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Abstract. In this paper, we discuss some of the issues in obtaining high performance for
block-structured adaptive mesh refinement software for partial differential equations. We show
examples in which AMR scales to thousands of processors. We also discuss a number of metrics
for performance and scalability that can provide a basis for understanding the advantages and
disadvantages of this approach.

1. Introduction
A broad range of applied PDE problems exhibit multiscale behavior, i.e. variation in the solution
over scales that are much smaller than the global large scales in the problem. Examples include
flame fronts arising in the burning of hydrocarbon fuels and nuclear burning in supernovae; in
geophysical problems, ocean currents, effects of localized features in orography or bathymetry,
and tropical cyclones; and in plasma physics, a variety of small scale effects due to nonlinear
instabilities and localized kinetic effects. In all of these problems, the fundamental mathematical
description is given in terms of various combinations of PDE of classical type (elliptic, parabolic,
hyperbolic). To effectively compute solutions to such problems, we need simulation capabilities
with the following features.

• Multiresolution / adaptive methods: discretization methods that locally adjust the resolved
length scales as a function of space, time, and the solution.

• Semi-implicit or fully-implicit methods for computing long-time dynamics in the presence
of stiff fast dynamics.

• High-performance, scalable implementations.

In grid-based methods for numerical PDE, it is necessary to make a fundamental choice of
discretization technologies. We have chosen to use locally structured grids, i.e. ones that are
based on defining discrete unknowns on a rectangular discretization of the spatial independent
variables. Specifically, we mostly use the finite-volume approach, in which the rectangular grid
defines a collection of control volumes, for which a natural discretization of the divergence
operator is obtained by integrating over the control volume. This leads to methods that satisfy
discrete conservation laws, an essential feature if one is computing discontinuous solutions to
PDE, and a desirable property for a much larger class of physical problems. There is a large



body of experience in how to construct stable and accurate discretizations to PDE based on
this approach for a broad range of physics problems Regularity in space leads to regular data
layouts, making it easier to optimize for various types of data locality. The regular geometric
structure of the spatial distribution of unknowns leads to efficient iterative solvers for elliptic
and parabolic problems.

Our adaptive mesh methods are based on the block-structured adaptive mesh refinement
(AMR) algorithms of Berger and Oliger. In this approach, the regions to be refined are organized
into rectangular patches of several hundred to several thousand grid points per patch. Thus one
is able to use the high-resolution rectangular grid methods described above to advance the
solution in time. Furthermore, the overhead in managing the irregular data is amortized over a
relatively large amounts of floating point work on regular arrays. For time-dependent problems,
refinement is performed in time as well as in space. Each level of spatial refinement uses its
own stable time step, with the time steps at a level constrained to be integer multiples of the
time steps at all finer levels. AMR is a mature technology for problems without geometry, with
a variety of implementations and applications for various nonlinear combinations of elliptic,
parabolic and hyperbolic PDE. In particular, the collection of applications here address most
of the major algorithmic issues in developing adaptive algorithms for the applications described
above, such as adaptive multigrid solvers for Poisson’s equation, the representation of non-ideal
effects in MHD, and the coupling of particle methods to AMR field solvers. AMR has also
been successfully coupled to the mapped-grid and volume-of-fluid methods for treating irregular
geometries.

A principal concern regarding this class of methods is whether they can be implemented to
effectively use 104-105 processors. We want to address the following questions.

• Does AMR scale to this level of parallelism? Can the impact of irregular, dynamically
varying loads on load balancing and communications intensity be controlled to a sufficient
extent to obtain acceptable performance ?

• How does one understand and improve the performance of AMR algorithms and software
(both scaling and absolute performance)?

• Under what circumstances does AMR provide the best scientific results for the least cost?
• How do we design a benchmark suite that encapsulates the usage patterns for a broad range

of applications?

2. The AMR Programming Model
The BoxLib / Chombo libraries support a wide variety of applications that use AMR by means
of a common software framework. The design approach used here is based on two ideas. The
first is that the mathematical structure of the algorithm domain specified above maps naturally
into a combination of data structures and operations on those data structures, which can be
embodied in C++ classes. The second is that the mathematical structure of the algorithms
can be factored into a hierarchy of abstractions, leading to an analogous factorization of the
framework into reusable components, or layers. This reusability is realized by a combination
of generic programming and sub-classing. A principal advantage to this design is the relative
stability of the APIs as seen by the applications developer. While implementations may change
considerably to enhance performance or in response to changes in the architecture, these changes
are less likely to cause major upheavals to the applications programs. This is because the APIs
reflect the mathematical structure of the algorithms, which remain relatively fixed targets.

