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Approximating Spectral Clustering via
Sampling: a Review

Nicolas Tremblay and Andreas Loukas

Abstract Spectral clustering refers to a family of well-known unsupervised learn-
ing algorithms. Rather than attempting to cluster points in their native domain, one
constructs a (usually sparse) similarity graph and computes the principal eigenvec-
tors of its Laplacian. The eigenvectors are then interpreted as transformed points
and fed into a k-means clustering algorithm. As a result of this non-linear trans-
formation, it becomes possible to use a simple centroid-based algorithm in order
to identify non-convex clusters, something that was otherwise impossible. Unfortu-
nately, what makes spectral clustering so successful is also its Achilles heel: forming
a graph and computing its dominant eigenvectors can be computationally prohibitive
when dealing with more that a few tens of thousands of points. In this chapter, we
review the principal research efforts aiming to reduce this computational cost. We
focus on methods that come with a theoretical control on the clustering performance
and incorporate some form of sampling in their operation. Such methods abound in
the machine learning, numerical linear algebra, and graph signal processing litera-
ture and, amongst others, include Nyström-approximation, landmarks, coarsening,
coresets, and compressive spectral clustering. We present the approximation guar-
antees available for each and discuss practical merits and limitations. Surprisingly,
despite the breadth of the literature explored, we conclude that there is still a gap be-
tween theory and practice: the most scalable methods are only intuitively motivated
or loosely controlled, whereas those that come with end-to-end guarantees rely on
strong assumptions or enable a limited gain of computation time.
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1 Introduction

Clustering is a cornerstone of our learning process and, thus, of our understanding
of the world. Indeed, we can all distinguish between a rose and a tulip precisely
because we have learned what these flowers are. Plato would say that we learned
the Idea –or Form [120]– of both the rose and the tulip, which then enables us to
recognize all instances of such flowers. A machine learner would say that we learned
two classes: their most discriminating features (shape, size, number of petals, smell,
etc.) as well as their possible intra-class variability.

Mathematically speaking, the first step on the road to classifying objects (such
as flowers) is to create an abstract representation of these objects: with each object
i we associate a feature vector pi ∈ Rd , where the dimension d of the vector cor-
responds to the number of features one chooses to select for the classification task.
The space Rd in this context is sometimes called the feature space. The choice of
representation will obviously have a strong impact on the subsequent classification
performance. Say that in the flower example we choose to represent each flower by
only d = 3 features: the average color of each RGB channel (level of red, green and
blue) of its petals. This choice is not fail-proof: even though the archetype of the
rose is red and the archetype of the tulip is yellow, we know that some varieties of
both flowers can have very similar colors and thus a classification solely based on
the color will necessarily lead to confusion. In fact, there are many different ways
of choosing features: from features based on the expert knowledge of a botanist, to
features learned by a deep learning architecture from many instances of labeled im-
ages of roses and tulips, via features obtained by hybrid methods more-or-less based
on human intelligence (such as the first few components of a Principal Component
Analysis of expert-based features).

The second step on the road to classifying n objects is to choose a machine learn-
ing algorithm that groups the set of n points P= (p1, . . . ,pn) in k classes (k may be
known in advance or determined by the algorithm itself). Choosing an appropriate
algorithm depends on the context:

• Availability of pre-labeled data. Classifying the points P in k classes may be
seen as assigning a label (such as “rose” or ”tulip” in our k = 2 example) to each
of the points. If one has access to some pre-labeled data, we are in the case of
supervised learning: a more-or-less parametrized model is first learned from the
pre-labeled data and then applied to the unlabeled points that need classifica-
tion. If one does not have access to any pre-labeled data, we are in the case of
unsupervised learning where classes are typically inferred only via geometrical
consideration of the distribution of points in the feature space. If one has only
access to a few labeled data, we are in the in-between case of semi-supervised
learning where the known labels are typically propagated in one form or another
in the feature space.

• Inductive vs transductive learning. Another important characteristic of a clas-
sification algorithm is whether it can be used to classify only the set of points P
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at hand (transductive), or if it can also be directly used to classify any never-seen
data point pn+1 (inductive).

This chapter focuses on the family of algorithms jointly referred to as spectral clus-
tering. These algorithms are unsupervised and transductive: no label is known in
advance and one may not naturally1 extend the results obtained on P to never-seen
data points. Another particularity of spectral clustering algorithms is that the number
of classes k is known in advance.

Spectral clustering algorithms have received a large attention in the last two
decades due to their good performance on a wide range of different datasets, as
well as their ease of implementation. In a nutshell, they combine three steps:

1. Graph construction. A sparse similarity graph is built between the n points.
2. Spectral embedding. The first k eigenvectors of a graph representative matrix

(such as the Laplacian) are computed.
3. Clustering. k-means is performed on these spectral features, to obtain k clusters.

For background information about spectral clustering, such as several justifications
of its performance, out-of-sample extensions, as well as comparisons with local
methods, the interested reader is referred to the recent book chapter [144].

One of the drawbacks of spectral clustering is its computational cost as n, d,
and/or k become large (see Sec. 2.3 for a discussion on the cost). Since the turn of
the century, a large number of authors have striven to reduce the computational cost
while keeping the high level of classification performance. The majority of such
accelerating methods are based on sampling: they reduce the dimension of a sub-
problem of spectral clustering, compute a low-cost solution in small dimension, and
lift the result back to the original space.

The goal of this chapter is to review existing sampling methods for spectral clus-
tering, focusing especially on their approximation guarantees. Some of the funda-
mental questions we are interested in are: where is the sampling performed and
what is sampled precisely? how should the reduced approximate solutions be lifted
back to the original space? what is the computational gain? what is the control on
performances—if it exists? Given the breadth of the literature on the subject, we do
not try to be exhaustive, but rather to illustrate the key ways that sampling can be
used to provide acceleration, paying special attention on recent developments on the
subject.

Chapter organization. We begin by recalling in Sec. 2 the prototypical spectral
clustering algorithm. We also provide some intuitive and formal justification of why
it works. The next three sections classify the different methods of the literature de-
pending on where the sampling is performed with respect to the three steps of spec-
tral clustering:

• Sec. 3 details methods that sample directly in the original feature space.

1 Out-of-sample extensions of spectral clustering do exist (see for instance Section 5.3.6 of [144]),
but they require additional work.
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• Sec. 4 assumes that the similarity graph is given and details methods that sample
nodes and/or edges to approximate the spectral embedding.

• Sec. 5 assumes that the spectral embedding is given and details methods to ac-
celerate the k-means step.

Finally, Sec. 6 gives perspective on the limitations of existing works and discusses
key open problems.

Notation. Scalars, such as λ or d, are written with low-case letters. Vectors, such
as u, z or the all-one vector 1, are denoted by low-case bold letters. Matrices, such
as W or L are denoted with bold capital letters. Ensembles are denoted by serif
font capital letters, such as C or X. The “tilde” will denote approximations, such
as in z̃ or Ũk. We use so-called Matlab notations to slice matrices: given a set of
indices S of size m and an n× n matrix W, W(S, :) ∈ Rm×n is W reduced to the
lines indexed by S, W(:,S) ∈ Rn×m is W reduced to the columns indexed by S,
and W(S,S) ∈ Rm×m is W reduced to the lines and columns indexed by S. The
equation Uk = U(:, : k) defines Uk as the reduction of U to its first k columns.
Also, C> is the transpose of matrix C and C+ its Moore-Penrose pseudo-inverse.
The operator X = diag(x) takes as an input a vector x ∈ Rn and returns an n× n
diagonal matrix X featuring x in its main diagonal, i.e., X(i, j) = x(i) if i = j and
X(i, j) = 0, otherwise. Finally, we will consider graphs in a large part of this paper.
We will denote by G = (V,E,W) the undirected weighted graph of |V| = n nodes
interconnected by |E|= e edges: ei j ∈ E is the edge connecting nodes vi and v j, with
weight W(i, j) ≥ 0. Matrix W is the adjacency matrix of G. As G is considered
undirected, W is also symmetric. In general, W can be any symmetric matrix with
positive entries, but we usually prefer to work with sparse graphs without self-loops,
in which case the matrix is also sparse and has a zero diagonal.

2 Spectral clustering

The input of spectral clustering algorithms consists of (i) a set of points P =
(p1,p2, . . . ,pn) (also called featured vectors) representing n objects in a feature
space of dimension d, and (ii) the number of classes k in which to classify these ob-
jects. The output is a partition of the n objects in k disjoint clusters. The prototypical
spectral clustering algorithm [121, 102], dates back in fact to fundamental ideas by
Fiedler [46] and entails the following steps:

Algorithm 1. The prototypical Spectral Clustering algorithm
Input. A set of n points P= (p1,p2, . . . ,pn) in dimension d and a number of
desired clusters k.

1. Graph construction (optional)
a. Compute the kernel matrix K∈Rn×n: ∀(i, j), K(i, j)= κ(‖pi−p j‖2).
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b. Compute W = s(K), a sparsified version of K.
c. Interpret W as the adjacency matrix of a weighted undirected graph G.

2. Spectral embedding
a. Compute the eigenvectors u1, u2, · · · , uk associated with the k smallest

eigenvalues of a graph representative matrix R (usually a Laplacian)
computed from W.

b. Set Uk = [u1|u2| · · · |uk ] ∈ Rn×k.

c. Embed the i-th node to xi =
Uk(i,:)>

q(‖Uk(i,:)‖2)
, with q(·) a normalizing func-

tion.
3. Clustering

a. Use k-means on x1, . . . ,xn in order to identify k centroids c1, . . . ,ck.
b. Voronoi tesselation: construct one cluster per centroid c` and assign

each object i to the cluster of the centroid closest to xi.

Output: A partition of the n points in k clusters.

A few comments are in order:

• A common choice of kernel in step 1a is the radial basis function (RBF) ker-
nel κ(‖pi−p j‖2) = exp

(
−‖pi−p j‖2

2/σ2
)

for some user-defined sparsification
function σ (step 1b). The sparsification s of K usually entails setting the diagonal
to 0 and keeping only the k largest entries of each column (i.e., set all others to
0). The obtained matrix Ksp is not symmetric in general and a final “symmetriza-
tion” step W =Ksp+K>sp is necessary to obtain a matrix W interpretable as the
adjacency matrix of a weighted undirected graph2 G = (V,E,W). This graph is
called the k nearest neighbour (k-NN) similarity graph (note that the k used in this
paragraph has nothing to do with the number of clusters). Other kernel functions
κ and sparsification methods are possible (see Section 2 of [138] for instance).

• There are several possibilities for choosing the graph representative matrix R in
step 2a. We consider three main choices [138]: Let us denote by D the diagonal
degree matrix such that D(i, i) = ∑ j W(i, j) is the (weighted) degree of node vi.
We define the combinatorial graph Laplacian matrix L=D−W, the normalized
graph Laplacian matrix Ln = I−D−1/2WD−1/2, and the random walk Lapla-
cian Lrw = I−D−1W. Other popular choices include3 the non-backtracking
matrix [73], degree-corrected versions of the modularity matrix [2], the Bethe-
Hessian matrix [114] or similar deformed Laplacians [34].

• The normalizing function q(·) used in step 2c depends on which representative
matrix is chosen. In the case of the Laplacians, experimental evidence as well
as some theoretical arguments [138] support using a unit norm normalization for

2 Each node vi of V represents a point pi, an undirected edge exists between nodes vi and v j if and
only if W(i, j) 6= 0, and the weight of that connection is W(i, j).
3 In some of these examples, the k largest eigenvalues (instead of the k lowest in the Laplacian
cases) of the representative matrix, and especially their corresponding eigenvectors, are of interest.
This is only a matter of sign of the matrix R and has no impact on the general discussion.
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the eigenvectors of Ln (i.e. q is the identity function), and no normalization for
the eigenvectors of L and Lrw (i.e. q(·) = 1).

• Step 1 of the algorithm is “optional” in the sense that in some cases the input is
not a set of points but directly a graph. For instance, it could be a graph repre-
senting a social network between n individuals, where each node is an individual
and there is an edge between two nodes if they know each other. The weight on
each edge can represent the strength of their relation (for instance close to 0 if
they barely know each other, and close to 1 if they are best friends). The goal
is then to classify individuals based on the structure of these social connections
and is usually referred to as community detection in this context [47]. Given the
input graph, and the number k of communities to identify, one can run spectral
algorithms starting directly at step 2. Readers only interested in such applications
can skip Sec. 3, which is devoted to sampling techniques designed to accelerate
step 1.

After the spectral embedding X= (x1, . . . , xn ) has been identified, spectral clus-
tering uses k-means in order to find the set of k centroids C= (c1, . . . , ck ) that best
represents the data. Formally, the k-means cost function to minimize reads:

f (C;X) = ∑
x∈X

min
c∈C
‖x−c‖2

2. (1)

We would ideally hope to identify the set of k centroids C∗ minimizing f (C;X).
Solving exactly this problem is NP-hard [41], so one commonly resorts to approx-
imation and heuristic solutions (see for instance [128] for details on different such
heuristics). The most famous is the so-called Lloyd-Max heuristic algorithm:

Algorithm 2. The Lloyd-Max algorithm [87]
Input. Set of n points X= (x1,x2, . . . ,xn) and number of desired clusters k.

1. Start from an initial guess Cini of k centroids
2. Iterate until convergence:

a. Assign each point xi to its closest centroid to obtain a partition of X in
k clusters.

b. Move each centroid c` to the average position of all points in cluster `.

Output: A set of k centroids C= (c1, . . . ,ck).

When the clusters are sufficiently separated and Cini is not too far from the opti-
mal centroids, then the Lloyd-Max algorithm converges to the correct solution [75].
Otherwise, it typically ends up in a local minimum.

