61 research outputs found

    Video tolling integrated solution

    Get PDF
    Trabalho de projeto de mestrado, Engenharia Informática (Engenharia de Software) Universidade de Lisboa, Faculdade de Ciências, 2020A indústria de cobrança de portagens foi instituída no século VII com o intuito de financiar e auxiliar na manutenção de vias públicas através do pagamento de taxas correspondentes ao seu uso. Contudo, o advento do uso massificado de veículos automóveis, e consequente aumento do tráfego, obrigou à adaptação desta indústria aos tempos modernos, tendo sido introduzida uma filosofia de livre trânsito complementar à tradicional paragem para pagamento. A adoção deste tipo de medida foi possível graças ao desenvolvimento de tecnologias de reconhecimento ótico de caracteres, que permitem a identificação da matrícula, aliados ao uso de identificadores registados para cada veículo. Porém, a ausência de paragem implica também a existência de infrações de condutores que circulem com matrículas obscurecidas ou de difícil leitura. Deste modo, é desejável o uso de métodos complementares de auxílio à identificação dos veículos, caso do reconhecimento da marca e modelo dos mesmos (MMR). Os sistemas de reconhecimento ótico de caracteres com o objetivo de identificar matrículas são já implementados nas soluções concebidas pela Accenture para os seus diversos clientes na área, tornando estes novos métodos complementares numa adição interessante à robustez dos mesmos, de modo a reduzir custos adicionais relacionados com a identificação manual de matrículas através das imagens captadas. O presente trabalho visou então, em primeira instância, o estabelecimento de uma prova de conceito com um modelo arquitetural que permitisse a integração de um sistema de reconhecimento de marca e modelo de veículos com os sistemas informáticos previamente desenvolvidos e que se encontram atualmente em uso por parte dos clientes. Para este modelo foi também estabelecido um conjunto de requisitos, tanto funcionais como não funcionais, com o intuito de minorar, tanto quanto possível, perdas no desempenho e fiabilidade dos atuais sistemas por consequência da introdução deste novo componente de MMR. Os requisitos foram definidos fazendo uso de uma versão modificada do modelo de qualidade FURPS, segundo as boas práticas definidas pela equipa de desenvolvimento do Centro de Excelência de Tolling (TCoE) da Accenture Portugal. Adicionalmente, os requisitos definidos foram sujeitos ao estabelecimento de prioridades segundo as regras MoSCoW. A captura de imagens de veículos em movimento e consequente classificação oferece desafios inerentes à sua complexidade, pelo que foram também efetuadas considerações sobre os fatores de variabilidade que devem ser tidos em conta aquando da conceção de um sistema MMR. Estes fatores foram classificados segundo três áreas principais: propriedades inerentes ao sistema de captura de imagens (RSE), propriedades do evento de captura da imagem, e propriedades do veículo. A arquitetura proposta para um eventual sistema que possa ser passível de integração com os existentes faz uso da arquitetura dos mesmos, organizando-se em quatro camadas, a saber: acesso a dados (camada inferior), gestão e regras de negócio, avaliação de resultados e aumento da base de conhecimento disponível, e correspondência (camada superior). Para a elaboração da presente prova de conceito, foram deste modo escolhidas tecnologias que permitem a integração com os sistemas Java previamente existentes sem despender demasiado esforço adicional nessa integração. Deste modo, foram utilizadas bibliotecas Python para o uso de OpenCV, que permite o processamento de imagens, e Tensorflow para as atividades relacionadas com machine learning. O desenvolvimento da prova de conceito para estes sistemas envolveu também o teste de hipóteses quanto ao modo mais vantajoso de reconhecimento da marca e modelo dos veículos propriamente dita. Para este efeito, foram equacionadas três hipóteses, que se basearam no uso de dois datasets distintos. O primeiro conceito abordado consistiu em fingerprinting de imagens associadas a um dataset desenvolvido na Universidade de Stanford, contendo 16185 imagens de veículos automóveis ligeiros em variadas poses, que podem ser divididas segundo 49 marcas e 196 modelos distintos, se for considerada a distinção dos anos de comercialização dos mesmos. Para o efeito, foi usado o modelo de características AKAZE e testados três métodos distintos para efetuar as correspondências: força bruta com teste de rácio descrito na literatura (para dois rácios distintos, 0,4 e 0,7), força bruta com recurso a função de cross-check nativa das bibliotecas usadas, e FLANN. A pertença de uma imagem a determinada categoria foi então ditada pelo estabelecimento de correspondências entre os seus pontos-chave e os pontos-chave das imagens do dataset, testando vários algoritmos de ordenação para aumentar as probabilidades de correspondência com uma imagem pertencente à mesma classe. Os resultados obtidos demonstraram, no geral, precisões relativamente baixas, sendo que nenhuma ultrapassou os 20% para o reconhecimento da marca ou modelo dos veículos. Contudo, dos ensaios efetuados, dois destacaram-se ao conseguir atingir 16,8% de precisão para a marca e 11,2% para o modelo. Estes ensaios tiveram, de resto, características em comum, sendo que, em ambos os casos, foi utilizado o método de força bruta com rácio de 0,4. Os métodos de ordenação de resultados foram, todavia, diferentes, sendo que num dos casos foi usado o valor máximo de pontos-chave em comum (MV) e no segundo um rácio entre este número de pontos em comum e o número de pontos-chave existentes (MR). De entre ambos, o ensaio que recorreu ao método MR foi considerado estatisticamente