The BoxLib / Chombo libraries provide high-level support for domain decomposition based on
assigning rectangular patches to processors. All processors have access to processor assignment
metadata, and distributed grid data is defined in terms of these metadata. There are two types
of operations that can be performed on such distributed data. Local computation is performed



by iterating over patches assigned to the processor, which is able to access only those data.
The second type of operation consists of communication primitives. Aggregate operations for
exchanging ghost cell data among all of the patches on a given union of rectangles, and for
copying from a data defined on a disjoint union of rectangles to data defined over some other
union of rectangles. the other layers of the library are built using these primitive operations.
These include interlevel operations that combine communication and irregular computation,
such as interpolating boundary data, and averaging or interpolating between levels; control
structures, such as multigrid iteration, or Berger-Oliger timestepping for refinement in time;
and complete applications.

3. Defining Scalability and Performance
The focus of the present work is on methods for solving PDE that are algorithmically scalable, i.e.
the number of floating-point operations and the amount of memory required for solving a problem
(in the steady-state case) or advancing the solution by one time step (in the time-dependent case)
are linear functions of the number of unknowns, with constants of proportionality independent
of the mesh spacing. This is a property of the discretization methods and solution algorithms,
rather than of parallel implementations, and represents a kind of algorithmic optimality, since
the computational effort and memory for computing the solution is proportional to that required
to evaluate the operator. Many modern methods for classical PDE are algorithmically scalable:
explicit methods for hyperbolic problems, and multigrid-based methods for elliptic and parabolic
problems.

There are two possible ways in which to apply more computing power to solving a problem. In
strong scaling, we hold the size of the problem fixed, and increase the number of processors used
to solve the fixed-size problem. Ideally, strong scaling leads to a reduction of the time to solution
proportional to the number of processors. In weak scaling, we increase the size of the problem
with the number of processors. For algorithmically scalable methods in numerical PDE, we are
concerned with a specific form of weak scaling, in which the number of computational unknowns
per processor is fixed. This is a scaling limit that is compatible with algorithmic scalability,
since both the computational effort and the memory required / available scale linearly with the
number of processors. In the weak scaling limit, we expect that the time to solution would be
fixed, or at least bounded, independent of the number of processors, as the number of processors
increases.

In many applications of numerical methods for PDE, the primary use of large number of
processors on a single job is a weak scaling process. There are a number of reasons why this
strategy makes sense.

• Even with the use of adaptive grids, many problems that drive the scientific agenda are
out of reach due to inadequate grid resolution. In those cases, increasing the number of
processors is used to increase the spatial grid resolution.

• Applications codes use the minimum number of processors so that the problem will fit into
memory. Flops are free, memory is expensive.

• Any speedup obtained by increasing processor count is often lost due to realities of a
multiuser environment. Doubling the number of processors to decrease the time to solution
might cause a job to wait in the queue for longer than the time gained.

There are a few counterexamples to the primacy of weak scaling in applied PDE, mainly in
settings such as numerical weather prediction, in which large-scale PDE simulations are used for
real-time applications. Even for those applications, weak scaling studies are good at exposing
bottlenecks.

Under weak scaling, Amdahl‘s law is replaced by much less restrictive conditions on load
balancing. For example, for fixed-sized patches, a bound on tpatch, the execution time per patch,
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Figure 1. Time spent in the patch update as a function of processor number on a union of
fixed-size patches for an unsplit PPM algorithm, for 512 processor (red) and 1024 processor
(blue) calculations. Since the number of patches per processor is bounded independent of the
number of processors, this calculation exhibits perfect weak scalability, with the time to execute
this operation is bounded independent of the number of processors as we scale the problem size
up.

that is independent of the number of processors, leads to a bound on the time to solution in
the weak scaling limit. If tmin ≤ tpatch ≤ tmax, then the wall clock time twall to compute the
solution is bounded above and below.

tminM ≤ twall ≤ tmax(M + 1) , M =

⌊
Npatches

Nproc

⌋
(1)

Here Npatches is the number of rectangular patches, Nproc is the number of processors, and M
is to remain fixed as Npatches, Nproc vary (Figure 1).
In addition to scalability, there are other measures of performance.