A remark on notation. Two quantities of fundamental importance in spectral clus-
tering are the eigenvalues λi and especially the eigenvectors ui of the graph Lapla-
cian matrix. We adopt the graph theoretic convention of sorting eigenvalues in non-
decreasing order: 0 = λ1 ≤ λ2 ≤ . . .≤ λn. Also, for reasons of brevity, we overload
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notation and use the same symbol for the spectrum of the three Laplacians L, Ln
and Lrw. Thus, we advise the reader to rely on the context in order to discern which
Laplacian gives rise to the eigenvalues and eigenvectors. Finally, the reader should
keep in mind that the largest eigenvalue if always bounded by 2 for Ln and Lrw.

2.1 An illustration of spectral clustering

The first two steps of the algorithm can be understood as a non-linear transformation
from the initial feature space to another feature space (that we call spectral feature
space or spectral embedding): a transformation of features pi in Rd to spectral fea-
tures xi in Rk. The first natural question that arises is why do we run k-means on
the spectral features X= (x1, . . . ,xn) that are subject to parameter tuning and costly
to compute, rather than directly run k-means on the original P? Figures 1 and 2
illustrate the answer.

In Figure 1, we show the result of k-means directly on a set of artificial features
P known as the two-half moons dataset. In this example, the intuitive ground truth
is that each half-moon corresponds to a class, that we want to recover. Running k-
means directly in this 2D feature space will necessarily output a linear separation
between the two obtained Voronoi cells and will thus necessarily fail, as no straight
line can separate the two half-moons.

Fig. 1 Left: the two half-moons synthetic dataset (n = 500, d = 2, k = 2). Right: k-means with
k = 2 directly on P is unsuccessful to separate the two half-moons.

Spectral clustering, via the computation of the spectral features of a similarity
graph, transforms these original features P in spectral features X that are typically
linearly separable by k-means: the two half-moons are successfully recovered! We
illustrate this in Figure 2. In the next section, we will examine a theoretical argument
aiming to justify this phenomenon.

2.2 Justification of spectral clustering

A popular approach –and by no means the only one, see Sec. 2.2.3– to justify spec-
tral clustering algorithms stems from its connection to graph partitioning. Suppose
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Fig. 2 Illustration of the spectral clustering algorithm on the two half-moons dataset (n = 500,
d = 2, k = 2). The graph is created with a RBF kernel and via a sparsification done with k-nearest
neighbours (with k = 5). The spectral embedding is done with the two eigenvectors associated to
the two smallest eigenvalues of the combinatorial Laplacian matrix L. The embedding X is here
in practice in 1D as the first eigenvector of L is always constant and thus not discriminative (to
confirm this, first show that L is a PSD matrix and then prove that Lc= 0 for any constant vector
c). Observe how the two clusters are now linearly separable in the spectral feature space. k-means
on these features successfully recovers the two half-moons.

that the similarity graph G = (V,E,W) has been obtained and we want to compute
a partition4 P = {V1,V2, . . . ,Vk} of the nodes V in k groups. Intuitively, a good
clustering objective function should favor strongly connected nodes to end up in the
same subset, and nodes that are far apart in the graph to end up in different subsets.
This intuition can be formalized with graph cuts.

Considering two groups V1 and V2, define w(V1,V2)=∑i∈V1 ∑ j∈V2
W(i, j) to be

the total weight of all links connecting V1 to V2. Also, denote by V̄` the complement
of V` in V, such that w(V`, V̄`) is the total weight one needs to cut in order to
disconnect V` from the rest of the graph. Given these definitions, the simplest graph
cut objective function, denoted by cut, is:

cut(P = {V1, . . . ,Vk}) =
1
2

k

∑
`=1

w(V`, V̄`). (2)

The best partition according to the cut criterion is P∗ = argminP cut(P). For
k = 2, solving this problem can be done exactly in O(ne+n2 log(n)) amortized time
using the Stoer-Wagner algorithm [126] and approximated in nearly linear time [68].
Nevertheless, this criterion is not satisfactory as it often separates an individual node
from the rest of the graph, with no attention to the balance of the sizes or volumes of
the groups. In clustering, one usually wants to partition into groups that are “large
enough”. There are two famous ways to balance the previous cost in the machine

4 By definition, a partition P = {V1,V2, . . . ,Vk} of the nodes V is such that ∪`=1,...,kV` = V and
∀` 6= `′,V`∩V`′ = /0
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learning literature5: the ratio cut [143] and normalized cut [121] cost functions,
respectively defined as:

rcut(P) =
1
2

k

∑
`=1

w(V`, V̄`)

|V`|
and ncut(P) =

1
2

k

∑
`=1

w(V`, V̄`)

vol(V`)
, (3)

where |V`| is the number of nodes in V` and vol(V`) = ∑i∈V`
∑ j∈VW(i, j) is the

so-called volume of V`. The difference between them is that ncut favors clusters
of large volume, whereas rcut only considers cluster size—though for a d-regular
graph with unit weights the two measures match (up to multiplication by 1/d). Un-
fortunately, it is hard to minimize these cost functions directly: minimizing these
two balanced costs is NP-hard [139, 121] and one needs to search over the space of
all possible partitions which is of exponential size.

A continuous relaxation. Spectral clustering may be interpreted as a continuous
relaxation of the above minimization problems. Without loss of generality, in the
following we concentrate on relaxing the rcut minimization problem (ncut is
relaxed almost identically). Given a partition P = (V1, . . . ,Vk), let us define

C =

(
z1√
|V1|
| . . . | zk√

|Vk|

)
∈ Rn×k, (4)

where z` ∈ Rn is the indicator vector of V`:

z`(i) =

{
1 if node i ∈ V`,

0 otherwise.
(5)

It will prove useful in the following to remark that, independently of how the par-
titions are chosen, we always have that C>C = I, the identity matrix in dimension
k. With this in place, the problem of minimizing rcut can be rewritten as (see
discussion in [138]):

min
C∈Rn×k

tr
(
C>LC

)
s.t. C>C = I and C as in (4) (6)

To understand why this equivalence holds, one should simply note that

tr
(
C>LC

)
=

k

∑
`=1

1
|V`|

z>` Lz` =
k

∑
`=1

1
|V`|∑i> j

W(i, j)(z`(i)−z`( j))2

=
k

∑
`=1

w(V`, V̄`)

|V`|
= 2 rcut(P).

5 The reader should note that in the graph theory literature, the measure of conductance is preferred
over ncut. Conductance is max` w(V`, V̄`)/w(V`). The two measures are equivalent when k = 2.
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Solving (6) is obviously still NP-hard as the only thing we have achieved is to rewrite
the rcut minimization problem in matrix form. Yet, in this form, it is easier to real-
ize that one may find an approximate solution by relaxing the discreteness constraint
“C as in (4)”. In the absence of the hard-to-deal-with constraint, the relaxed prob-
lem is not only polynomially solvable but also possesses a closed-form solution! By
the Courant–Fischer–Weyl (min-max) theorem, the solution is given by the first k
eigenvectors Uk = [u1,u2, . . . ,uk] of L:

Uk = argmin
C∈Rn×k

tr
(
C>LC

)
subject to C>C = I.

This relaxation is not unique to the combinatorial Laplacian. In the same spirit, the
minimum ncut optimization problem can be formulated in terms of the normal-
ized Laplacian matrix Ln, and the relaxed problem’s solution is given by the first k
eigenvectors of Ln.

A difficulty still lies before us: how do we go from a real-valued Uk to a partition
of the nodes? The two next subsections aim to motivate the use of k-means as a
rounding heuristic. The exposition starts from the simple case when there are only
two clusters (k = 2) before considering the general case (arbitrary k).

2.2.1 The case of two clusters: thresholding suffices

For simplicity, we first consider the case of two clusters. If one constructs a parti-
tioning Pt with V1 = {vi : u2(i) > t} and V2 = {vi : u2(i) ≤ t} for every level set
t ∈ (−1,1), then it is a folklore result that

rcut(P∗)≤min
t

rcut(Pt)≤ 2

√
rcut(P∗)

(
dmax−

λ2

2

)
, (7)

with P∗ = argminP rcut(P) being the optimal partitioning, dmax is the max-
imum degree of any node in V, and λ2 the second smallest eigenvalue of L. The
upper bound is achieved by the tree-cross-path graph constructed by Guattery and
Miller [57]. In an analogous manner, if P∗ = argminP ncut(P) is the optimal
partitioning w.r.t. the ncut cost and every Pt has been constructed by thresholding
the second eigenvector of Ln, then

ncut(P∗)≤min
t

ncut(Pt)≤ 2
√
ncut(P∗). (8)

Inequality (8) can be derived as a consequence of the Cheeger inequality, a key
result of spectral graph theory [32], which for the normalized Laplacian reads:

λ2

2
≤ ncut(P∗)≤min

V

w(V, V̄)
min{w(V),w(V̄)}

≤min
t

ncut(Pt)≤
√

2λ2.

As a consequence, we have
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ncut(P∗)≤min
t

ncut(Pt)≤
√

2λ2 ≤
√

4ncut(P∗) = 2
√
ncut(P∗),

as desired. The derivation of the rcut bound given in (7) follows similarly.

2.2.2 More than two clusters: use k-means

As the number of clusters k increases, the brute-force approach of testing every
level set becomes quickly prohibitive. But why is k-means the right way to obtain
the clusters in the spectral embedding? Though a plethora of experimental evidence
advocate the use of k-means, a rigorous justification is still lacking. The interested
reader may refer to [83] for an example of an analysis of spectral partitioning with-
out k-means.

More recently, Peng et al. [107] came up with a mathematical argument showing
that, if G is well clusterable and we use a k-means algorithm (e.g., [76]) which
guarantees that the identified solution C̃ abides to

f (C̃;X)≤ (1+ ε) f (C∗;X),

where C∗ is the optimal solution of the k-means problem, then the partitioning P̃
produced by spectral clustering when using Ln has ncut cost provably close to
that of the optimal partitioning P∗. In particular, it was shown that, as long as
λk+1 ≥ ck2ncut(P∗), then

ncut(P∗)≤ ncut(P̃)≤ ζ ncut(P∗)

(
1+ ε

k3

λk+1

)
,

for some constants c,ζ > 0 that are independent of n and k (see also [71]). Note that,
using the higher-order Cheeger inequality [83] λk/2 ≤ ncut(P∗), the condition
λk+1 ≥ ck2ncut(P∗) implies

λk+1

λk
≥ ck2

2
= Ω(k2).

Though hopefully milder than this one6, such gap assumptions are very common
in the analysis of spectral clustering. Simply put, the larger the gap λk+1−λk is, the
stronger the cluster structure and the easier it is to identify a good clustering. Besides
quantifying the difficulty of the clustering problem, the gap also encodes the robust-
ness of the spectral embedding to errors induced by approximation algorithms [36].
The eigenvectors of a perturbed Hermitian matrix exhibit an interesting property:

6 To construct an example possibly verifying such a strong gap assumption, consider k cliques of
size k connected together via only k−1 edges, so as to form a loosely connected chain. Even though
this is a straightforward clustering problem known to be easy for spectral clustering algorithms, the
above theorem’s assumption implies λk+1 = Ω(k2ncut(P∗)) = Ω(k) which, independently of n,
can only be satisfied when k is a small (recall that the eigenvalues of Ln are necessarily between 0
and 2).
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instead of being arbitrary, induced changes are localized w.r.t. the eigenvalue axis,
following an inverse square eigenvalue-distance law [89]. More precisely, if ũi is
the i-th eigenvector after perturbation, then the inner products (ũ>i u j)

2 decrease
proportionally with |λi−λ j|2. As such, demanding that λk+1−λk is large is often
helpful in the analysis of spectral clustering algorithms in order to ensure that the
majority of useful information (contained within Uk) is preserved (in Ũk) despite
approximation errors7.

2.2.3 Choice of relaxation

The presented relaxation approach is not unique and other relaxations could be
equally valid (see for instance [17, 24, 112]). This relaxation has nevertheless the
double advantage of being theoretically simple and computationally easy to imple-
ment. Also, justification of spectral clustering algorithms does not only come from
this graph cut perspective and in fact encompasses several approaches that we will
not detail here: perturbation approaches or hitting time considerations [138], a po-
larization theorem [23], consistency derivations [135, 84], etc. Interestingly, recent
studies (for instance [18]) on the Stochastic Block Models have shown that spec-
tral clustering (on other matrices than the Laplacian, such as the non-backtracking
matrix [73], or the Bethe-Hessian matrix [114] or other similar deformed Lapla-
cians [34]) perform well up to the detectability threshold of the block structure.

2.3 Computational complexity considerations

What is the computational complexity of spectral clustering as a function of the
number of points n, their dimension d and the number of desired clusters k? Let us
examine the three steps involved one by one.

The first step entails the construction of a sparse similarity graph from the input
points, which is dominated by the kernel computation and costs O(dn2). In the
second step, given the graph G consisting of n nodes and e edges8, one needs to
compute the spectral embedding (step 2 of Algorithm 1). Without exploiting the
special structure of a graph Laplacian —other than its sparsity that is— there are
two main options:

• Using power iterations, one may identify sequentially each non-trivial eigenvec-
tor u` in time O(e/δ`), where δ` = λ`−λ`−1 is the `-th eigenvalue gap and e is
the number of edges of the graph [136]. Computing the spectral embedding there-

7 Usually, one needs to ensure that ∑i≤k, j>k(ũ
>
i u j)

2/k remains bounded.
8 with e of the order of n if the sparsification step was well conducted
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fore takes O(ke/δ ) with δ =min` δ`. Unfortunately, there exist graphs9 such that
δ = O(1/n), bringing the overall worst-case complexity to O(kne).

• The Lanczos method can be used to approximate the first k eigenvectors in
roughly O(ek+ nk2) time. This procedure is often numerically unstable result-
ing to a loss of orthogonality in the computed Krylov subspace basis. The most
common way to circumvent this problem is by implicit restart [26], whose com-
putational complexity is not easily derived. The number of restarts, empirically,
depend heavily on the eigenvalue distribution in the vicinity of λk: if λk is in an
eigenvalue bulk, the algorithms takes longer than when λk is isolated. We decide
to write the complexity of restarted Arnoldi as O(t(ek+ nk2)) with t modeling
the number of restarts. Note that throughout this paper, t will generically refer to
a number of iterations in algorithm complexities. We refer the interested reader
to [13] for an in-depth discussion of Lanczos methods.