mais significativo, dado possuir um valor do coeficiente de correlação k de Cohen mais elevado em relação a MV. Os parcos resultados obtidos através deste método levaram à tentativa de adoção de uma abordagem diferente, nomeadamente no que tocava à seleção das imagens que deviam ser comparadas, uma vez que os fatores de variabilidade identificados na análise se encontravam demasiado presentes nas imagens do dataset de Stanford. Deste modo, a grelha do veículo foi identificada como região de interesse (ROI), dados os padrões distintivos inerentes à mesma e a presença do logotipo identificador da marca à qual pertence o veículo. O objetivo desta nova abordagem residia na identificação desta ROI de modo a proceder à sua extração a partir da imagem original, aplicando-sedepois os algoritmos de fingerprinting anteriormente abordados. A deteção da ROI foi efetuada com recurso a classificadores em cascata, os quais foram testados com dois tipos de características diferentes: LBP, mais rápidas, mas menos precisas, e Haar, mais complexas, mas também mais fiáveis. As imagens obtidas através da identificação e subsequente recorte foram depois analisadas segundo a presença de grelha, deteção da mesma ou de outros objetos, bem como o grau de perfeição da deteção efetuada. A determinação da ROI a recortar foi também avaliada segundo dois algoritmos: número total de interseções entre ROIs candidatas, e estabelecimento de um limiar de candidatos para uma ROI candidata ser considerada ou rejeitada (apelidado de min-neighbours). As cascatas foram treinadas com recurso a imagens não pertencentes ao dataset de Stanford, de modo a evitar classificações tendenciosas face a imagens previamente apresentadas ao modelo, e para cada tipo de característica foram apresentados dois conjuntos de imagens não correspondentes a grelhas (amostras negativas), que diferiam na sua dimensão e foram consequentemente apelidadas de Nsmall e Nbig. Os melhores resultados foram obtidos com o dataset Nsmall, estabelecimento de limiar, e com recurso a características Haar, sendo a grelha detetada em 81,1% dos casos em que se encontrava efetivamente presente na imagem. Contudo, esta deteção não era completamente a que seria desejável, uma vez que, considerando deteção perfeita e sem elementos externos, a precisão baixava para 32,3%. Deste modo, apesar das variadas vertentes em que esta deteção e extração de ROI foi estudada, foi decidido não avançar para o uso de fingerprinting, devido a constrangimentos de tempo e à baixa precisão que o sistema como um todo conseguiria alcançar. A última técnica a ser testada neste trabalho foi o uso de redes neuronais de convolução (CNN). Para o efeito, e de modo a obter resultados mais fiáveis para o tipo de imagem comumente capturado pelos RSE em contexto de open road tolling, foi usado um novo dataset, consistindo de imagens captadas em contexto real e cedidas por um dos clientes do TCoE. Dentro deste novo conjunto de imagens, foi feita a opção de testar apenas a marca do veículo, com essa classificação a ser feita de forma binária (pertence ou não pertence a determinada marca), ao invés de classificação multi-classe. Para o efeito, foram consideradas as marcas mais prevalentes no conjunto fornecido, Opel e Peugeot. Os primeiros resultados para o uso de CNN revelaram-se promissores, com precisão de 88,9% para a marca Opel e 95,3% para a Peugeot. Todavia, ao serem efetuados testes de validação cruzada para aferir o poder de generalização dos modelos, verificou-se um decréscimo significativo, tanto para Opel (79,3%) como para Peugeot (84,9%), deixando antever a possibilidade de ter ocorrido overfitting na computação dos modelos. Por este motivo, foram efetuados novos ensaios com imagens completamente novas para cada modelo, sendo obtidos resultados de 55,7% para a marca Opel e 57,4% para a marca Peugeot. Assim, embora longe de serem resultados ideais, as CNN aparentam ser a melhor via para um sistema integrado de reconhecimento de veículos, tornando o seu refinamento e estudo numa solução viável para a continuação de um possível trabalho nesta área.For a long time, tolling has served as a way to finance and maintain publicly used roads. In recent years, however, due to generalised vehicle use and consequent traffic demand, there has been a call for open-road tolling solutions, which make use of automatic vehicle identification systems which operate through the use of transponders and automatic license plate recognition. In this context, recognising the make and model of a vehicle (MMR) may prove useful, especially when dealing with infractions. Intelligent automated license plate recognition systems have already been adopted by several Accenture clients, with this new feature being a potential point of interest for future developments. Therefore, the current project aimed to establish a potential means of integrating such a system with the already existing architecture, with requirements being designed to ensure its current reliability and performance would suffer as little an impact as possible. Furthermore, several options were considered as candidates for the future development of an integrated MMR solution, namely, image fingerprinting of a whole image, grille selection followed by localised fingerprinting, and the use of convolutional neural networks (CNN) for image classification. Among these, CNN showed the most promising results, albeit making use of images in limited angle ranges, therefore mimicking those exhibited in captured tolling vehicle images, as well as performing binary classification instead of a multi-class one. Consequently, further work in this area should take these results into account and expand upon them, refining these models and introducing more complexity in the process