• Stencil operations arising in PDE calculations typically can achieve a only small fraction
(10% -20%) of the nominal peak performance on modern cache-based processors. We define
the operator peak performance as the time to evaluate on a single processor a “typical”
operator characterizing the problem being solved. We assess uniprocessor and overall
aggregate performance in terms of flop rate as a fraction of the operator peak performance.

• We define the adaptivity factor to be the ratio of the time to perform a calculation on
a uniform grid to the time to solution for the AMR calculation with the same accuracy,
typically requiring the finest grid in the AMR hierarchy to have the same mesh spacing
as the uniform grid calculation. The uniform grid performance is generally estimated from
smaller runs, assuming perfect weak scaling, rather than computed directly. The adaptivity
factor differs from the fraction of operator peak performance, in that it also takes into
account the costs incurred due to parallelization of the uniform grid calculation.



• Implementation efficiency is the fraction of time spent on regular computation (e.g. in
Fortran77 or other optimized single-patch operations). For the examples described here,
implementation efficiency is very close to the fraction of operator peak performance.

4. AMR Parallel Benchmark Calculations
4.1. Replication Scaling Benchmarks
Classically, weak scaling studies for numerical methods for PDE on uniform grids have been
done using mesh refinement: to scale up the problem, refine the grid by an integer factor in each
direction, and increase the number of processors to hold the number of grid points per processor
fixed. The corresponding exercise for AMR would be to refine the coarsest grid by an integer
factor, and decrease the error tolerance so that the resolution at each level is increased by the
same integer factor. In practice, such an approach leads to scaling behavior that is difficult
to interpret. Under such a refinement scheme, the size of the refined regions at each level can
change by significant amounts, most often to decrease the physical size of the refined region at
a given level. This offsets the loss of scaling due to other causes, and makes it difficult to detect
failures to scale, and to understand the causes of such failures. To eliminate these problems, we
have used benchmarks based on replication scaling, in which we take a grid hierarchy and data
for some number of processors, and scale up the problem by making identical copies (Figures
2,3). The full AMR code (processor assignment, remaining problem setup) is done without
using the knowledge that the grids have been replicated. Replication scaling tests most aspects
of weak scalability, is simple to define, and provides results that are easy to interpret. Thus it is
a very useful tool for understanding and correcting scaling difficulties. Furthermore, it is a good
proxy for some kinds of applications scaleup. For example, a large part of the simulation of a
gas turbine will be the simulation of multiple identical burners arranged in a ring. Replication
scaling does not fully test load balancing, in the sense that the parts of the calculation for which
the replicated components are not coupled to one another may not increase the degree of load
imbalance as we scale the calculation up. Thus the results obtained using replication scaling will
need to be supplemented with other measurements to obtain definitive scaling behavior, such as
showing that the twall ×Nproc divided by the number of grid points (“grind time”) is bounded
in the weak scaling limit for a more traditional AMR mesh refinement study.

4.2. Gas Dynamics Benchmark
We benchmarked an explicit method for unsteady inviscid gas dynamics in three dimensions,
based on the unsplit PPM algorithm [4, 7]. This algorithm requires about 6000 flops to update
a grid point. Since it is an explicit method, ghost cell values are copied or interpolated only once
per update. We used the implementation of this method “out of the box” from the Chombo
software distribution, without significant modification. The operator peak performance for this
method on the Cray XT4 was 530 Mflops / processor.

The single image used as the starting point for the replication benchmark is a spherical shock
tube in 3D, with finest grids covering a spherical shell (Figures 4,5). There are two levels of
refinement, factor of 4 each, with refinement in time proportional to refinement in space. We
use fixed-sized 163 patches and a total of 6.2 × 107 grid points (five unknowns per grid point),
with 109 grid point updates performed for the single coarse time step. In the results given here,
we are only timing the cost of computing a single coarse time step, not the problem setup and
initialization.