The third step entails solving the k-means problem, typically by using the Lloyd-
Max algorithm to converge to a local minimum of f (C;X). Since there is no guaran-
tee that this procedure will find a good local minimum, it is usually rerun multiple
times, starting in each case from randomly selected centroids Cini. The computa-
tional complexity of this third step is O(tnk2), where t is a bound on the number of
iterations required until convergence multiplied by the number of retries (typically
10).

2.4 A taxonomy of sampling methods for spectral clustering

For the remainder of the chapter, we propose to classify sampling methods aiming
at accelerating one or more of these three steps according to when they sample. If
they sample before step 1, they are detailed in Sec. 3. Methods that assume that the
similarity graph is given or well-approximated and sample between steps 1 and 2
will be found in Sec. 4. Finally, methods that assume that the spectral embedding has
been exactly computed or well-approximated and sample before the k-means step
are explained in Sec. 5. This classification of methods, like all classification systems,
bears a few flaws. For instance, Nyström methods can be applied to both the context
of Sections 3 and 4 and are thus mentioned in both. Also, we decided to include the
pseudo-code of only a few chosen algorithms that we think are illustrative of the
literature. This choice is of course subjective and debatable. Notwithstanding these
flaws, we hope that this taxonomy clarifies the landscape of existing methods.

9 The combinatorial Laplacian of a complete balanced binary tree on k ≥ 3 levels and n = 2k−1
nodes has 1

n ≤ λ2 ≤ 2
n [56].
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3 Sampling in the original feature space

This section is devoted to methods that ambitiously aim to reduce the dimension of
the spectral clustering problem even before the graph has been formed. Indeed, the
naive way of building the similarity graph (step 1 of spectral clustering algorithms)
costs O(dn2) and, as such, is one of the the main computational bottlenecks of
spectral clustering. It should be remarked that the present discussion fits into the
wider realm of kernel approximation, a proper review of which cannot fit in this
chapter: we will thus concentrate on methods that were in practice used for spectral
clustering.

3.1 Nyström-based methods

The methods of this section aim to obtain an approximation Ũk of the exact spectral
embedding Uk via a sampling procedure in the original feature space.

The Nyström method is a well known algorithm for obtaining a rough low rank
approximation of a positive semi-definite (PSD) matrix A. Here is a high level de-
scription of the steps entailed:

Algorithm 3. Nyström’s method
Input. PSD matrix A ∈ Rn×n, number of samples m, desired rank k

1. Let S be m column indices chosen by some sampling procedure.
2. Denote by B=A(S,S)∈Rm×m and C=A(:,S)∈Rn×m the sub-matrices

indexed by S.
3. Let B = QΣQ> be the eigen-decomposition of B with the diagonal of Σ

sorted in decreasing magnitude.
4. Compute the rank-k approximation of B as Bk = QkΣkQ

>
k , where Qk =

Q(:, : k) ∈ Rn×k and Σk = Σ(: k, : k).

Possible outputs:

• A low-rank approximation Ã = CB+C> ∈ Rn×n of A
• A rank-k approximation Ãk = CB+

k C> ∈ Rn×n of A

• The top k eigenvectors of Ãk, stacked as columns in matrix Ṽk ∈ Rn×k,
obtained by orthonormalizing the columns of Q̃k = CQkΣ

−1
k ∈ Rn×k

Various guarantees are known for the quality of Ã depending on the type of
sampling utilized (i.e., how the indices in S are selected in step 1) and the preferred
notion of error (spectral ‖.‖2 vs frobenius ‖.‖F vs trace ‖.‖∗ norm) [54, 77, 50, 148].
For instance:
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Theorem 1 (Lemma 8 for q = 1 in [54]). Let ε ∈ (0,1) and δ ∈ (0,1) and suppose
that S contains the indices of m columns drawn i.i.d. uniformly at random (with or
without replacement). Then:

‖A− Ã‖2 ≤
(

1+
n

(1− ε)m

)
‖A−Ak‖2

holds with probability at least 1−3δ , provided that m≥ 2ε−2µk log(k/δ ); where

µ =
n
k

max
i=1,...,n

‖Vk(i, :)‖2
2

is the coherence associated with the first k eigenvectors Vk of A, and Ak is the best
rank-k approximation of A.

Guarantees independent of the coherence can be obtained for more advanced
sampling methods. Perhaps the most well known method is that of leverage scores,
where one draws m samples independently by selecting (with replacement) the i-th
column with probability pi = ‖Vk(i, :)‖2

2/k.

Theorem 2 (Lemma 5 for q = 1 in [54]). Let ε ∈ (0,1) and δ ∈ (0,1) and suppose
that S contains the indices of m columns drawn i.i.d. with replacement from such a
probability distribution. Then:

‖A− Ã‖2 ≤ ‖A−Ak‖2 + ε
2‖A−Ak‖∗

holds with probability at least 0.8−2δ provided that m≥ O(ε−2k log(k/δ )).

Computing leverage scores exactly is computationally prohibitive since it necessi-
tates a partial SVD decomposition of A, which we are trying to avoid in the first
place. Nevertheless, it is possible to approximate all leverage scores with a multi-
plicative error guarantee in time roughly O(ek log(e)) if A has O(e) non-zero en-
tries. (see Algorithms 1 to 3 in [54]). Many variants of the above exist [77, 78], but
to the best of our knowledge, the fastest current Nyström algorithm utilizes ridge
leverage scores with a complex recursive sampling scheme and runs in time nearly
linear in n [100].

Nyström for spectral clustering. Though initially conceived for low-rank approxi-
mation, Nyström’s method can also be used to accelerate spectral clustering. The
key observation is that Uk, the tailing k eigenvectors of the graph representa-
tive matrix R, can be interpreted as the top k eigenvectors of the PSD matrix
A = ‖R‖2I−R. As such, the span of the k top eigenvectors of Ãk obtained by
running Algorithm 3 on A is an approximation of the span of the exact spectral
embedding. Different variants of this idea have been considered for the acceleration
of spectral clustering [48, 141, 85, 19, 97, 86].

Following our taxonomy, we hereby focus on the case where we have at our
disposal n points pi in dimension d, and the similarity graph has yet to be formed.
The case where the graph is known is deferred to Sec. 4.
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In this case, we cannot run Algorithm 3 on A = ‖R‖2I−R as the graph, and
a fortiori its representative matrix R, has not yet been formed. What we can have
access to efficiently is B = s(K(S,S)) and C = s(K(:,S)), as these require only a
partial computation of the kernel and cost only O(dnm). Note that s is a sparsifica-
tion function that is applied on a subset of the kernel matrix.

The following pseudo-code exemplifies how Nyström-based techniques can be
used to approximate the first k eigenvectors Uk associated with the normalized
Laplacian matrix (i.e., here R = Ln):

Algorithm 3b. Nyström for spectral clustering [85]
Input. The set of points P, the number of desired clusters k, a sampling set S
of size m≥ k

1. Compute the sub-matrices B = s(K(S,S)) ∈ Rm×m and C = s(K(:,S)) ∈
Rn×m, where s is a sparsification function.

2. Let Dr = diag(B1) be the m×m degree matrix.
3. Compute the top k eigenvalues Σk and eigenvectors Qk of D

−1/2
r BD

−1/2
r .

4. Set Q̃k = CD
−1/2
r QkΣ

−1
k .

5. Let Dl = diag(Q̃kΣkQ̃
>
k 1) be the n×n degree matrix.

6. Compute Ũk obtained by orthogonalizing D
−1/2

l Q̃k.

Output: Ũk, an approximation of the spectral embedding Uk.

This algorithm runs in O(nmmax(d,k)) time, which is small when m depends
mildly on the other parameters of interest. Nevertheless, the algorithm (and others
like it) suffers from several issues:

• Alg. 3b attempts to use Nyström’s method on A= 2I−Ln = I+D−
1
2 s(K)D−

1
2

via the exact computation of two sub-matrices of K. In doing so, it makes two
strong (and uncontrolled) approximations: First of all, the sparsification step
(step 1 in Alg. 3b) is applied to the sub-matrices K(S,S) and K(:,S), deviating
from the correct sparsification procedure that takes into account the entire kernel
matrix K. Second, the degree matrix D is never exactly computed as knowing
it exactly would entail computing exactly s(K), which is precisely what we are
trying to avoid. Existing methods thus rely on heuristic approximations of the
degree in order to bypass this difficulty (see steps 2 and 5 of Alg. 3b).

• Since we don’t have direct access to the kernel matrix, we cannot utilize ad-
vanced sampling methods such as leverage scores to draw the sampling set S.
This is particularly problematic if (due to sparsification), matrices B and C are
sparse, as for sparse matrices uniform sampling is known to perform poorly [97].
Techniques that rely on distances between columns do not fair much better.
Landmark-based approaches commonly perform better in simple problems but
suffer when the clusters are non-convex [19]. We refer the reader to the work by
Mohan et al. [97] for more information on landmark-based methods. The latter



Approximating Spectral Clustering via Sampling: a Review 17

work also describes an involved sampling scheme that is aimed at general (i.e.,
non-convex) clusters.

For the reasons highlighted above, the low-rank approximation guarantees accom-
panying the classical Nyström method cannot be directly used here. A fortiori, it is
an open question how much the quality of the spectral clustering solution is affected
by using the centroids obtained by running k-means on Ũk.

Column sampling. Akin in spirit to Nyström methods, an alternative approach to
accelerating spectral clustering was inspired by column sampling low-rank approx-
imation techniques [42, 37].

An instance of such algorithms was put forth under the name of cSPEC (col-
umn sampling spectral clustering) by Wang et al. [141]. Let C = UCΣCV>C be the
singular value decomposition of the n×m matrix C = s(K(:,S)). Then, matrices

Σ̃ =

√
n
m

ΣC and Ũ = CVCΣ+
C

are interpreted as an approximation of the actual eigenvalues and eigenvectors of K
and thus Uk can be substituted by the first k columns of Ũ. This algorithm runs in
O(ndm+nm2).

Authors in [30] propose a hybrid method, between column sampling and the
representative-based methods discussed in Sec. 3.3, where they propose the follow-
ing approximate factorization of the data matrix:

(p1| . . . |pn)' FZ ∈ Rd×n, (9)

where F∈Rd×m concatenates the feature vectors of m sampled points and Z∈Rm×n

represents all unsampled points as approximate linear combinations of the represen-
tatives, computed via sparse coding techniques [82]10. The SVD of D̃−1/2Z, with
D̃ the row-sum of Z, is then computed to obtain an approximation Ũk of Uk. The
complexity of their algorithm is also O(ndm+nm2).

In these methods, the choice of the sample set S is, of course, central and has
been much debated. Popular options are uniformly at random or via better-tailored
probability distributions, via a first k-means (with k = m) pass on P, or via other
selective sampling methods. Also, as with most extensions of Nyström’s method to
spectral clustering, column sampling methods for spectral clustering do not come
with end-to-end approximation guarantees on Uk.

In the world of low-rank matrix approximation the situation is somewhat more
advanced. Recent work in column sampling utilizes adaptive sampling with lever-
age scores in time O(e+ npoly(k)), or uniformly i.i.d. after preconditioning by a
fast randomized Hadamard transform [145, 43]. Others have also used a correlated
version called volume sampling to obtain column indices [37]. Nevertheless, this

10 Authors in [116] have a very similar proposition as [30], adding a projection phase at the begin-
ning to reduce the dimension d (see Sec. 3.4.2). Similar ideas may also be found in [137].
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literature extends beyond the scope of this chapter and thus we invite the interested
reader to consider the aforementioned references for a more in-depth perspective.

3.2 Random Fourier features

Out of several sketching techniques one could a priori use to accelerate spectral
clustering, we focus on random Fourier features (RFF) [110]: a method that samples
in the Fourier space associated to the original feature space. Even though RFFs
have originally been developed to approximate a kernel matrix K in time linear in
n instead of the quadratic time necessary for its exact computation, they can in fact
be used to obtain an approximation Ũk of the exact spectral embedding Uk.

Let us denote by κ the RBF kernel, i.e., κ(t) = exp(−t2/σ2), whose Fourier
transform is:

κ̂(ω) =
∫
Rd

κ(t)exp−iω>t dt. (10)

The above takes real values as κ is symmetric. One may write:

κ(p,q) = κ(p−q) =
1
Z

∫
Rd

κ̂(ω)expiω>(p−q) dω, (11)

where, in order to ensure that κ(p,p) = 1, the normalization constant is set to Z =∫
Rd κ̂(ω)dω . According to Bochner’s theorem, and due to the fact that κ is positive-

definite, κ̂/Z is a valid probability density function. κ(p,q) may thus be interpreted
as the expected value of expiω>(p−q) provided that ω is drawn from κ̂/Z:

κ(p,q) = Eω

(
expiω>(p−q)

)
(12)

Drawing ω from the distribution κ̂/Z is equivalent to drawing independently each
of its d entries according to the normal law of mean 0 and variance 2/σ2. Indeed:
κ̂(ω) = πd/2σd exp(−σ2ω2/4) and Z =

∫
Rd κ̂(ω)dω = (2π)d , leading to

κ̂(ω)

Z
=

(
σ

2
√

π

)d

exp−σ2ω2/4 .

