right).

Example - Boundary Let us consider a simplicial complex K shown in Figure B.3.
This is a 2-chain and we want to compute its 2-boundary, ˆ2. By definition we have
ˆ2K = [A, B] + [A, C] + [B, C] (also shown in Figure B.3). ˆ2K it is still a chain, but of
smaller dimension (ˆ2K is in fact a 1-chain). We can apply the boundary operator again,
this time we consider ˆ1. Notice that since the boundary operator is a linear operator
we have that for a chain c =

q
i
‡i, ˆc =

q
i
ˆ‡i. ˆ1ˆ2K = ˆ[A, B] + ˆ[A, C] + ˆ[B, C] =

[A] + [B] + [A] + [C] + [B] + [C]. Recall that since we are taking coe�cients in Z/2Z we
have that [A] + [A] = 0, and so ˆ1ˆ2K = 0

The fact that the boundary of a boundary is 0 is not just a coincidence in the previous
example, but it is actually the main property of the boundary operator (so much so that it
even deserves its own theorem):

Theorem 1. Boundary For any integer p and for any (p + 1)-chain c we have that

ˆpˆp+1c = 0
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Figure B.4: Homology equivalence. In purple are denoted chains belonging to
the same homology group. The chain denoted in pink is instead part of another
homology group.

This theorem is crucial because it means that the each boundary it is also a cycle, which
allows us to define a quotient group; that quotient group is a homology group.

Definition 7. Homology groups The k-th homology group of the simplicial complex K is
the quotient group

Hk(K) = Zk/Bk

Homology is a map from a topological space to some a sequence of Abelian groups (the
homology groups) contained in the groups of chains. Since chain groups are a category,
homology can be also defined as a functor, i.e. a map between categories. In the special case
where we consider homology groups with coe�cients in a field, in our case Z2, the homology
groups are vector spaces.

The rank of homology group is also important and it is called the Betti number:

Definition 8. Betti number The k-th Betti number —k of a simplicial complex K, —k(K) is
the rank of the k-homology group of K, i.e.:

—k(K) = rank Hk(K)

The Betti number of a simplicial complex K has a straightforward interpretation, the
0-th Betti number represent the number of connected components of K, the 1-st Betti
number represents the number of cycles in K, the 2-nd Betti number represents the number
of voids and so on, so that the k-th Betti number represents the number of k dimensional
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“holes” in K. Another way of seeing this is as rank Hk = rank Zk ≠ rank Bk. This is like
saying that the k-th Betti number is equal to the di�erence between the number of simplices
that create k cycles and the number of simplices that destroy k + 1-cycles.

B.1.1 Reduction Algorithm

Homology is usually computed with the so called reduction algorithm. Chain groups with
coe�cient in Z/2Z are vector spaces and so they have a well defined basis. The restriction
to coe�cients in Z/2Z makes things easier to define but it is not necessary; everything we
will introduce in the following still holds even if we consider chains with coe�cients in an
arbitrary ring, since in general the chain groups are finitely generated Abelian groups, which
means that they are Abelian groups with a finite basis. Given a basis of Ck, which consists
in a set of k-simplices, we can define an integer valued matrix Dk, whose (i, j) element is
defined as

Dk[i, j] =
I

1 if the ith (k ≠ 1) simplex is a face of the jth ksimplex
0 otherwise

that represents the boundary operator ˆk : Ck æ Ck≠1 with respect to that basis. Each of
the columns correspond to one element in the basis of Ck, so that the number of columns of
Mk, mk corresponds to the number of k-simplices in Ck, while the each row correspond to a
simplex in the basis of Ck≠1 so that the number of rows, mk≠1 corresponds to the number
of (k ≠ 1)-simplices in Ck. Mk it is called the standard matrix representation of ˆk, its null
space corresponds to Zk and its image space to Bk≠1.

The reduction algorithm consists in reducing Dk to its Smith normal form, ÂDk,

ÂDk =

S

WWWWU

1 . . . 0 0
... . . . ... 0
0 . . . 1 0
0 . . . 0 0

T

XXXXV

using only elementary row and column operations. Each operation on the columns of Dk

corresponds to a change in the basis of Ck, while each operation on the row of Dk corresponds
to a change in the basis of Ck≠1 so that by reducing the matrix representation of ˆk to its
diagonal form we find two new bases for Ck and Ck≠1. The rank of the matrix ÂDk The
matrix ÂDk fully characterizes the homology group Hk, in the sense that:

• The rows with the 1 entries in the diagonal correspond to a basis of Bk≠1, hence the
number of 1 in the diagonal is the rank of the k ≠ 1 boundary group.

• The columns without 1 entries in the diagonal correspond to a basis of Zk, hence their
number is the rank of the k cycle group.

Recalling that the k-th Betti number is defined as —k = rank Hk = rank Zk ≠ rank Bk, the
matrix reduction can be used to compute the Betti numbers.
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SVM in RKKS

Given a sample Dn = {(xi, yi)}n

i=1, in its standard formulation in a Reproducing Kernel
Hilbert Space H – i.e. a space generated by a positive definite kernel K – Support Vector
Machine (SVM) is defined as the solution to following optimization problem:

Y
]

[
min

fœH,bœR
1
2 ÎfÎ2

H
= 1

2Èf, fÍH,

s.t
q

n

i=1 max
)
0, 1 ≠ yi

!
f(xi) + b

"*
Æ ·,

(C.1)

or equivalently, in its dual form:
Y
]

[
max

–
≠1

2 –
tG– + –

t1 ≠ µ –
t
y,

and
--–i

-- Æ ÷, i œ {1, . . . , n},

where 1 œ Rn is a vector of all ones, ÷ is the slack variable and G the kernel matrix such
that Gij = yi yj k(xi, xj).

Extending to the indefinite kernels standard kernel–based classifiers such as Support
Vector Machine (SVM) requires some knowledge about Reproducing Kernel Krein Spaces
[?, ?]. Every positive kernels are associated to RKHS, similarly each indefinite kernel is
associated to a Reproducing Kernel Krein Space (RKKS). A RKKS K is an inner product
space endowed with a Hilbertian topology for which there are two RKHS K+ and K≠ such
that

K = K+ ü K≠.

RKKS share many properties of RKHS, most noticeably the Riesz and the Representer
theorem, which allow to define a solver for the SVM problem.

It has been proven, [?], that a minimization problem in a RKHS can be translated into
a stabilization problem in a RKKS. The SVM optimization problem in a RKKS K thus can
be written as: Y

]

[
stab

fœK,bœR
1
2Èf, fÍK

s.t
q

n

i=1 max
)
0, 1 ≠ yi

!
f(xi) + b

"*
Æ ·,

which [?] proved that can also be written in its dual form
Y
]

[
max

Â–
≠1

2 Â–t ÂG Â– + Â–t1 ≠ µ Â–t
y,

and
--Â–i

-- Æ ÷, i œ {1, . . . , n},
(C.2)
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where ÂG = U S � Ut with U and � the eigenvector and eigenvalue matrices of G = U � Ut,
and S = sign(�). Since problem (C.2) is the same as (C.1), it is immediate to see that it
can be solved using a standard SVM solver on ÂG.
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