In Figure 6, we show plots of wall clock time for the total calculation on the Cray XT4,
as well as for various phases of the calculation. In the plots, we normalize the times by the
time to solve the smallest problem (2 images, 128 processors). We observe 96% efficient scaled
speedup over a range of 128-8192 processors, corresponding to a wall clock time of 177 ± 4
seconds to compute 2× 109 - 1.28× 1011 grid-point updates. The fraction of operator peak for



Figure 2. Single pair for rings for repli-
cation scaling of Poisson’s equation. Im-
age shows the collection of rectangular
patches for this problem.

Figure 3. Ring grids replicated by
a factor of two in each coordinate
direction.

Figure 4. Single spherical shell
grids for replication scaling of Poisson’s
equation. Image shows the collection of
rectangular patches for this problem.

Figure 5. Spherical shell grids repli-
cated by a factor of two in each coor-
dinate direction.

these calculations was around 85% (450 Mflops / processor), with an adaptivity factor of 16.
While we are concerned about the small fluctations (of both signs) around perfect scaling, and
the somewhat low single-processor performance as reflected in the operator peak performance,
these results are consistent with the long-observed view that the use of AMR for hyperbolic
problems scales well on large numbers of processors.
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Figure 6. Gas dynamics weak scaling results. Red line shows wall clock time for a single coarse
time step, and the blue line the time spent in regular grid computations. All times are scaled
to the total time for the 128 processor results. Perfect scaling for the total calculation is shown
as the horizontal green line.

4.3. Poisson Benchmark
We benchmarked an AMR solver for Poisson’s equation, based on a cell-centered multilevel
discretization of Laplacian in three dimensions [6]. The solver itself is based on multigrid
iteration suitably modified for use on AMR grid hierarchies [9, 2]. The benchmark was run to
apply ten iterations of the AMR-multigrid V-cycle, which is typical of the number of iterations
required for acceptable reduction of the residual, and corresponds to 1700 flops / grid point. This
is a much more demanding application from the standpoint of parallelism, requiring multiple
computations of ghost points and other communications steps per multigrid interation. The
algorithmic features of this benchmark are typical of broad range of elliptic solvers arising in
applications using AMR.

The single image used as the basis of for the replication benchmark are the two rings (Figures
2, 3). The grids have two levels of refinement, with a refinment ratio of four for each. Patch
size is allowed to vary between 83 and 323. there is one unknown per grid point, total of 15M
grid points per image. An operator peak performance on XT4 of 840 Mflops / processor was
measured by timing the application of the Laplacian operator to a single rectangular patch.
As was the case for the gas dynamics benchmark, we are timing only the solver, not the setup
time. To obtain the scaling results presented here required a good deal more effort than in the
hyperbolic case. We required significant effort in code optimization (2 months), leading to 10X
improvement in both per-processor performance and in scalability.

In Figure 7, we show plots of wall clock time for the total calculation on the Cray XT4, as well
as for various phases of the calculation. In the plots, we normalize the times by the time to solve
the smallest problem (32 images, 256 processors). We observed 87% efficient scaled speedup
over range of 256-8192 processors, corresponding to a wall clock time of 8.4-9.5 seconds. the
fraction of operator peak for these calculations was around 45% (375 Mflops / processor). The
adaptivity factor was estimated to be 48. We did not have a uniform-grid method available
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Figure 7. AMR Poisson weak scaling results. All times are scaled to the total time for the
256 processor results. The red line shows total time, and the purple line the time spent in
regular grid computations. Pefect scaling for the total calculation is shown as the horizontal
green line. The black squares shows the time spent using BiCGStab to solve on the coarsest
multigrid level. The difference between the BiCGStab solver time and the total time to solution
is plotted using black circles and follows very closely the perfect scaling line thus demonstrating
that the BiCGStab solver time is the source of most of our lack of scalability in this calculation.

with which to compare, so our estimate was based on timings of the operator application on a
uniform grid, and the assumption that the flop rate for the full solve would be the same as for
the operator evaluation.

