182 research outputs found

    Deep Hierarchical Super-Resolution for Scientific Data Reduction and Visualization

    Full text link
    We present an approach for hierarchical super resolution (SR) using neural networks on an octree data representation. We train a hierarchy of neural networks, each capable of 2x upscaling in each spatial dimension between two levels of detail, and use these networks in tandem to facilitate large scale factor super resolution, scaling with the number of trained networks. We utilize these networks in a hierarchical super resolution algorithm that upscales multiresolution data to a uniform high resolution without introducing seam artifacts on octree node boundaries. We evaluate application of this algorithm in a data reduction framework by dynamically downscaling input data to an octree-based data structure to represent the multiresolution data before compressing for additional storage reduction. We demonstrate that our approach avoids seam artifacts common to multiresolution data formats, and show how neural network super resolution assisted data reduction can preserve global features better than compressors alone at the same compression ratios

    Content-based image retrieval of museum images

    Get PDF
    Content-based image retrieval (CBIR) is becoming more and more important with the advance of multimedia and imaging technology. Among many retrieval features associated with CBIR, texture retrieval is one of the most difficult. This is mainly because no satisfactory quantitative definition of texture exists at this time, and also because of the complex nature of the texture itself. Another difficult problem in CBIR is query by low-quality images, which means attempts to retrieve images using a poor quality image as a query. Not many content-based retrieval systems have addressed the problem of query by low-quality images. Wavelet analysis is a relatively new and promising tool for signal and image analysis. Its time-scale representation provides both spatial and frequency information, thus giving extra information compared to other image representation schemes. This research aims to address some of the problems of query by texture and query by low quality images by exploiting all the advantages that wavelet analysis has to offer, particularly in the context of museum image collections. A novel query by low-quality images algorithm is presented as a solution to the problem of poor retrieval performance using conventional methods. In the query by texture problem, this thesis provides a comprehensive evaluation on wavelet-based texture method as well as comparison with other techniques. A novel automatic texture segmentation algorithm and an improved block oriented decomposition is proposed for use in query by texture. Finally all the proposed techniques are integrated in a content-based image retrieval application for museum image collections

    Robust Localization in 3D Prior Maps for Autonomous Driving.

    Full text link
    In order to navigate autonomously, many self-driving vehicles require precise localization within an a priori known map that is annotated with exact lane locations, traffic signs, and additional metadata that govern the rules of the road. This approach transforms the extremely difficult and unpredictable task of online perception into a more structured localization problem—where exact localization in these maps provides the autonomous agent a wealth of knowledge for safe navigation. This thesis presents several novel localization algorithms that leverage a high-fidelity three-dimensional (3D) prior map that together provide a robust and reliable framework for vehicle localization. First, we present a generic probabilistic method for localizing an autonomous vehicle equipped with a 3D light detection and ranging (LIDAR) scanner. This proposed algorithm models the world as a mixture of several Gaussians, characterizing the z-height and reflectivity distribution of the environment—which we rasterize to facilitate fast and exact multiresolution inference. Second, we propose a visual localization strategy that replaces the expensive 3D LIDAR scanners with significantly cheaper, commodity cameras. In doing so, we exploit a graphics processing unit to generate synthetic views of our belief environment, resulting in a localization solution that achieves a similar order of magnitude error rate with a sensor that is several orders of magnitude cheaper. Finally, we propose a visual obstacle detection algorithm that leverages knowledge of our high-fidelity prior maps in its obstacle prediction model. This not only provides obstacle awareness at high rates for vehicle navigation, but also improves our visual localization quality as we are cognizant of static and non-static regions of the environment. All of these proposed algorithms are demonstrated to be real-time solutions for our self-driving car.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133410/1/rwolcott_1.pd

    Performance and scaling of locally-structured grid methods for partial differential equations

    Get PDF
    Abstract. In this paper, we discuss some of the issues in obtaining high performance for block-structured adaptive mesh refinement software for partial differential equations. We show examples in which AMR scales to thousands of processors. We also discuss a number of metrics for performance and scalability that can provide a basis for understanding the advantages and disadvantages of this approach. Introduction A broad range of applied PDE problems exhibit multiscale behavior, i.e. variation in the solution over scales that are much smaller than the global large scales in the problem. Examples include flame fronts arising in the burning of hydrocarbon fuels and nuclear burning in supernovae; in geophysical problems, ocean currents, effects of localized features in orography or bathymetry, and tropical cyclones; and in plasma physics, a variety of small scale effects due to nonlinear instabilities and localized kinetic effects. In all of these problems, the fundamental mathematical description is given in terms of various combinations of PDE of classical type (elliptic, parabolic, hyperbolic). To effectively compute solutions to such problems, we need simulation capabilities with the following features

    MASCOT : metadata for advanced scalable video coding tools : final report

    Get PDF
    The goal of the MASCOT project was to develop new video coding schemes and tools that provide both an increased coding efficiency as well as extended scalability features compared to technology that was available at the beginning of the project. Towards that goal the following tools would be used: - metadata-based coding tools; - new spatiotemporal decompositions; - new prediction schemes. Although the initial goal was to develop one single codec architecture that was able to combine all new coding tools that were foreseen when the project was formulated, it became clear that this would limit the selection of the new tools. Therefore the consortium decided to develop two codec frameworks within the project, a standard hybrid DCT-based codec and a 3D wavelet-based codec, which together are able to accommodate all tools developed during the course of the project
    • …
    corecore