    Object detection and recognition in complex scenes

    Get PDF
    Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014Contour-based object detection and recognition in complex scenes is one of the most dificult problems in computer vision. Object contours in complex scenes can be fragmented, occluded and deformed. Instances of the same class can have a wide range of variations. Clutter and background edges can provide more than 90% of all image edges. Nevertheless, our biological vision system is able to perform this task effortlessly. On the other hand, the performance of state-of-the-art computer vision algorithms is still limited in terms of both speed and accuracy. The work in this thesis presents a simple, efficient and biologically motivated method for contour-based object detection and recognition in complex scenes. Edge segments are extracted from training and testing images using a simple contour-following algorithm at each pixel. Then a descriptor is calculated for each segment using Shape Context, including an offset distance relative to the centre of the object. A Bayesian criterion is used to determine the discriminative power of each segment in a query image by means of a nearest-neighbour lookup, and the most discriminative segments vote for potential bounding boxes. The generated hypotheses are validated using the k nearest-neighbour method in order to eliminate false object detections. Furthermore, meaningful model segments are extracted by finding edge fragments that appear frequently in training images of the same class. Only 2% of the training segments are employed in the models. These models are used as a second approach to validate the hypotheses, using a distancebased measure based on nearest-neighbour lookups of each segment of the hypotheses. A review of shape coding in the visual cortex of primates is provided. The shape-related roles of each region in the ventral pathway of the visual cortex are described. A further step towards a fully biological model for contourbased object detection and recognition is performed by implementing a model for meaningful segment extraction and binding on the basis of two biological principles: proximity and alignment. Evaluation on a challenging benchmark is performed for both k nearestneighbour and model-segment validation methods. Recall rates of the proposed method are compared to the results of recent state-of-the-art algorithms at 0.3 and 0.4 false positive detections per image.Erasmus Mundus action 2, Lot IIY 2011 Scholarship Program