The detailed timing data shows that the deviation from perfect weak scaling can be attributed
to a single part of the algorithm (Figure 7). We use BiCGStab, preconditioned with point
relaxation, to solve the coarsened problem at the coarsest multigrid level. In our current
implementation, the coarsest multigrid level corresponds to a coarsening of the coarsest AMR
level, to the point where the domain consists of 23 patches, each on a different processor. This is
not algorithmically scalable, and has relatively large communications costs. Our expectation is
that we can eliminate this problem, for example, by moving the coarsest problem onto a much
smaller number of processors, or even a single processor, where we can coarsen our multigrid
levels down to a much smaller number of grid points, thus eliminating the lack of algorithmic
scalability and reducing the communications overhead.

4.4. Methods for Obtaining High Performance
In order to obtain the scaling behavior reported here, particularly for Poisson’s equation, we
needed to address three major issues in our existing code base.

• Minimizing communications costs. We found it necessary to distribute patches in a way that
minimizes communications costs using space-filling curves. If D is the spatial dimension of
the problem, Morton ordering [8] is a 1-1 mapping of ZD onto Z with good locality: the
fraction of nearest neighbors in ZD of the inverse image of an interval I ⊂ Z of length M



whose Morton indices are not in I is O(M−1/D). Load balancing is done by sorting the
patches according to the Morton indices of their low corners, and dividing the linearly-
ordered patches into intervals with equal workloads. The partitioning onto processors
obtained using Morton ordering shows uniform distributions with only a small fraction
of the patches having neighbors that are off-processor. This is in contrast to a recursive
bisection approach that we had used previously, in which it is possible to have long thin
partitions with all the patches requiring boundary data from off-processor. Morton ordering
also makes it profitable at large numbers of processors (4096 and above) to overlap the local
copying of ghost cell data from neighbors that are on the same processor and copying ghost-
cell data from other processors using asynchronous MPI calls.

• Scalable computations of patch metadata. In current implementations of AMR, every
processor has a copy of the metadata (assignment of patches to processors) for all unions of
rectangles / processor assignments. These are used to compute intersection lists, e.g. from
which patches is ghost-cell data to be copied. At 1000 processors and above, it is essential
to use O(log(Npatch)) sorts and searches to compute intersection lists. Otherwise, there is a
catastrophic failure to scale due to performing O(Npatch) computations on every processor.
Even using fast methods, the cost of these computations are not negligible, so significant
performance improvements were obtained from caching intersection lists.

• Optimizing coarse-fine boundary condition calculations Coarse-fine boundary conditions
involve parallel communication and irregular computation. While these calculations are
scalable, they can substantially increase the value of tmax in (1). We make agressive use
of residual-correction form to minimize how often the coarse-fine boundary conditions are
computed. For interpolation stencils that are actually regular, we call Fortran routines that
implement them. Although we have not done so here, we could also use fixed-size patches
to make nearly all such calculations regular, or develop fast irregular stencil operations.

5. Choosing AMR - A Case Study
APDEC supports the development of AMR for turbulent reacting flows based on the time-
dependent low-Mach number fluid equations in three dimensions with detailed hydrocarbon
chemistry and transport [5]. These are large systems. For example, there are approximately 60
primary dependent variables per grid point required to simulate methane combustion using the
standard detailed chemical mechanism GRIMech 3.0, with most of these being chemical species
variables. The low-Mach number combustion code LMC has been used to to investigate a variety
of turbulent flames, and is being applied under SciDAC 2 to simulate syngas combustion under
conditions characteristic of turbines used for power generation. For hydrocarbon combustion, the
computational costs are dominated by those of solving ODEs at every grid point for chemistry,
and of solving single-level variable-coefficient elliptic solvers that are used to impose divergence
constraint that eliminates acoustic wave dynamics. The latter use multigrid-preconditioned
BiCGStab, and pose a somewhat different set of problems than does the AMR Poisson
benchmark discussed above. Because the LMC code uses refinement in time, the elliptic solvers
are for problems that are defined on a single union of rectangles. At any AMR level except
the coarsest one, there is a limit to how much we can coarsen the union of rectangles with the
coarsened domain exactly covering the fine domain. This places additional demands on the
scalability and performance of the solver at the coarsest level.