In practice, we draw independently m such vectors ω to obtain the set of sampled
frequencies Ω = (ω1, . . . ,ωm). For each data point pi, and given this set of samples
Ω , we define the associated random Fourier feature vector:

ψi =
1√
m
[cos(ω>1 pi)| · · · |cos(ω>m pi)|sin(ω>1 pi)| · · · |sin(ω>m pi)]

> ∈ R2m, (13)

and call Ψ = (ψ1| · · · |ψn) ∈ R2m×n the RFF matrix. Other embeddings are possi-
ble in the RFF framework, but this one was shown to be the most appropriate to
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the Gaussian kernel [127]. As m increases, ψ>i ψ j concentrates around its expected
value κ(pi,p j): ψ>i ψ j ' κ(pi,p j). Proposition 1 of [127] states the tightness of
this concentration: it shows that the approximation starts to be valid with high prob-
ability for m ≥ O(d logd). The Gaussian kernel matrix is thus well approximated
as K ' Ψ>Ψ. With such a low-rank approximation Ψ of K, one can: estimate
the degrees11, degree-normalize Ψ to obtain a low-rank approximation of the nor-
malized Laplacian Ln and perform an SVD to directly obtain an approximation
Ũk of the spectral embedding Uk. The total cost to obtain this approximation is
O(ndm+nm2). These ideas were developed in Refs. [31, 146] for instance.

As in Nyström methods however, the concentration guarantees of RFFs for K
do not extend to the degree-normalized case; moreover, the sparsification step 1b of
spectral clustering is ignored. Note that improving over RFFs in terms of efficiency
and concentration properties is the subject of recent research (see for instance [81]).

3.3 The paradigm of representative points

The methods detailed here sample in the original feature space and directly obtain
a control on the misclustering rate due to the sampling process. They are based on
the following framework:

1. Sample m so-called representatives.
2. Run spectral clustering on the representatives.
3. Lift the solution back to the entire dataset.

Let us illustrate this with the example of KASP:

Algorithm 4. KASP: k-means-based approximate spectral cluster-
ing [147]
Input. A set of n points P = (p1,p2, . . . ,pn) in dimension d, a number of
desired clusters k, and a number of representatives m.

1. Perform k-means with k = m on P and obtain:
a. the cluster centroids Y = (y1, . . . ,ym) as the m representative points.
b. a correspondence table to associate each pi to its nearest representative

2. Run spectral clustering on Y to get the cluster membership of each yi.
3. Lift the cluster membership to each pi by looking up the cluster member-

ship of its representative in the correspondence table.

Output: k clusters

11 an approximation of the degree di of node vi is ψ>i ψ̄ where ψ̄ = ∑ j ψ j . All degrees can thus be
estimated in time O(nm2).
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The complexity of KASP is bounded by12 O(mdnt +m3). For a summary of
the analysis given in [147], let us consider the cluster memberships given by exact
spectral clustering on P as well as the memberships given by exact spectral cluster-
ing on P̃ = (p1 + ε1, . . . ,pn + εn) where the εi are any small perturbations on the
initial points. Let us denote by Ln (resp. L̃n) the normalized Laplacian matrix of
the similarity graph on P (resp. P̃). The analysis concentrates on the study of the
miss-clustering rate ρ:

ρ =
# of points with different memberships

n
. (14)

The main result, building upon preliminary work in [63], stems from a perturbation
approach and reads:

Theorem 3. Under the assumptions of Theorem 3 in [147]: ρ ≤O
(

k
g2

0
‖Ln− L̃n‖F

)
,

where g0 is a value depending on the spectral gap. Also, under the assumptions of
Theorem 6 in [147], one has, with high probability:

‖Ln− L̃n‖F ≤ O
(

σ
(2)
ε +σ

(4)
ε

)
, (15)

with σ
(2)
ε and σ

(4)
ε the 2nd and 4th moments of the perturbation’s norms ‖εi‖2.

Combining both bounds, one obtains an upper bound on the misclustering rate that
depends on the second and fourth moments of the perturbation’s norms ‖εi‖2. The
“collapse” of points onto the m representative points, interpreted as a perturbation
on the original points, should thus tend to minimize these two moments, leading the
authors to propose distortion-minimizing algorithms, such as KASP. A very similar
algorithm, eSPEC, is described in [141].

3.4 Other methods

3.4.1 Approximate nearest neighbour search algorithms

The objective here is to approximate the nearest neighbour graph efficiently. Even
though these methods are not necessarily based on sampling, we include them in the
discussion as they are frequently used in practice.

Given the feature vectors p1, . . . ,pn ∈ Rd and a query point q ∈ Rd , the exact
nearest neighbour search (exact NNS) associated to P and q is p∗= argminp∈P dist(q,p)
where dist stands for any distance. Different distances are possible depending on the
choice of kernel κ . We will here consider the Euclidean norm as it enters the defini-
tion of the classical RBF kernel. Computing the exact NNS costs O(dn). The goal

12 It is in fact O(mdnt) for step 1, and bounded by O(dm2 +m2k+mk2) for step 2. As n≥ m and
m≥ k, the total complexity is bounded by O(mdnt +m3).
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of the approximate NNS field of research is to provide faster algorithms that have
the following control on the error.

Definition 1. Point p∗ is an ε-approximate nearest neighbor of query q ∈ Rd , if

∀p ∈ P dist(q,p∗)≤ (1+ ε)dist(q,p).

For ε = 0, this reduces to exact NNS.

Extensions of this objective to the k-nearest neighbour goal are considered in the
NNS literature. A k-nearest neighbour graph can then be constructed simply by
running an approximate k-NNS query for each object pi. Thus, approximate NSS
algorithms are interesting candidates to approximate the adjacency matrix of the
nearest-neighbour affinity graph, that we need in step 1 of spectral clustering. Many
algorithms exist, their respective performances depending essentially on the dimen-
sion d of the feature vectors. According to [9], randomized k-d forests as imple-
mented in the library FLANN [98] are considered state-of-the-art for dimension of
around 100, whereas methods based on Balanced Box Decomposition (BBD) [7, 4]
are known to perform well for d roughly smaller than 100. In high dimensions, to
avoid the curse of dimensionality, successful approaches are for instance based on
hashing methods (such as Locality Sensitive Hashing (LSH) [5], Product Quanti-
zation (PQ) [66]) or k-d generalized random forests [9]. Finally, proximity graph
methods, that sequentially improve over a first coarse approximation of the k-NN
graph (or other graph structures such as navigable graphs) have received a large
attention recently and are becoming state-of-the-art in regimes where quality of ap-
proximation primes (see for instance [94, 40, 51, 8]). Such tools come with various
levels of guarantees and computation costs, the details of which are not in the scope
of this chapter.

Experimentally, to obtain an approximate k-NN graph with a typical recall rate13

of 0.9, these algorithms are observed to achieve a complexity of O(dnα) with α

close to 1 (α ' 1.1 in [40] for instance).

3.4.2 Feature selection and feature projection

Some methods work on reducing the factor d of the complexity O(dn2) of the ker-
nel computation via feature selection, i.e., the sampling of features deemed more
useful for the underlying clustering task, or feature projection, i.e., the projection on
usually random subspaces of dimension d′ < d. Feature selection methods are usu-
ally designed to improve the classification by removing features that are too noisy or
useless for the classification. We thus do not detail further these methods as they are
not approximation algorithms per se. The interested reader will find some entries
in the literature via references [35, 60, 149, 25]. Projection methods use random
projections of the original points P on spaces of dimension d′ ∼ logn in order to

13 The recall rate for a node is the number of correctly identified k-NN divided by k. The recall rate
for a k-NN graph is the average recall rate over all nodes.
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take advantage of the Johnson-Lindenstrauss lemma of norm conservation: the ker-
nel computed from the projected features in dimension d′ is thus an approximation
of the true kernel with high probability. We refer to the works [116, 64] for more
details.

4 Sampling given the similarity graph

We now suppose that the similarity graph is either given (e.g., in cases where the
original data is a graph) or has been well approximated (by approximate k-NN
search for instance) and concentrate on sampling-based methods that aim to reduce
the cost of computing the first k eigenvectors of R.

These methods predominantly aim to approximate R by a smaller matrix R̃ of
size m. The eigen-decomposition is done in Rm which can be significantly cheaper
when m� n. In addition, each method comes with a fast way of lifting vectors from
Rm back to Rn (this is usually a linear transformation). After lifting, the eigenvectors
of R̃ are used as a proxy for those of R.

Unlike the previous section where a strong approximation guarantee of the exact
embedding Uk by an efficiently computed Ũk was a distant and difficult goal to
achieve in itself; we will see in this section that the knowledge of the similarity
graph not only enables to obtain such strong approximation guarantees, but also
enables to control how the error on Uk transfers as an error on the k-means cost.

To be more precise, recall (1) defining the k-means cost f (C;X) associated to the
n points X= (x1, . . . ,xn) and a centroid set C. Now, suppose that we have identified
a set of n points X̃ = (x̃1| . . . |x̃n) that are meant to approximate the exact spectral
embedding X. Moreover, let C∗ (resp. C̃∗) be the optimal set of k centroids minimiz-
ing the k-means cost on X (resp. X̃). We will see that several (not all) approximation
methods of this Section achieve an end-to-end approximation guarantee of the form∣∣∣ f (C∗;X)1/2− f (C̃∗;X)1/2

∣∣∣≤ ε,

for some small ε with -at least- constant probability. Such an end-to-end guarantee
is indeed more desirable than a simple guarantee on the distance between Uk and
Ũk: it informs us on the approximation quality of the attained clustering.

4.1 Nyström-based methods

The Nyström-based methods discussed in Sec. 3.1 are also applicable here. Let
us concentrate on the choice R = Ln to illustrate the main ideas. As explained in
Sec. 3.1, the tailing k eigenvectors Uk of Ln, can be interpreted as the top k eigen-
vectors of the PSD matrix A = 2I−Ln. As such, the span of the top-k eigenvectors
of Ãk, span(Ũk), obtained by running Algorithm 3 on A should approximate the
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span of Uk. Now, how does ones goes from Nyström theorems such as Theorem 2
to error bounds on the k-means cost function?

The first step towards an end-to-end guarantee relies on the following result:

Lemma 1 (see the proof of Theorem 6 in [21]). Denote by C̃∗ the optimal centroid
set obtained by solving k-means on the rows of Ũk. It holds that∣∣∣ f (C∗;X)1/2− f (C̃∗;X)1/2

∣∣∣≤ 2‖E‖F , (16)

where E = UkU
>
k − ŨkŨ

>
k .

This means that the error made by considering the optimal k-means solution based
on Ũk (instead of Uk) is controlled by the Frobenius norm of the projector dif-
ference E =UkU

>
k −ŨkŨ

>
k . Furthermore, since14 ‖E‖F ≤

√
2k‖E‖2 and ‖E‖2 =

‖sin(Θ(Uk,Ũk))‖2, we can apply the Davis-Kahan sinΘ perturbation theorem (see
for instance Section VII of [16]) and, provided that σk− σ̃k+1 > 0, obtain:

‖E‖F ≤
√

2k‖E‖2 ≤
√

2k
‖A− Ã‖2

σk− σ̃k+1
,

where {σi} (resp. {σ̃i}) are the singular values of A (resp. Ã) ordered decreas-
ingly15. The final bound is obtained by combining the above with the leverage score
sampling bound given by Theorem 2:

Theorem 4. Let Ũk be the eigenvectors obtained by running Alg. 3 on A = 2I−Ln
(with the leverage score sampling scheme for the m samples S of step 1). Denote by
C̃∗ the optimal centroid set obtained by solving k-means on the rows of Ũk. Then,
for some constant C > 1, we have

∣∣∣ f (C∗;X)1/2− f (C̃∗;X)1/2
∣∣∣≤ 2

√
2k

σk− σ̃k+1

(
σk+1(A)+

Ck log(k/δ )

m

n

∑
j=k+1

σ j

)

with probability at least 0.8−2δ .

Examining the above bound one notices that 2
√

2k σk+1(A)
σk−σ̃k+1

is independent of the
number of samples. The incompressibility of this error term emanates from A being
(in general) different from its best low-rank approximation. On the other hand, all
remaining error terms can be made independent of k and n by setting

m = O

(
k
√

k logk
n

∑
j=k+1

σ j

σk− σ̃k+1

)
.

14 Based on three arguments: (i) for any two matrices M1 and M2 of rank r1 and r2 it holds that
rank(M1 +M2)≤ r1 + r2, (ii) for any matrix M or rank r, ‖M‖F ≤

√
r‖M‖2, and (iii) both Uk

and Ũk are of rank k.
15 Note that, in our setting, A= 2I−Ln and σk = 2−λk.
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This end-to-end guarantee is not satisfactory for several reasons. First of all, it
relies on the assumption σk > σ̃k+1, which is not necessarily true. Moreover,
the Davis-Kahan theorem could in theory guarantee ‖E‖2 ≤ ‖Ak− Ãk‖2/σk and
‖E‖2 ≤‖A− Ãk‖2/σk, which are stronger than the bound depending on ‖A−Ã‖2
that we used. Unfortunately, Nyström approximation theorems do not give controls
on ‖Ak− Ãk‖2 nor on ‖A− Ãk‖2, impeding tighter end-to-end bounds.

4.2 Graph coarsening

Inspired by the algebraic multi-grid, researchers realized early on that a natural way
to accelerate spectral clustering is by graph coarsening [61, 69, 38]. Here, instead
of solving the clustering problem directly on G, one may first reduce it to a coarser
graph Gc consisting of m� n nodes using a multi-level graph coarsening procedure.
The expensive eigen-decomposition computation is done at a lower cost on the rep-
resentative matrix of the small graph and the final spectral embedding is obtained
by inexpensively lifting and refining the result.

