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Resumo

A indústria de cobrança de portagens foi instituída no século VII com o intuito de financiar

e auxiliar na manutenção de vias públicas através do pagamento de taxas correspondentes ao seu

uso. Contudo, o advento do uso massificado de veículos automóveis, e consequente aumento do

tráfego, obrigou à adaptação desta indústria aos tempos modernos, tendo sido introduzida uma

filosofia de livre trânsito complementar à tradicional paragem para pagamento. A adoção deste

tipo de medida foi possível graças ao desenvolvimento de tecnologias de reconhecimento ótico de

caracteres, que permitem a identificação da matrícula, aliados ao uso de identificadores registados

para cada veículo. Porém, a ausência de paragem implica também a existência de infrações de con-

dutores que circulem com matrículas obscurecidas ou de difícil leitura. Deste modo, é desejável o

uso de métodos complementares de auxílio à identificação dos veículos, caso do reconhecimento

da marca e modelo dos mesmos (MMR).

Os sistemas de reconhecimento ótico de caracteres com o objetivo de identificar matrículas

são já implementados nas soluções concebidas pela Accenture para os seus diversos clientes na

área, tornando estes novos métodos complementares numa adição interessante à robustez dos mes-

mos, de modo a reduzir custos adicionais relacionados com a identificação manual de matrículas

através das imagens captadas. O presente trabalho visou então, em primeira instância, o estabe-

lecimento de uma prova de conceito com um modelo arquitetural que permitisse a integração de

um sistema de reconhecimento de marca e modelo de veículos com os sistemas informáticos pre-

viamente desenvolvidos e que se encontram atualmente em uso por parte dos clientes. Para este

modelo foi também estabelecido um conjunto de requisitos, tanto funcionais como não funcionais,

com o intuito de minorar, tanto quanto possível, perdas no desempenho e fiabilidade dos atuais

sistemas por consequência da introdução deste novo componente de MMR. Os requisitos foram

definidos fazendo uso de uma versão modificada do modelo de qualidade FURPS, segundo as boas

práticas definidas pela equipa de desenvolvimento do Centro de Excelência de Tolling (TCoE) da

Accenture Portugal. Adicionalmente, os requisitos definidos foram sujeitos ao estabelecimento de

prioridades segundo as regras MoSCoW.

A captura de imagens de veículos em movimento e consequente classificação oferece desafios

inerentes à sua complexidade, pelo que foram também efetuadas considerações sobre os fatores de

variabilidade que devem ser tidos em conta aquando da conceção de um sistema MMR. Estes fato-

res foram classificados segundo três áreas principais: propriedades inerentes ao sistema de captura

de imagens (RSE), propriedades do evento de captura da imagem, e propriedades do veículo.
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A arquitetura proposta para um eventual sistema que possa ser passível de integração com

os existentes faz uso da arquitetura dos mesmos, organizando-se em quatro camadas, a saber:

acesso a dados (camada inferior), gestão e regras de negócio, avaliação de resultados e aumento

da base de conhecimento disponível, e correspondência (camada superior). Para a elaboração da

presente prova de conceito, foram deste modo escolhidas tecnologias que permitem a integração

com os sistemas Java previamente existentes sem despender demasiado esforço adicional nessa

integração. Deste modo, foram utilizadas bibliotecas Python para o uso de OpenCV, que permite

o processamento de imagens, e Tensorflow para as atividades relacionadas com machine learning.

O desenvolvimento da prova de conceito para estes sistemas envolveu também o teste de hipó-

teses quanto ao modo mais vantajoso de reconhecimento da marca e modelo dos veículos propri-

amente dita. Para este efeito, foram equacionadas três hipóteses, que se basearam no uso de dois

datasets distintos.

O primeiro conceito abordado consistiu em fingerprinting de imagens associadas a um dataset

desenvolvido na Universidade de Stanford, contendo 16185 imagens de veículos automóveis ligei-

ros em variadas poses, que podem ser divididas segundo 49 marcas e 196 modelos distintos, se for

considerada a distinção dos anos de comercialização dos mesmos. Para o efeito, foi usado o mo-

delo de características AKAZE e testados três métodos distintos para efetuar as correspondências:

força bruta com teste de rácio descrito na literatura (para dois rácios distintos, 0,4 e 0,7), força

bruta com recurso a função de cross-check nativa das bibliotecas usadas, e FLANN. A pertença de

uma imagem a determinada categoria foi então ditada pelo estabelecimento de correspondências

entre os seus pontos-chave e os pontos-chave das imagens do dataset, testando vários algoritmos

de ordenação para aumentar as probabilidades de correspondência com uma imagem pertencente

à mesma classe. Os resultados obtidos demonstraram, no geral, precisões relativamente baixas,

sendo que nenhuma ultrapassou os 20% para o reconhecimento da marca ou modelo dos veículos.