We benchmarked the LMC code using replication scaling (Figure 8). The single image is a
wrinkled methane flame, using the chemical reaction mechanism referred to above. There are
two levels of refinement, factor of 2 each, with a total of 4× 106 grid points on the single image.
For Nproc ≤ 1024, the cost of the computation is dominated by the cost of solving the chemical
rate equations. By rebalancing the data for this task on the fly, this part of the computation
scales perfectly. There is a slight loss of weak scaling of the whole application for Nproc = 4096.



This lack of scalability is due to a lack of scalability of the variable-coefficient elliptic solvers
used here. Similar scaling results for LMC were obtained on a Linux cluster (the LLNL Atlas
machine), and on an SGI system (NASA Columbia).

The modest lack of scaling in principle could be viewed as a reason not to use LMC. However,
algorithmic choices are driven by science requirements: of the available alternatives, what is going
to provide the most scientific output for the least cost? The principal alternative to LMC is
based on the use of a fully explicit method on a uniform grid. This approach, which has been the
most extensively-used method for computing turbulent reacting flows for the last 20 years, uses
explicit time discretization of the compressible Navier-Stokes equations with the chemistry and
diffusive transport of species as in the LMC code. The fully explicit approach has the following
properties.

• Explicit stencil operations scale perfectly.
• The time step is determined by CFL condition for acoustic waves (.02 µsec for the wrinkled-

flame benchmark).
• For the chemical reaction terms, we use an explicit ODE method, and subcycle in time as

needed.

These are to be compared to properties of the LMC code.

• Elimination of acoustic waves leads to a 300-fold increase in the time step (6 µsec for the
wrinkled-flame benchmark). This comes at the cost of introducing elliptic solvers and an
implicit treatment of the chemical reaction terms. The former leads to the small deviation
from perfect weak scaling.

• AMR provides a tenfold reduction in the number of grid points over a uniform fine grid
with the same resolution.

To see how these theoretical properties would work themselves out in practice, we
implemented a fully explicit method and used it to solve the single image version of the wrinkled-
flame benchmark, but using a uniform grid at the same finest resolution as the finest grid in the
AMR LMC calculation. We extrapolated the results to larger number of processors assuming
perfect scaling. The results are plotted in Figure 9. Overall, the introduction of implicitness
and the use of AMR leads to an factor of 12-15 increase in the cost per grid point per time step
over the fully explicit method. Nonetheless, we observe an improvement by a factor of 200-250
in time to solution by using LMC over fully explicit method on a uniform grid at the same
effective resolution. The deviation from scalability is a miniscule effect relative to the difference
between the approaches, and provides a compelling case for the use of the LMC approach from
the standpoint of scientific productivity.

6. Conclusions and Future Plans
In this paper, we have presented two major results. The first is that AMR scales to 104 processors
with per-grid-point performance comparable to the corresponding uniform-grid algorithms. The
second is the performance study of the use of AMR in combustion simulations. We showed
that AMR, combined with semi-implicit temporal discretizations, leads to a factor of 200 or
more improvement to time to solution over fully explicit methods on uniform grids on a science
application of importance to the DOE mission. To achieve these results, it was not necessary to
make major changes in either the algorithm design or the software architecture. Due diligence
and attention to details were sufficient, given that we had the computational resources to
perform the measurements, and a suitably-designed AMR framework that localizes the software
components that need to be modified to obtain high performance.

Over the next year, one of the principal goals will be for all of the libraries and applications
supported by APDEC to scale to 104 processors. The results described here constitute a good



Figure 8. Scaling behavior for LMC
code. The calculation consists of one
coarse time step. The time is scaled by
the time to compute the solution on 64
processors (1.2 seconds)

Figure 9. Comparison of performance
of LMC code (red) and fully explicit code
(green). Wall clock time is scaled by the
time taken to compute the solution out
to the same time as the LMC results on
the left using the fully explicit code on
64 processors (300 seconds).

initial step in this direction, but there remains a considerable amount of work to be done.
We need to address the scalability of the setup process for AMR, e.g. grid generation, load
balancing, and other metadata operations. At 104 processors, tens of billions of grid points
translates into millions of patches, for which all of the processors currently keep a copy of the
metadata. At ∼50 Bytes per patch, the size of the memory required to store the metadata
becomes unacceptable. Possible approaches to reducing the memory footprint include sharing
the metadata across several processors, or representing the patch metadata using a bitmap. In
the latter case, this could be used in conjunction with a linear ordering of the data computable
from knowing the bitmap information (e.g. Morton ordering), so that the metadata could be
stored using one bit per patch, plus one long-long integer per processor.