In the notation of [92], coarsening involves a sequence of c+1 graphs

G = G0 = (V0,E0,W0) G1 = (V1,E1,W1) · · · Gc = (Vc,Ec,Wc) (17)

of decreasing size n = n0 > n1 > · · ·> nc = m, where each vertex of G` represents
one of more vertices of G`−1. To express coarsening in algebraic form, we suppose
that L(G0) = L is the combinatorial Laplacian associated with G. We then obtain
L(Gc) by applying the following repeatedly

L(G`) = P∓` L(G`−1)P
+
` , (18)

where P` ∈ Rn`×n`−1 is a matrix with more columns than rows, ` = 1,2, . . . ,c is
the level of the reduction and symbol ∓ denotes the transposed pseudoinverse. An
eigenvector ũ ∈ Rm of L(Gc) is lifted back to Rn by backwards recursion

ũ`−1 = P`ũ`,

where ũc = ũ.
Matrices P1,P2, . . . ,Pc are determined by the transformation performed at each

level. Specifically, one should define for each level a surjective map ϕ` : V`−1→V`

between the original vertex set V`−1 and the smaller vertex set V`. We refer to the set
of vertices V (r)

`−1 ⊆V`−1 mapped onto the same vertex v′r of V` as a contraction set:

V (r)
`−1 = {v ∈V`−1 : ϕ`(v) = v′r}

It is easy to deduce from the above that contraction sets induce a partitioning of V`−1
into n` subgraphs, each corresponding to a single vertex of V`.
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Then, for any v′r ∈ V` and vi ∈ V`−1, matrices P` ∈ Rn`×n`−1 and P+
` ∈ Rn`−1×n`

are given by:

P`(r, i) =


1

|V (r)
`−1|

if vi ∈V (r)
`−1

0 otherwise
and P+

` (i,r) =

{
1 if vi ∈V (r)

`−1
0 otherwise.

The preceding construction is the only one that guarantees that every L(G`) will be
the combinatorial Laplacian associated with G` [90].

Note that from a computational perspective the reduction is very efficient and can
be carried out in linear time: each coarsening level entails multiplication by a sparse
matrix, meaning that O(e) and O(n) operations suffice, respectively, to coarsen L
and lift any vector (such as the eigenvectors of L(Gc)) from Rm back to Rn.

4.2.1 Coarsening for spectral clustering

Using coarsening effectively boils down to determining for each ` how to parti-
tion G`−1 into n` contraction sets V (1)

` , . . . ,V (n`)
` , such that, after lifting, the first k

eigenvectors Ũk of L(Gc) approximate the spectral embedding Uk derived from
L. Alternatively, one may also solve the k-means problem in the small dimension
and only lift the resulting cluster assignments [38]. This scheme is computationally
superior but we will not discuss it here as it does not come with any guarantees.

Perhaps the most simple (and common) method of forming contraction sets is by
the heavy edge matching heuristic—originally developed in the multi-grid literature
and first considered for graph partitioning in [69]. This method is derived based
on the intuition that, the larger the weight of an edge, the less likely it will be that
the vertices it connects will reside in different clusters. We should therefore aim to
contract pairs of vertices connected by a heavy edge (i.e., of large weight) first. Let
us consider this case further. By focusing on edges, we basically constrain ourselves
by enforcing that every contraction set V (r)

` contains either two nodes connected by
an edge, or a single node, signifying that said node is chosen to remain as is in the
coarser graph. As such, we can reformulate the problem of selecting contraction sets
at each level as that of selecting the largest number of edges (to attain the largest
reduction), while also striving to make the cumulative sum of selected edge weights
as large as possible (giving preference to heavy edges). This is exactly the maximum
weight matching problem, which can be approximated in linear time [44].

A plethora of numerical evidence motivates the use of matching-based coars-
ening methods, such as the heavy-edge heuristic, for accelerating spectral clus-
tering [69, 38, 115]. From a theoretical perspective, the approximation quality of
matching-based methods was characterized in [92]. Therein, the matching was con-
structed in the following randomized manner:
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Algorithm 5. Randomized edge contraction (one level) [92]
Input. A graph G = (V,E)

1. Associate with each ei j ∈ E a probability pi j > 0.
2. While |E|> 0:

a. Draw a sample ei j from E with probability ∝ pi j.
b. Remove from E both ei j as well as all edges sharing a common endpoint

with it.
c. Construct contraction set (vi,v j).

Output: Contraction sets

The following approximation result is known:

Theorem 5 (Corollary 5.1 in [92]). Consider a graph with bounded degrees di� n
and λk ≤ minei j∈E

{
di+d j

2

}
. Suppose that the graph is coarsened by Algorithm 5,

using a heavy-edge potential such that pi j ∝ wi j. For sufficiently large n, a single
level, and δ > 0,

∣∣∣ f (C∗;X)1/2− f (C̃∗;X)1/2
∣∣∣= O

√1− m
n

δ

∑
k
`=2 λ`

λk+1−λk


with probability at least 1−δ . Above, C̃∗ is the optimal k-means solution when using
the lifted eigenvectors of Lc as a spectral embedding.

We deduce that coarsening works better when the spectral clustering problem is easy
(as quantified by the weighted gap ∑

k
`=2 λ`/(λk+1−λk)) and the achieved error is

linear on the reduction ratio 1−m/n.
There also exist more advanced techniques for selecting contraction sets that

come with stronger guarantees w.r.t. the attained reduction and quality of approx-
imation, but feature running time that is not smaller than that of spectral cluster-
ing [90]. In particular, these work also with the normalized Laplacian and can be
used to achieve multi-level reduction. Roughly, their strategy is to identify and con-
tract sets S ⊂ V for which x(i) ≈ x( j) for all vectors x ∈Uk and vi,v j ∈ S. This
strategy ensures that the best partitionings of G are preserved by coarsening. We
will not expand on these methods here as they do not aim to improve the running
time of spectral clustering.

4.3 Other approaches

In the following, we present two additional approaches for approximately comput-
ing spectral embeddings. The former can be interpreted as a sampling-based method
(but in a different manner than the techniques discussed so far), whereas the latter
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is only vaguely linked to sampling. Nevertheless, we find that both techniques are
very interesting and merit a brief discussion.

4.3.1 Spectral sparsification

This approach is best suited for cases when the input of spectral clustering is directly
a graph16. Differently from the methods discussed earlier, here the aim is to identify
a Laplacian matrix L̃ of the same size as L but with fewer entries. Additionally, it
should be ensured that

1
1+ ε

x>Lx≤ x>L̃x≤ (1+ ε)x>Lx for all x ∈ Rn (19)

for some small constant ε > 0 [125]. Most fast algorithms for spectral sparsification
entail sampling O(n logn) edges from the total edges present in the graph. Different
sampling schemes are possible [124, 72], but the most popular ones entail sam-
pling edges with replacement based on their effective resistance. It should be noted
that though computing all effective resistances exactly can be computationally pro-
hibitive, the effective resistance of edges can be approximated in nearly linear-time
on the number of edges based on a Johnson-Lindenstrauss argument [124].

There are different ways to use sparsification in order to accelerate spectral clus-
tering. The most direct one is to exploit the fact that the eigenvalues λ̃k and eigenvec-
tors Ũk of L̃ approximate, respectively, the eigenvalues and eigenvectors of L up to
multiplicative error. This yields the same flavor of guarantees as in graph coarsening
and ensures that the computational complexity of the partial eigen-decomposition
will decrease when e = ω(n logn). A variation of this idea was considered in [142],
though the latter did not provide a complete error and complexity analysis. Alter-
native approaches are also possible. We refer the interested reader to [136] for a
rigorous argument that invokes a Laplacian solver.

Despite these exciting developments, we should mention that the overwhelming
majority of graph sparsification algorithms remain in the realm of theory. That is,
we are currently not aware of any practical and competitive implementation and thus
retain a measure of skepticism with regards to their utility in the setting of spectral
clustering.

4.3.2 Random eigenspace projection

There also exists approaches that do not explicitly rely on sampling. The key start-
ing point here is that, with regards to spectral clustering, one does not need the
eigenvectors exactly—any rotation of Uk suffices (indeed, k-means is an algorithm
based on distances and rotations conserve distances). Even more generally, consider

16 When one starts from a set of points, it is preferable to sparsify the graph by retaining a constant
number of nearest neighbors for each point. The resulting nearest neighbor graph has already O(n)
edges, which is the smallest possible.
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Ũk ∈ Rn×m with m≥ k and denote:

ε = min
Q∈Q
‖UkIk×mQ− Ũk‖F ,

where Q is the space of m×m unitary matrices and Ik×m consists of the first k rows
of an m×m identity matrix.

The following lemma (which is a generalization of Lemma 1) shows how ε can
be used to provide control on the k-means error:

Lemma 2 (Lemma 3.1 in [95]). Let C̃∗ be the optimal solution of the k-means prob-
lem on Ũk. It holds that17∣∣∣ f (C∗;X)1/2− f (C̃∗;X)1/2

∣∣∣≤ 2ε. (20)

There exists (at least) two approaches to efficiently compute Ũk while control-
ling ε [21, 133] (see also related work in [58]). We will consider here a simple
variant of the one proposed in [133] and further analyzed in [95]: Let G ∈ Rn×m

be a random Gaussian matrix with centered i.i.d. entries, each having variance 1
m .

Further, suppose that we project G onto span(Uk) by multiplying each one of its
columns by an ideal projector Pk defined as

Pk = U

(
Ik 0
0 0

)
U>. (21)

Theorem 6 ([133, 95]). Let C̃∗ be the optimal solution of the k-means problem on
the rows of Ũk = PkG. For every δ ≥ 0, one has∣∣∣ f (C∗;X)1/2− f (C̃∗;X)1/2

∣∣∣≤ 2

√
k
m
(
√

k+δ ), (22)

with probability at least 1− exp(−δ 2/2).

This result means that for an ideal projector Pk, dimension m = O(k2) suffices to
guarantee good approximation (since the error becomes independent of k and n)!
A similar argument also holds when the entries of G, instead of being Gaussian,

17 A remark on the definition of the k-means cost. Note that, here, the lines X̃ of Ũk are points
in dimension m ≥ k, such that the optimal centroid set C̃∗ minimizing the k-means cost on X̃ is a
set of k points in dimension m≥ k. In this context, the notation f (C̃∗;X) is ill-defined: it is a sum of
distances between points that do not necessarily have the same dimension. We abuse notations and
give the following meaning to f (C̃;X). First, consider the matrix form of the k-means cost, as used
in the proofs of Lemmas 1 and 2: f (C;X) = ‖X−CC>X‖2

F , where X = (x1| . . . |xn)
> ∈ Rn×k

and C ∈ Rn×k is the (weighted) cluster indicator matrix associated to the Voronoi tesselation of X
given C: Ci` = 1/

√
s` if data point i belongs to cluster `, and 0 otherwise; where s` is the size of

cluster `. Now, let C̃ ∈ Rn×k be the cluster indicator matrix associated to the Voronoi tesselation
of X̃ given C̃. One writes: f (C̃;X) = ‖X− C̃C̃>X‖2

F .
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are selected i.i.d. from {−
√

3,0,+
√

3} with probabilities {1/6,2/3,1/6}, respec-
tively [1]. This construction has the benefit of being sparser and, moreover, is rem-
iniscent of sampling. It should be noted that in [133], m = O(logn) was deemed
enough because one only wanted that the distance between two rows of Uk was
approximated by the distance between the same two rows of Ũk. There was in fact
no end-to-end control on the k-means error.

The discussion so far assumed that Pk is an ideal projector onto span(Uk). How-
ever, in practice one does not have access to this projector as we are in fact in the
process of computing Uk. One may choose to approximate the action of Pk by an
application of a matrix function h on the representative matrix R [132, 111]. Assum-
ing a point λ∗ in the interval [λk,λk+1) is known, one may select a polynomial [123]
or rational function [65, 91] that approximates the ideal low-pass response, i.e.,
h(λ ) = 1 if λ ≤ λ∗ and h(λ ) = 0, otherwise. The approximated projector P̃k = h(R)
can be designed to be very close to Pk. For instance, in the case of Chebychev poly-
nomials of order c using the arguments of [80, Lemma 1] it is easy to prove that
w.h.p. using h(R) instead of Pk does not add more than O(c−c√n) error in (20).
Furthermore, the operation P̃kG can conveniently be computed in O(mce) time via
this polynomial approximation.

The last ingredient needed for this approximation is λ∗, i.e., a point in the interval
[λk,λk+1). Finding efficiently a valid λ∗ is difficult. An option is to rely on eigen-
count techniques [39, 105, 109] to find one in18 O(ck2(logn)(e+n log(λn/(λk+1−
λk)))) time, which features similar complexity as the Lanczos method (see discus-
sion in Sec. 2.3). Another option is to content oneself with values of λ∗ known only
to be close to the interval [λk,λk+1), but thereby loosing the end-to-end guaran-
tee [133].

5 Sampling in the spectral feature space

Having computed (or approximated) the spectral embedding X = (x1,x2, . . . ,xn),
what remains is to solve the k-means problem on X, in order to obtain k centroids
together with the associated k classes obtained after Voronoi tessellation.

The usual heuristic used to solve the k-means problem, namely the Lloyd-Max
algorithm, is already very efficient as it runs in O(nk2t) time as seen in Sec. 2.3.
Nonetheless, this section considers ways to accelerate k-means even further. In the

18 Proof sketch: Given λ ∈ (0,λn], denote by j the largest integer such that λ j ≤ λ and by P j

the orthogonal projector on U j . Let G ∈ Rn×m′ be a random Gaussian matrix with centered i.i.d.
entries, each having variance 1

m′ and denote by ĵ = ‖P jG‖F . Relying on Theorem 4.1 (and the
following discussion in Section 4.2) of [109] with Eλ = 0, one has with prob. at least 1− ε that
(1−δ ) j ≤ ĵ ≤ (1+δ ) j for all j = 1, . . . ,n provided m′ ≥ 1

δ 2 log n
ε

. Setting δ = 1/(2k+3), gives
w.h.p. that 2k+2

2k+3 j≤ ĵ≤ 2k+4
2k+3 j for all j = 1, . . . ,n provided m′≥O(k2 logn). This implies that w.h.p.

for every j≤ k+1 it must be that round( ĵ) = j, whereas when j > k+1 we have round( ĵ)> k+1.
Note that round( ĵ) is the closest integer to ĵ. By dichotomy on λ ∈ (0,λn], one thus finds a λ∗ in
time O(ck2(logn)(e+n log(λn/(λk+1−λk)))).
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following, we classify the relevant literature in five categories and point towards
representative references for each case. In our effort to provide depth (as well as
breadth) of presentation, the rest of the section details only methods that belong to
the first and last categories.