    Fast and exact fixed-radius neighbor search based on sorting

    Full text link
    Fixed-radius near neighbor search is a fundamental data operation that retrieves all data points within a user-specified distance to a query point. There are efficient algorithms that can provide fast approximate query responses, but they often have a very compute-intensive indexing phase and require careful parameter tuning. Therefore, exact brute force and tree-based search methods are still widely used. Here we propose a new fixed-radius near neighbor search method, called SNN, that significantly improves over brute force and tree-based methods in terms of index and query time, provably returns exact results, and requires no parameter tuning. SNN exploits a sorting of the data points by their first principal component to prune the query search space. Further speedup is gained from an efficient implementation using high-level Basic Linear Algebra Subprograms (BLAS). We provide theoretical analysis of our method and demonstrate its practical performance when used stand-alone and when applied within the DBSCAN clustering algorithm.Comment: arXiv admin note: text overlap with arXiv:2202.0145

    Advanced of Mathematics-Statistics Methods to Radar Calibration for Rainfall Estimation; A Review

    Get PDF
    Ground-based radar is known as one of the most important systems for precipitation measurement at high spatial and temporal resolutions. Radar data are recorded in digital manner and readily ingested to any statistical analyses. These measurements are subjected to specific calibration to eliminate systematic errors as well as minimizing the random errors, respectively. Since statistical methods are based on mathematics, they offer more precise results and easy interpretation with lower data detail. Although they have challenge to interpret due to their mathematical structure, but the accuracy of the conclusions and the interpretation of the output are appropriate. This article reviews the advanced methods in using the calibration of ground-based radar for forecasting meteorological events include two aspects: statistical techniques and data mining. Statistical techniques refer to empirical analyses such as regression, while data mining includes the Artificial Neural Network (ANN), data Kriging, Nearest Neighbour (NN), Decision Tree (DT) and fuzzy logic. The results show that Kriging is more applicable for interpolation. Regression methods are simple to use and data mining based on Artificial Intelligence is very precise. Thus, this review explores the characteristics of the statistical parameters in the field of radar applications and shows which parameters give the best results for undefined cases. DOI: 10.17762/ijritcc2321-8169.15012

    SeqNet: Learning Descriptors for Sequence-based Hierarchical Place Recognition

    Full text link
    Visual Place Recognition (VPR) is the task of matching current visual imagery from a camera to images stored in a reference map of the environment. While initial VPR systems used simple direct image methods or hand-crafted visual features, recent work has focused on learning more powerful visual features and further improving performance through either some form of sequential matcher / filter or a hierarchical matching process. In both cases the performance of the initial single-image based system is still far from perfect, putting significant pressure on the sequence matching or (in the case of hierarchical systems) pose refinement stages. In this paper we present a novel hybrid system that creates a high performance initial match hypothesis generator using short learnt sequential descriptors, which enable selective control sequential score aggregation using single image learnt descriptors. Sequential descriptors are generated using a temporal convolutional network dubbed SeqNet, encoding short image sequences using 1-D convolutions, which are then matched against the corresponding temporal descriptors from the reference dataset to provide an ordered list of place match hypotheses. We then perform selective sequential score aggregation using shortlisted single image learnt descriptors from a separate pipeline to produce an overall place match hypothesis. Comprehensive experiments on challenging benchmark datasets demonstrate the proposed method outperforming recent state-of-the-art methods using the same amount of sequential information. Source code and supplementary material can be found at https://github.com/oravus/seqNet.Comment: Accepted for publication in IEEE RA-L 2021; includes supplementar

    Recognition of objects to grasp and Neuro-Prosthesis control

    Get PDF

    Approximating Spectral Clustering via Sampling: a Review

    Get PDF
    Spectral clustering refers to a family of unsupervised learning algorithms that compute a spectral embedding of the original data based on the eigenvectors of a similarity graph. This non-linear transformation of the data is both the key of these algorithms' success and their Achilles heel: forming a graph and computing its dominant eigenvectors can indeed be computationally prohibitive when dealing with more that a few tens of thousands of points. In this paper, we review the principal research efforts aiming to reduce this computational cost. We focus on methods that come with a theoretical control on the clustering performance and incorporate some form of sampling in their operation. Such methods abound in the machine learning, numerical linear algebra, and graph signal processing literature and, amongst others, include Nystr\"om-approximation, landmarks, coarsening, coresets, and compressive spectral clustering. We present the approximation guarantees available for each and discuss practical merits and limitations. Surprisingly, despite the breadth of the literature explored, we conclude that there is still a gap between theory and practice: the most scalable methods are only intuitively motivated or loosely controlled, whereas those that come with end-to-end guarantees rely on strong assumptions or enable a limited gain of computation time
    corecore