The second area that will continue to receive attention is that of performance tuning of
elliptic solvers, especially solvers defined on a single AMR level, i.e. a union of rectangles. As
discussed in [1], the choice of parallelization strategies for the bottom solvers in multigrid can
have a substantial impact on performance, and we expect that to be the case here, as well. We
will also need to expand the range of elliptic solvers available to the users of APDEC software,
including variable coefficient solvers, tensor solvers, and fourth-order accurate solvers; defined
both on a single union of rectangles, and on multilevel AMR grid hierarchies.

Designing a benchmark suite that spans the usage patterns for a broad range of applications
is a substantial undertaking. As well as the types of solvers and discretizations noted above,
other issues include the variation of the layout of grids and grid hierarchies for different problem
domains, and the development of metrics for judging solvers. Examples of the latter include
scalability and performance along the lines discussed in this paper, as well as setup time and
memory requirements. We plan to make our benchmark suite accessible to the larger scientific
community to obtain feedback both from the applications users and other solver software
developers.

Finally, we have not addressed in this paper the issues of extending the approach taken here
to problems with anisotropies or significant amounts of irregular computation due to cut-cell
treatment of geometries. In the latter case, we have a separate effort to improve the performance



and scaling of that algorithm domain, and we expect to obtain comparable scaling results to
those seen here for AMR without geometry. AMR algorithm development for anisotropic solvers
/ problems (Sn radiation, geophysical fluid dynamics, thermal conduction in MHD) is still in
its early stages. Moreover, parallelization for these problems promises to be considerably more
difficult. For example, such problems often require the use of line solves in a stiff direction,
leading to a loss of parallelism in that direction.

In considering the extension to 105 processors, the good news is that we still have plenty of
parallelism left to exploit. If the increase in the number of processors is by introducing dozens of
cores on a single chip, then hierarchical parallelization strategies of load balancing across chips,
while using work-queues or fine-grain parallelism within loops executing over a single patch on
a single chip, become attractive strategies. However, it is probably premature to make large
investments in the development of software for this regime, until some of the major uncertainties
regarding the computing environment at the petascale are resolved.

• Are we scaling to a flat processor space ? If so, what are the performance characteristics
of MPI at 105 processors ? If not, What programming models will be used in the presence
of hierarchical parallelism, and by what process will production-quality implementations of
such programming models be developed ?

• The tools currently being used to write out, store, and access the data for analysis and
visualization of time-dependent numerical PDE data not scale to the petabyte data sets
that will be generated by 105 processors.

• Above 1000 processors, multiuser environments, intermittent hardware failures, and other
artifacts can lead to unpredictable fluctuations in performance.

• Adequate access to large numbers of processors that enables software developers to run
large jobs in a timely fashion is essential to software development for the high end. On the
other hand, permitting such access may lead to lower utilization numbers for a production
computing center.

Figure 10 provides an illustration of the last two points. In developing the gas dynamics
benchmark, we noticed intermittent 10% fluctuations in the wall clock time for large numbers of
processors. By performing repeated runs with detailed instrumentation, we were able to narrow
the problem down to three specific hardware nodes that were experiencing single-bit memory
errors [3], the correction of which caused the processor to slow down. Consequently the whole
parallel section of code took 10% longer to finish. Once the problem with the memory was fixed,
the spikes disappeared, and we obtained the near-perfect scaling results in Figure 6. As the
number of processors increases, the risk of such intermittent hardware failures increases, with
unpredictable impacts on performance. On the other hand, this experience shows the value of
fast turnaround access for relatively short jobs on large numbers of processors. We were able
to solve the problem within a few weeks, but only because we were able to perform repeated
experiments using large numbers of processors to pinpoint the source of the difficulty.

We see no serious technical barriers specific to AMR to scaling to 105 processors and beyond.
However, there are serious infrastructure issues to be resolved before the computational science
community will be able to make effective use of such large numbers of processors. Software
developers and applications users will need to be convinced that attempting to scale to such
large numbers of processors will yield real science returns in a timely fashion.
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