• Exact acceleration of Lloyd-Max. There exists exact accelerated Lloyd-Max
algorithms, some of them based on avoiding unnecessary distance calculations
using the triangular inequality [59, 101], or on optimized data organization [67],
and others concentrating on clever initializations [6, 104]. The latter concern
sampling and are discussed in Sec. 5.1.

• Approximate acceleration of Lloyd-Max. Approximately accelerating the Lloyd-
Max algorithm has also received attention for instance via approximate nearest
neighbour methods [108], via cluster closure [140], or via applying Lloyd-Max
hierarchically (in the large k context) [103]. An approach involving sampling is
introduced in [119]: it is based on mini-batches sampled uniformly at random
from X. We will not discuss further this method as it does not come with guar-
antees on the cost of the obtained solution.

• Methods involving sampling in the Fourier domain. There are a few sampling-
based heuristics to solve the k-means problem, that are different from the Lloyd-
Max algorithm. For instance, the work in [70] proposes to sample in the fre-
quency domain to obtain a sketch from which one may recover the centroids
with an orthogonal matching pursuit algorithm specifically tailored to this kind
of compressive learning task [55]. These methods are reminiscent of the random
Fourier features sketching approach introduced in Sec. 3.2. We will not discuss
them further.

• Methods involving sampling features. Similarly to ideas presented in Sec. 3.4.2
but here specific to the k-means setting, some works reduce the ambient dimen-
sion of the vectors, either by selecting a limited number of features [20, 3], or by
embedding all points in a lower dimension using random projections [22, 33, 93].
The tightest results to day are a (1+ ε) multiplicative error on the k-means cost
f either by randomly selecting O(ε−2k logk) features or by projecting them on
a random space of dimension O(ε−2 log(k/ε)) (sublinear in k!). The sampling
result is useless in the spectral clustering setting as the ambient dimension of the
spectral features is already k. The projection result could in principle be applied
in our setting, to reduce the cost of the k-means step to O(tnk logk). We will
nevertheless not discuss it further in this chapter.

• Methods involving sampling points. Finally, the last group of existing methods
are the ones that solve k-means on a subset S of X, before lifting back the result
on the whole dataset. We classify such methods in two categories. In Sec. 5.2, we
detail methods that are graph-agnostic, meaning that they apply to any k-means
problem; and in Sec. 5.3 we discuss methods that explicitly rely on the fact that
the features x were in fact obtained from a known graph. We argue that the latter
are better suited to the spectral clustering problem.
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5.1 Clever initialization of the Lloyd-Max algorithm

Recall that the k-means objective on X is to find the k centroids C= (c1, . . . ,ck) that
minimize the following cost function:

f (C;X) = ∑
x∈X

min
c∈C
‖x−c‖2

2. (23)

and that C∗ = argminC f (C;X) is the optimal solution attaining cost f ∗ = f (C∗;X).
Recall also that the Lloyd-Max algorithm (see Algorithm 2) converges to a local
minimum of f , that we will denote by Clm, for which the cost function equals flm =
f (Clm;X). It is crucial to note that the initialization of centroids Cini in the first step
of the Lloyd-Max algorithm, which usually is done by randomly selecting k points
in X, is what determines the distance | f ∗− flm| to the optimal. As such, significant
efforts have been devoted to smartly selecting Cini by various sampling schemes.

As usual, we also face here the usual trade-off between sampling effectively and
efficiently. The fastest sampling method is of course uniformly at random, but it
does not come with any guarantee on the quality of the local minimum Clm it leads
to. An alternative sampling scheme, called k-means++ initialization, is based on the
following more general D2-sampling algorithm.

Algorithm 6: D2-sampling.
Input. X, m the number of required samples

1. Initialize B with any x chosen uniformly at random from X.
2. Iterate the following steps until B contains m elements:

a. Compute di = minb∈B ‖xi−b‖2
2.

b. Define the probability of sampling xi as di/∑i di.
c. Sample xnew from this probability distribution and add it to B.

Output: B a sample set of size m.

k-means++ initialization boils down to running Alg. 6 with m = k to obtain a set
of k initial centroids. Importantly, when the Lloyd-Max heuristic is run with this
initialization, the following guarantee holds:

Theorem 7 ([6]). For any set of data points, the cost flm obtained after Lloyd-Max
initialized with k-means++ is controlled in expectation: E( flm)≤ 8(logk+2) f ∗ .

In terms of computation cost, D2-sampling with m = k runs in O(nkd), that is,
O(nk2) in our setting of a spectral embedding X in dimension k. This work inspired
other initialization techniques that come with similar guarantees and are in some
cases faster [12, 10]. The interested reader is referred to the review [27] for further
analyses on the initialization of k-means.
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5.2 Graph agnostic sampling methods: coresets

The rest of Sec. 5, considers sampling methods that fall in the following framework:
(i) sample a subset S of X, (ii) solve k-means on S, (iii) lift the result back on the
whole dataset X. Sec. 5.2, focuses on coresets: general sampling methods designed
for any arbitrary k-means problem; whereas in Sec. 5.3, we will take into account the
specific nature of the spectral features encountered in spectral clustering algorithms.

5.2.1 Definition

Let S ⊂ X be a subset of X of size m. To each element s ∈ S associate a weight
ω(s) ∈ R+. Define the estimated k-means cost associated to the weighted set S as:

f̃ (C;S) = ∑
s∈S

ω(s)min
c∈C
‖s−c‖2

2. (24)

Definition 2 (Coreset). Let ε ∈ (0, 1
2 ). The weighted subset S is a ε-coreset for f

on X if, for every set C, the estimated cost is equal to the exact cost up to a relative
error:

∀C
∣∣∣∣ f̃ (C;S)

f (C;X)
−1
∣∣∣∣≤ ε. (25)

This is the so-called “strong” coreset definition19, as the ε-approximation is required
for all C. The great interest of finding a coreset S comes from the following fact.
Writing C̃∗ the set minimizing f̃ , the following inequalities hold

(1− ε) f (C∗;X)≤ (1− ε) f (C̃∗;X)≤ f̃ (C̃∗;S)≤ f̃ (C∗;S)≤ (1+ ε) f (C∗;X).

The first inequality comes from the fact that C∗ is optimal for f , the second and last
inequality are justified by the coreset property of S, and the third inequality comes
from the optimality of C̃∗ for f̃ . This has two consequences:

1. First of all, since ε < 1
2 :

f (C∗;X)≤ f (C̃∗;X)≤ (1+4ε) f (C∗;X),

meaning that C̃∗ is a well controlled approximation of C∗ with a multiplicative
error on the cost.

2. Estimating C̃∗ can be done using the Lloyd-Max algorithm on the weighted sub-
set20 S, thus reducing the computation time from O(nk2) to O(mk2).

19 A weaker version of this definition exists in the literature where the ε-approximation is only
required for C∗.
20 Generalizing Algorithm 2 to a weighted set is straightforward: in step 2b, instead of computing
the center of each cluster, compute the weighted barycenter.
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Coreset methods for k-means thus follow the general procedure:

Algorithm 7. Coresets to avoid k-means on X.
Input. X, sampling set size m, and number of clusters k ≤ m.

1. Compute a weighted coreset S of size m using a coreset-sampling
algorithm.

2. Run the Lloyd-Max algorithm on the weighted set S to obtain the set of k
centroids C̃.

3. “Closest-centroid lifting”: classify the whole dataset X based on the
Voronoi cells of C̃.

Output: A set of k centroids C= (c1, . . . ,ck).

Coreset methods compete with one another on essentially two levels: the coreset
size m should be as small as possible in order to decrease the time of Lloyd-Max on
S, and the coreset itself should be sampled efficiently (at least faster than running
k-means on the whole dataset!), which turns out in fact to be a strong requirement.
The reader interested in an overview of coreset construction techniques is referred
to the recent review [99], as well as chapter 2 of this book.

5.2.2 An instance of coreset-sampling algorithm

We focus on a particular coreset algorithm proposed in [11] that builds upon results
developed in [79, 45]: it is not state-of-the-art in terms of coreset size, but has the
advantage of being easy to implement and fast enough to compute. It reads:

Algorithm 8: a coreset sampling algorithm [11].
Input. X, m the number of required samples, t an iteration number

1. Repeat t times: draw a set of size k using D2-sampling. Out of the t sets
obtained, keep the set B that minimizes f (B;X).

2. α ← 16(logk+2)
3. For each b` ∈ B, define B` the set of points in X in the Voronoi cell of b`
4. Set φ = 1

n f (B;X).
5. For each b` ∈ B and each x ∈ B`, define

s(x) =
α

φ
‖x−b`‖2

2 +
2α

φ |B`| ∑
x′∈B`

‖x′−b`‖2
2 +

4n
|B`|

6. Define the probability of sampling xi as pi = s(xi)/∑x s(x)
7. S← sample m nodes i.i.d. with replacement from p and associate to each

sample s the weight ωs =
1

mps
.
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Output: A weighted set S of size m.

Theorem 2.5 of [11] states:

Theorem 8. Let ε ∈ (0,1/4) and δ ∈ (0,1). Let S be the output of Alg. 8 with t =
O(log1/δ ). Then, with probability at least 1−δ , S is a ε-coreset provided that:

m = Ω

(
k4 logk+ k2 log1/δ

ε2

)
. (26)

The computation cost of running this coreset sampling algorithm, running Lloyd-
Max on the weighted coreset, and lifting the result back to X is dominated, when21

n� k, by step 1 of Alg. 6 and thus sums up to O(nk2 log1/δ ).

Remark 1. The coreset sampling strategy underlying this algorithm relies on the
concept of sensitivity [79]. Many other constructions of coresets for k-means are
possible [99] with better theoretical bounds then (26). Nevertheless, as the core-
set line of research has been essentially theoretical, practical implementations of
coreset-sampling algorithms are scarce. A notable exception is for instance the work
in [49] that proposes a scalable hybrid coreset-inspired algorithm for k-means. Other
exceptions are the sampling algorithms based on the farthest-first procedure, a vari-
ant of D2-sampling that chooses each new sample to be argmaxi di instead of
drawing it according to a probability proportional to di. Once S of size m is drawn,
then ∀s ∈ S, each weight ωs is set to be the cardinal of the Voronoi cell associated to
s. Authors in [113] show that such weighted sets computed by different variants of
the farthest-first algorithm are ε-coresets, but for values of ε that can be very large.
For a fixed ε , the number of samples necessary to have a ε-coreset with this type of
algorithm is unknown (see also chapter 3 of this book).

5.3 Graph-based sampling methods

The methods discussed so far in this section are graph agnostic both for the sampling
procedure and the lifting: they do not take into account that, in spectral clustering,
X are in fact spectral features of a known graph.

A recent line of work [133, 95, 52, 53] based on Graph Signal Processing
(GSP) [122, 118] leverages this additional knowledge for accelerating both the sam-
pling and the lifting steps. For the purpose of the following discussion, define by
z` ∈ Rn the ground truth indicator vector of cluster `, i.e., z`(i) = 1 if node vi is in
cluster `, and 0 otherwise. The goal of spectral clustering is, of course, to recover
{z`}`=1,...,k.

21 To be precise, the statement holds if n≥O
(

k4

ε2
logk

log1/δ

)
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Broadly, GSP-based methods can be summarized in the following general method-
ology [133]:

Algorithm 9. Graph-based sampling strategies to avoid k-means on X.
Input. X, m the number of required samples, k the number of desired clusters

1. Choose the random sampling strategy. Either:
a. uniform (i.i.d.) Draw m i.i.d. samples uniformly.
b. leverage score (i.i.d.) Compute ∀xi,p∗i = ‖U>k δi‖2

2/k. Draw m i.i.d.
samples from p∗. (optional:) set the weight of each sample s to 1/p∗s .

c. DPP Sample a few times independently from a DPP with kernel Kk =
UkU

>
k . (optional:) set the weight of each sample s to 1/πs.

2. Run the Lloyd-Max algorithm on the (possibly weighted) set S to obtain
the k reduced cluster indicator vectors zr

` ∈ Rm.
3. Lift each reduced indicator vector {zr

`}`=1,...,k to the full graph either with
a. Least-square Solve (33) with y← zr

`.
b. Tikhonov Solve (34) with y← zr

`.
In both cases, PS should be set to 1

N Im if uniform sampling was cho-
sen, to diag(p∗s1

, . . .p∗sm) if leverage score sampling was chosen, and to
diag(πs1 , . . .πsm) if DPP sampling was chosen.

4. Assign each node j to the cluster ` for which ẑ`( j)/‖ẑ`‖2 is maximal.

Output: A partition of X in k clusters

To aid understanding, let us start by a high-level description of Algorithm 9.
The indicator vectors z` are interpreted as graph signals that are (approximately)
bandlimited on the similarity graph G (see Sec. 5.3.1 for a precise definition). As
such, there is no need to measure these indicator vectors everywhere: one can take
advantage of generalized Shannon-type sampling theorems to select the set S of m
nodes to measure (step 1). Then k-means is performed on S to obtain the indicator
vectors zr

` ∈ Rm on the sample set S (step 2). These reduced indicator vectors are
interpreted as noisy measurements of the global cluster indicator vectors z` on S.
The solutions zr

` are lifted back to X as ẑ` via solving an inverse problem taking
into account the bandlimitedness assumption or via label-propagation on the graph
structure reminiscent of semi-supervised learning techniques (step 3). As the lifted
solutions ẑ` do not have a binary structure as true indicator vectors should have, an
additional assignment step is necessary: assign each node j to the class ` for which
ẑ`( j)
‖ẑ`‖2

is maximal (step 4).
The rest of this section is devoted to the discussion of the three sampling schemes

as well as the two lifting procedures considered in this framework. To this end, we
will first introduce a few graph signal processing (GSP) concepts in Sec. 5.3.1 before
discussing in Sec. 5.3.2 several examples of graph sampling theorems appropriate
to the spectral clustering context.
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5.3.1 A brief introduction to graph signal processing (GSP)

Denote by U = (u1| . . . |un) ∈ Rn×n the matrix of orthonormal eigenvectors of the
Laplacian matrix L, with the columns ordered according to their associated sorted
eigenvalues: 0 = λ1 ≤ λ2 ≤ . . .≤ λn. In the GSP literature [122, 118], these eigen-
vectors are interpreted as graph Fourier modes for two main reasons:

• By analogy to the ring graph, whose Laplacian matrix is exactly the (symmetric)
double derivative discrete operator, and is thus diagonal in the basis formed by
the classical 1D discrete Fourier modes.

• A variational argument stemming from the Dirichlet form can be exploited
to express eigenvectors ui of L as the basis of minimal variation x>Lx =
1
2 ∑i j Wi j [x(i)−x( j)]2 on G and eigenvalues λi as a sum of local variations
of ui, i.e., a generalized graph frequency.

A graph signal z ∈ Rn is a signal that is defined on the nodes of a graph: its i-th
element is associated to node vi. Given the previous discussion, the graph Fourier
transform of z, denoted by z̃, is its projection on the graph Fourier modes: z̃ =
U>z ∈ Rn. The notion of graph filtering naturally follows as a multiplication in the
Fourier domain. More precisely, define a real-valued filter function h(λ ) defined on
[0,λn]. The signal x filtered by h reads Uh(Λ)U>x, where we use the convention
h(Λ) = diag(h(λ1),h(λ2), . . . ,h(λn)). In the following, we will use the following
notation for graph filter operators:

h(L) = Uh(Λ)U>. (27)

For more details on the graph Fourier transform and filtering, their various defini-
tions and interpretations, we refer the reader to [131].

Of interest for the discussion in this chapter, one may define bandlimited graph
signals as linear combinations of the first few low-frequency Fourier modes. Writing
Uk = (u1| . . . |uk) ∈ Rn×k, we have the formal definition:

Definition 3 (k-bandlimited graph signal). A graph signal z∈Rn is k-bandlimited
if z ∈ span(Uk), i.e., ∃ α ∈ Rk such that z = Ukα .

To grasp why the notion of k-bandlimitedness lends itself natually to the approxima-
tion of spectral clustering, consider momentarily a graph with k disconnected com-
ponents and z` ∈ Rn the indicator vector of cluster `. It is a well known property of
the (combinatorial) Laplacian that {z`}`=1,...,k form a set of orthogonal eigenvectors
of L associated to eigenvalue 0: that is, the set of indicator vectors {z`}`=1,...,k form
a basis of span(Uk). Understanding arbitrary graphs with block structure as a pertur-
bation of the ideal disconnected component case, the indicator vectors {z`}`=1,...,k
of the blocks should live close to span(Uk) (in the sense that the difference between
any z` and its orthogonal projection onto span(Uk) is small). This in turn implies
that every z` should be approximately k-bandlimited.

As we will see next, the bandlimitedness assumption is very useful because it
enables us to make use of generalized versions of Nyquist-Shannon sampling theo-
rems, taking into account the graph.
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5.3.2 Graph sampling theorems

The periodic sampling paradigm of the Shannon theorem for classical bandlimited
signals does not apply to graphs without specific regular structure. In fact, a number
of sampling schemes have been recently developed with the purpose of generalizing
sampling theorems to graph signals [117, 29, 134, 109] (see [88] for a review of
existing schemes).

Let us introduce some notations. Sampling entails selecting a set S= (s1, . . . ,sm)
of m nodes of the graph. To each possible sampling set, we associate a measurement
matrix M = (δs1 |δs2 | . . . |δsm)

> ∈ Rm×n where δsi( j) = 1 if j = si, and 0 otherwise.
Now, consider a k-bandlimited signal z ∈ span(Uk). The measurement of z on S
reads:

y = Mz+n ∈ Rm, (28)

where n models measurement noise. The sampling question boils down to: how
should we sample S such that one can recover any bandlimited z given its mea-
surement y? There are three important components to this question: (i) how many
samples m do we allow ourselves (m = k being the strict theoretical minimum)?
(ii) how much does it cost to sample? (iii) how do we in practice recover z from y
and how much does that inversion cost?

There are a series of works that propose greedy algorithms to find the “best” set
S of minimal size m = k that embed all k-bandlimited signals (see for instance [129]
and references therein). These algorithms cost O(nk4) and are thus not competitive
in our setting22. Moreover, in our case, we don’t really need to be that strict on the
number of samples and can allow more than k samples. A better choice is to use
random graph sampling techniques. In the following we consider two types of inde-
pendent sampling (uniform and leverage-score sampling) as well as a more involved
method based on determinantal point processes.

Independent sampling. In the i.i.d. setting, one defines a discrete probability distri-
bution p ∈Rn over the node set V. The sampling set S is then generated by drawing
m nodes independently with replacement from p. At each draw, the probability to
sample node vi is denoted by pi. We have ∑i pi = 1 and write P = diag(p). Un-
der this sampling scheme, the following Restricted Isometry Property holds for the
associated measurement matrix M [109].

Theorem 9. For any δ ,ε ∈ (0,1), with probability at least 1−δ :

(1− ε)‖z‖2
2 ≤

1
m
‖MP−1/2z‖2

2 ≤ (1+ ε)‖z‖2
2 (29)

for all z ∈ span(Uk) provided that

m≥ 3
ε2 (ν

k
p)

2 log
2k
δ

(30)

22 It takes longer to find a good sample than to run k-means on the whole dataset!
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where νk
p is the so-called graph weighted coherence:

ν
k
p = max

i

{
p−1/2

i ‖U>k δi‖2

}
. (31)

This property is important as it says, in a nutshell, that any two different bandlimited
signals will be identifiable post-sampling provided the number of samples is large
enough. The concept of large enough depends on (νk

p)
2: a measure of the interplay

between the probability distribution and the norms of the rows of Uk. In the uni-
form i.i.d. case since pi = 1/n, one has (νk

p)
2 = nmaxi ‖U>k δi‖2

2, which stays under
control only for very regular graphs, but can be close to n in irregular graphs such as
the star graph. The good news is that there exists an optimal sampling distribution
(in the sense that it minimizes the right-hand side of inequality (30)) that adapts to
the graph at hand:

p∗i =
‖U>k δi‖2

2
k

(32)

In fact, in this case, (νk
p∗)

2 matches its lower bound k and the necessary number
of samples m to embed all bandlimited signals drops to O(k logk). The distribution
p∗ is also referred to by the name “leverage scores” in parts of the literature (see
discussion in Sec. 3.1) [43]. As such, i.i.d. sampling under p∗ will be referred to as
leverage score sampling.

Now, for lifting, there are several options.

• If one uses the unbiased decoder

ẑ = argmin
w∈span(Uk)

‖P−1/2
S (Mw−y)‖2

2 (33)

where P
−1/2
S =MP−1/2M>, then the following reconstruction result holds [109]:

Theorem 10. Let S be the i.i.d. nodes sampled with distribution p and M be the
associated sampling matrix. Let ε,δ ∈ (0,1) and suppose that m satisfies (30).
With probability at least 1−δ , for all z ∈ span(Uk) and n ∈ Rm, the solution ẑ
of (33) verifies:

‖ẑ−z‖2 ≤
2√

m(1− ε)
‖P−1/2

S n‖2.

This means that a noiseless measurement of a k-bandlimited signal yields a per-
fect reconstruction. Also, this quantifies how increasing m reduces the error of
reconstruction due to a noisy measurement. Note that this error may be large if
there is a significant measurement noise on a node that has a low probability of
being sampled. However, by definition, this is not likely to happen.

• One can also use a label-propagation decoder reminiscent to semi-supervised
learning techniques [15, 28]:



Approximating Spectral Clustering via Sampling: a Review 39

ẑ = argmin
w∈Rn

‖P−1/2
S (Mw−y)‖2

2 + γ w>g(L)w, (34)

where γ is a regularization parameter, g(L) a graph filter operator as in (27) with
g(λ ) a non-decreasing function. As g is non-decreasing, the regularization term
of (34) penalizes high frequency solutions, that is, solutions that are not smooth
along paths of the graph. Theorems controlling the error of reconstruction are
more involved and we refer the reader to Section 3.3 of [109] for details.

• Other decoders [14, 106] are in principle possible, replacing for instance the `2
Laplacian-based regularization w>g(L)w by `1-regularizers ‖∇w‖1, but they
come with an increased computation cost, lesser guarantees, and have not been
used for spectral clustering: we will thus not detail them further.

Let us discuss the computation costs of the previous sampling and lifting tech-
niques. In terms of sampling time, uniform sampling is obviously the most efficient
and runs in O(k). Leverage score sampling is dominated by the computation of the
optimal sampling distribution p∗ of (32), which takes O(nk) time23. In terms of lift-
ing time, solving the decoder of (33) costs O(nk+mk2). Solving the decoder of (34)
costs O(et) via the conjugate gradient method, where t is the iteration number of the
gradient solver (usually around 10 or 20 iterations suffice to obtain good accuracy
when g(L) = L).

This discussion calls for a few remarks. First of all, these theorems are valid if
we suppose that z is exactly k-bandlimited, which is in fact only an approximation
if we consider z to be the ground truth indicator vectors of the k clusters to detect in
the spectral clustering context. In this case, we can always decompose z as the sum
of its orthogonal projection onto span(Uk) and its complement β : z=UkU

>
k z+β .

(28) becomes y = MUkU
>
k z+n where n now represents the sum of a measure-

ment noise and the distance-to-model term Mβ . The aforementioned theorems can
then be applied to UkU

>
k z. Moreover, note that the decoder of (34) is not only faster

than the other ones in general, it also does not constrain the solution ẑ to be exactly
in span(Uk), which is in fact desirable in the spectral clustering context: we thus
advocate for the decoder of (34).

DPP sampling. Determinantal Point Processes are a class of correlated random
sampling strategies that strive to increase “diversity” in the samples, based on a
kernel K expliciting the similarity between variables. DPP sampling has been used
successfully in a number of applications in machine learning (see for instance [74]).

Denote by [n] the set of all subsets of {1,2, . . . ,n}. An element of [n] could be the
empty set, all elements of {1,2, . . . ,n} or anything in between. DPPs are defined as
follows:

Definition 4 (Determinantal Point Process [74]). Consider a point process, i.e., a
process that randomly draws an element S ∈ [n]. It is determinantal if, ∀ A⊆ S,

23 Note that the complexity is different from the leverage score computation of the Nyström tech-
niques of Sections 3.1 and 4.1 because, here, we suppose Uk known whereas Uk was not known
in the previous sections. With Uk known, computing the leverage scores only entails computing
the normalized energy of each line of Uk.
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P(A⊆ S) = det(KA),

where K ∈ Rn×n, a semi-definite positive matrix 0�K� 1, is called the marginal
kernel; and KA is the restriction of K to the rows and columns indexed by the
elements of A.

The marginal probability πi of sampling an element i is thus Kii. Consider the fol-
lowing projective kernel:

Kk = UkU
>
k . (35)

One can show that DPP samples from such projective kernels are necessarily of size
k. After measuring the k-bandlimited signal z on a DPP sample S, one has the choice
between the same decoders as before (see Eqs. (33) and (34)). For instance:

Theorem 11. For all z ∈ span(Uk), let y = Mz+n ∈ Rk be a noisy measurement
of z on a DPP sample obtained from kernel Kk. The decoder of (33) with P =
diag(π1, . . . ,πn) necessarily enables perfect reconstruction up to the noise level.
Indeed, one obtains:

‖ẑ−z‖2 ≤
1√

λmin
(
U>k M>P−1

S MUk
)‖P−1/2

S n‖2. (36)

Proof. The proof is only partly in [129] and we complete it here. Let us write z =

Ukα . Solving (33) entails computing α̂ ∈Rk s.t. ‖P−1/2
S (MUkα̂−y)‖2

2 is minimal.
Setting the derivative w.r.t. α̂ to 0, and replacing y by MUkα +n, yields:

U>k M>P−1
S MUkα̂ = U>k M>P−1

S MUkα +U>k M>P−1
S n.

Recall that S is a sample from a DPP with kernel Kk: det(MUkU
>
k M>) is thus

strictly superior to 0, which implies that MUk is invertible, which in turn implies
that α̂ = α +(MUk)

−1n. One thus has ‖ẑ−z‖2 = ‖α̂−α‖2 =
∥∥(MUk)

−1n
∥∥

2 =∥∥∥(P−1/2
S MUk)

−1P
−1/2
S n

∥∥∥
2
. Using the matrix 2-norm to bound this error yields

‖ẑ−z‖2 ≤
√

λmax

[(
U>k M>P−1

S MUk
)−1
]
‖P−1/2

S n‖2,

as claimed.

Several comments are in order:

• The particular choice of kernel Kk = UkU
>
k implies that the marginal probabil-

ity of sampling node vi, πi = ‖U>k δi‖2
2, is proportional to the leverage scores

p∗i . The major difference between the i.i.d. leverage score approach and the
DPP approach comes from the negative correlations induced by the DPP. In
fact, the probability of jointly sampling nodes vi and v j in the DPP case is
πiπ j −K2

i j = πiπ j − (δ>i UkU
>
k δ j)

2. The interaction term (δ>i UkU
>
k δ j)

2 will
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be typically large if vi and v j are in the same cluster, and small if not. In other
words, different from the i.i.d. leverage score case where each new sample is
drawn regardless of the past, the DPP procedure avoids to sample nodes contain-
ing redundant information.

• Whereas the leverage score approach only guarantees a RIP with high probability
after O(k logk) samples, the DPP approach has a stronger deterministic guaran-
tee: it enables perfect invertibility (up to the noise level) after precisely m = k
samples. The reconstruction guarantee of (36) is nevertheless not satisfactory:
even corrected by the marginal probabilities PS, the matrix U>k M>P−1

S MUk
can still have a very small λmin, such that reconstruction may be quite sensitive
to noise. Improving this control is still an open problem. In practice, sampling
independently 2 or 3 times from a DPP with kernel Kk, creates a set S of size 2k
or 3k that is naturally more robust to noise.

• Whereas independent sampling is straightforward, sampling from a DPP with ar-
bitrary kernel costs in general O(n3) (see Alg. 1 of [74] due to [62]). Thankfully,
in the case of a projective kernel such as Kk, one can sample a set in O(nk2)
based on Alg. 3 of [130].

6 Perspectives

Almost two decades have passed since spectral clustering was first introduced. Since
then, a large body of work has attempted to accelerate its computation. So, has the
problem been satisfactorily addressed? – or, despite all these works, is there still
room for improvement and further research?

To answer, we must first define what “satisfactorily addressed” would entail. As
we have seen, the prototypical spectral clustering algorithm can be divided in three
sub-problems: the similarity graph computation runs in O(dn2); the spectral embed-
ding computation runs in O(t(ek+nk2)) using an Arnoldi algorithm with t implicit
restarts and assuming that e is the number of edges; and the k-means step runs in
O(tnk2), with t now being a bound on the number of iterations of the Loyd-Max al-
gorithm. Our criteria for evaluating an approximation algorithm aiming to accelerate
one (or more) of these sub-problems are two-fold:

• We ask that the approximation algorithm’s computation cost is effectively lighter
than the cost of the sub-problem(s) it is supposed to accelerate! The ultimate
achievement is an order-of-magnitude improvement w.r.t. n (or e), d and/or k,
especially when the complexity has no hidden constants (i.e., the algorithm is
practically implementable). When such a gain is not possible, a gain on the con-
stants of the theoretical cost is also considered worthwhile.

• The algorithm should come with convincing guarantees in terms of the quality
of the found solution. Heuristics or partially motivated methods do not cut it. We
require that, under mild assumptions, the proposed solution is provably close to
the exact solution. Let us clarify two aspects of this statement further:
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– It is difficult to concretely classify assumptions as mild, but a useful rule of
thump is checking whether the theoretical results are meaningful for the sig-
nificant majority of cases where spectral clustering would be used.

– The control of the approximation error comes in different flavors, that we
detail here from the tightest to the loosest. The best possible error control in
our context is a control over the clustering solution itself, via error measures
such as the misclustering rate. This is unfortunately unrealistic in many cases.
An excellent alternative is the multiplicative error –considered as the gold
standard in approximation theory– over the k-means cost24, ensuring that the
cost of the approximation is not larger than 1+ ε times the cost of the exact
solution. Next comes the additive error over the cost: ensuring that the cost
difference between approximated and exact solutions is not larger than ε . All
these error controls are referred to as end-to-end controls, and represent the
limit of what we will consider a satisfactory error control.

Reviewing the literature, we were surprised to discover that there are rarely any
algorithms meeting fully the proposed criteria: a faster algorithm with end-to-end
control over the approximation error under mild assumptions. Let us revisit one by
one the different approaches presented in Sections 3, 4 and 5 examining them in
light of our criteria for success. In each category of approximation algorithms, we
order the methods according to the power of their error control.

Sampling methods in the original feature space [Sec. 3].

• Representative points methods as described in [147, 63] allow for an end-to-end
control on the miss-clustering rate ρ , which is unfortunately quite loose. The
constants involved in Theorem 3 are in fact undefined –thus potentially large–,
which is problematic knowing that ρ is by definition between 0 an 1. Also, the
theorem’s assumptions include independence of the εi, which is hard to justify
in practice. On the other hand, the computation gain of such methods is very
appealing.

• Feature projection methods, where the dimension d of the original feature space
is reduced to a dimension d′ ≤ d based on Johnson-Lindenstrauss arguments,
come with a multiplicative error control on the pairwise distances in the original
feature space, thus providing a control on the obtained kernel matrix. The impact
of this initial approximation on the final clustering result has not been studied.

• Nyström-inspired methods [48, 85, 19, 97] can be very efficient in practice espe-
cially because they do not need to build the graph. However, precisely because
they do not build the graph, these methods cannot exactly perform two key parts
of the prototypical spectral clustering algorithm: the k-NN sparsification and the
exact degree computation. The partial knowledge and sparsity of the kernel ma-
trix also makes sampling difficult, as using leverage scores sampling is not possi-
ble anymore, whereas most other sampling schemes do not work very well with

24 A control in terms of the k-means cost is usually considered as k-means is the last step of
spectral clustering. Nevertheless, recalling the minimum cut perspective of Sec. 2.2, the control
should arguably be in terms of rcut or ncut costs.
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sparse matrices and come with weak guarantees. To the extent of our knowledge,
there is also no convincing mathematical argument proving that using these meth-
ods will yield a clustering that is of similar quality to that produced by the exact
spectral clustering algorithm.

• Sketching methods such as the Random Fourier Features [110] is yet another
way of obtaining a pointwise multiplicative (1+ ε) error on the Gaussian kernel
computation. RFF enable to compute a provably good low-rank approximation of
the kernel. They nevertheless suffer from the same problems as Nyström-based
techniques: without building the graph, sparsification and degree-normalization
are uncontrolled. In addition, the guarantees on the low-rank approximation of
the kernel do not transfer easily to guarantees of approximation of the spectral
embedding Uk.

• Approximate nearest neighbours methods are numerous and varied, and come
with different levels of guarantees. Practical implementations of algorithms,
however, often set aside theoretical guarantees to gain on efficiency and per-
formances; and comparisons are usually done on benchmarks rather than on the-
oretical performances. In the best of cases, there is a control on how close the
obtained nearest neighbour similarity graph is to the exact one; but with no end-
to-end control.

Spectral embedding approximation methods [Sec. 4].

• Random eigenspace projection is a very fast method and has been rigorously
analyzed [95, 133, 105, 111]. It is true that a successful application depends on
obtaining a good estimate of the k-th eigenvalue, which is very hard when the
k-th eigenvalue gap is relatively small. Nevertheless, our current understanding
of spectral clustering suggests that it only works well when the gap is (at least)
moderately large. As such, though there are definitely situations in which random
eigenspace projection will fail to provide an acceleration, these correspond to
cases where one should not be using spectral clustering in the first place. The
same argumentation can also be used in defense of all methods that come with
mild gap assumptions (see coarsening, and spectral sparsification).

• Simple coarsening methods, such as the heavy-edge matching heuristic [69], have
nearly-linear complexity, seem to work well in practice, and are accompanied by
end-to-end additive error control [92]. Nevertheless, the current analysis of these
heuristics only accounts for very moderate reductions (m ≥ n/2) and thus does
not fully prove their success: in real implementations coarsening is used in a
multi-level fashion resulting to a drastic decrease in the graph size (m =O(n/2c)
for c levels), whereas the end-to-end control only works for a single level.

• Advanced coarsening methods, such as local variation methods [90], come with
much stronger guarantees that allow for drastic size reduction and acceleration.
Yet, thus far, all evidence suggests that finding a good enough coarsening is com-
putationally as hard as solving the spectral clustering problem itself. As a conse-
quence, it is at this point unclear whether these methods can be used to accelerate
spectral clustering.
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• Spectral sparsification techniques come with excellent guarantees in theory: one
may prove that a spectral sparsifier can be computed in nearly-linear time and,
moreover, the latter’s spectrum will be provably close to the original one. Yet, we
have reasons to doubt their practicality. Indeed, current algorithms are very com-
plex, feature impractically large constants, and are only relevant for dense graphs.
In addition, spectral sparsifiers, by definition, approximate the entire spectrum of
a graph Laplacian matrix. However, spectral clustering only needs an approxi-
mation of a tiny fraction of the spectrum. From that perspective, it is reasonable
to conclude that without modification current approaches will not yield the best
possible approximation.

• Nyström-approximation applied directly to the Laplacian matrix is a good option,
especially when combined with leverage score sampling. Nevertheless, an end-
to-end error control has only been partially derived and is not yet satisfactory.

Sampling to accelerate the k-means step [Sec. 5].

• Exact methods to accelerate the Lloyd-Max algorithm, may they be via avoiding
unnecessary distance calculations or via a careful initialization are always useful
and should be taken into account.

• Coresets come with the strongest guarantees: the minimum number of samples
to guarantee a (1+ ε) multiplicative error on the cost function has been well
studied. Nevertheless, practical coreset sampling methods are scarce; and in the
best cases, the sampling cost is of the same order of the Lloyd-Max running cost
itself.

• Graph-based sampling comes with strong guarantees, but not over the k-means
cost: on the reconstruction error based on a k-bandlimited model that is only an
approximation in practice. Moreover, we interpret the reduced indicator vectors
zr
` obtained by running Lloyd-Max on the sampled set S as (possibly noisy) mea-

surements of z` on S. This interpretation currently lacks solid theoretical ground
and impedes an end-to-end control of this approximation method. Nevertheless,
the leverage-score based sampling allows for a reduction in order of magnitude
of the Lloyd-Max running cost.

• Other methods to accelerate k-means are not always appropriate to the spectral
clustering context. Spectral feature dimension reduction is unnecessary in our
context where d = k, sketching methods appropriate to distributed cases where n
is very large are not appropriate neither as the spectral features need centralized
data to be computed in any case.

In practice. The attentive reader will have remarked that, unsurprisingly, the tighter
the error control, the more expensive the computation, and vice versa. Also, al-
though we have put here an emphasis on the approximation error controls, it should
not undermine the fact that methods from the whole spectrum are in practice useful,
depending on the situation at hand, and specifically on the range of values of n, d
and k. In very large d situations, a first step of random projection (or feature selec-
tion if some features are suspected to be too noisy) should be considered. Then, in
situations where the exact computation of the proximity graph is too expensive, one
may resort either to sketching methods or to Nyström-type methods to decrease the
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cost from quadratic to linear in n, and directly obtain an approximation of the spec-
tral embedding without any explicit graph construction. These methods, however,
do not take into account a sparsity constraint on the proximity graph and are usually
rough on the degree correction they make.

The role of the sparsity constraint is not well understood theoretically, but seems
to be important in some practical cases [138]. In such instances, a better option is to
use approximate nearest neighbours methods to create a sparse similarity graph, and
work from there. In extremely large data, say n ≥ 108, the only workable methods
are the representative-based, with, if possible, a first k-means (or compressive k-
means [70]) to reduce n to m ; or, in last resort, a uniform random sampling strategy.

In situations where one has to deal with such a large similarity graph that Arnoldi
iterations are too expensive to compute the spectral embedding (either a graph cre-
ated via approximate nearest neighbours, or if the original data is a graph), projec-
tion methods such as in [133, 21], coarsening methods such as in [90], or Nyström-
based methods are different possibilities.

Sampling methods to accelerate the last k-means step may seem to be a theoret-
ical endeavour given that the Lloyd-Max algorithm is already very efficient. Due to
the quadratic term in k, it is nevertheless in practice useful when k grows large. In
this situation, hierarchical k-means [103] is a nice option. Coresets, because they
are so stringent on the error control, have a hard time actually accelerating k-means,
unless hybrid coreset-inspired methods are envisioned [49]. Finally, graph-based
methods, because they take into account that spectral features are in fact derived
from the graph itself, enable significant acceleration and are well-suited to the spec-
tral clustering context.

Future research. Different directions of research could be envisioned to improve
the state-of-the-art:

• For Nyström-inspired methods in the context of Sec. 3 (directly applied on the
original data) as well as the other methods based on computing a low-rank ap-
proximation of the kernel matrix K, further work is needed to control both the
sparsification and the degree correction, in order to bridge the gap between a
provably good low-rank approximation of K to a provably good low-rank ap-
proximation of R.

• For Nyström methods in the context of Sec. 4 (applied on a known or well-
approximated similarity graph), it would be interesting to extend Theorem 2 (for
instance) to a control over ‖Ak− Ãk‖ instead of ‖A− Ã‖. This would enable a
tighter use of Davis-Kahan’s perturbation theorem in the discussion of Sec. 4.1
and, in fine, a better end-to-end guarantee.

• Projection-based methods of Sec. 4.3.2 currently necessitate to compute a value
λ∗ known to be in the interval [λk,λk+1). The algorithm used to do so is based
on eigencount techniques that turn out to require as much computation time as
the Lanczos iterations needed to compute Uk exactly. One should relax this con-
straint to obtain end-to-end guarantees as a function of the distance between a
coarsely estimated λ∗ and the target interval.



46 Nicolas Tremblay and Andreas Loukas

• The derivation and analysis of randomized multi-level coarsening schemes with
end-to-end guarantees is very much an open problem. We suspect that, by utiliz-
ing spectrum-dependent sampling-schemes akin to leverage-scores one should
be able to achieve results superior to heavy edge-matching in nearly linear time.

• There is an interesting similarity between coreset techniques and the graph-based
sampling strategies discussed in Sec. 5.3 and it would be interesting to investigate
this link theoretically, maybe paving the way to coresets for spectral clustering?

Finally, accelerating the prototypical spectral algorithm depicted in Algorithm
1 should not be the sole objective of researchers in this field. Indeed, taking the
graph cut point-of-view of Sec. 2.2, Algorithm 1 makes three insufficiently moti-
vated choices: (i) To begin with, the sparsification step in Algorithm 1 is not well
understood. Apart from the fact that it is always computationally more convenient
to work with a sparse similarity graph then a dense one, the precise effect of sparsi-
fication on the clustering performance has not been analyzed. (ii) As mentioned in
Sec. 2.2.3, the relaxation employed by spectral relaxation is not unique. Why should
we focus our attention on this one versus another? See for instance [24, 112] for re-
cent alternative options. (iii) Finally, the use of k-means on the spectral features is
not yet fully justified. Most of the end-to-end guarantees presented here compare
the k-means cost of the exact solution to the k-means cost of the approximate solu-
tion. Given that the very use of k-means is not theoretically grounded, this choice
of guarantee is debatable. Other options, such as a control over the rcut or ncut
objectives are possible (as in [96]) and should be further investigated.
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