Contudo, dos ensaios efetuados, dois destacaram-se ao conseguir atingir 16,8% de precisão para a

marca e 11,2% para o modelo. Estes ensaios tiveram, de resto, características em comum, sendo

que, em ambos os casos, foi utilizado o método de força bruta com rácio de 0,4. Os métodos de

ordenação de resultados foram, todavia, diferentes, sendo que num dos casos foi usado o valor

máximo de pontos-chave em comum (MV) e no segundo um rácio entre este número de pontos

em comum e o número de pontos-chave existentes (MR). De entre ambos, o ensaio que recor-

reu ao método MR foi considerado estatisticamente mais significativo, dado possuir um valor do

coeficiente de correlação k de Cohen mais elevado em relação a MV.

Os parcos resultados obtidos através deste método levaram à tentativa de adoção de uma abor-

dagem diferente, nomeadamente no que tocava à seleção das imagens que deviam ser comparadas,

uma vez que os fatores de variabilidade identificados na análise se encontravam demasiado pre-

sentes nas imagens do dataset de Stanford. Deste modo, a grelha do veículo foi identificada como

região de interesse (ROI), dados os padrões distintivos inerentes à mesma e a presença do logotipo

identificador da marca à qual pertence o veículo. O objetivo desta nova abordagem residia na iden-

tificação desta ROI de modo a proceder à sua extração a partir da imagem original, aplicando-se
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depois os algoritmos de fingerprinting anteriormente abordados.

A deteção da ROI foi efetuada com recurso a classificadores em cascata, os quais foram testa-

dos com dois tipos de características diferentes: LBP, mais rápidas, mas menos precisas, e Haar,

mais complexas, mas também mais fiáveis. As imagens obtidas através da identificação e subse-

quente recorte foram depois analisadas segundo a presença de grelha, deteção da mesma ou de

outros objetos, bem como o grau de perfeição da deteção efetuada. A determinação da ROI a

recortar foi também avaliada segundo dois algoritmos: número total de interseções entre ROIs

candidatas, e estabelecimento de um limiar de candidatos para uma ROI candidata ser considerada

ou rejeitada (apelidado de min-neighbours). As cascatas foram treinadas com recurso a imagens

não pertencentes ao dataset de Stanford, de modo a evitar classificações tendenciosas face a ima-

gens previamente apresentadas ao modelo, e para cada tipo de característica foram apresentados

dois conjuntos de imagens não correspondentes a grelhas (amostras negativas), que diferiam na

sua dimensão e foram consequentemente apelidadas de Nsmall e Nbig.

Os melhores resultados foram obtidos com o dataset Nsmall, estabelecimento de limiar, e com

recurso a características Haar, sendo a grelha detetada em 81,1% dos casos em que se encontrava

efetivamente presente na imagem. Contudo, esta deteção não era completamente a que seria de-

sejável, uma vez que, considerando deteção perfeita e sem elementos externos, a precisão baixava

para 32,3%. Deste modo, apesar das variadas vertentes em que esta deteção e extração de ROI

foi estudada, foi decidido não avançar para o uso de fingerprinting, devido a constrangimentos de

tempo e à baixa precisão que o sistema como um todo conseguiria alcançar.

A última técnica a ser testada neste trabalho foi o uso de redes neuronais de convolução (CNN).

Para o efeito, e de modo a obter resultados mais fiáveis para o tipo de imagem comumente cap-

turado pelos RSE em contexto de open road tolling, foi usado um novo dataset, consistindo de

imagens captadas em contexto real e cedidas por um dos clientes do TCoE. Dentro deste novo

conjunto de imagens, foi feita a opção de testar apenas a marca do veículo, com essa classificação

a ser feita de forma binária (pertence ou não pertence a determinada marca), ao invés de classi-

ficação multi-classe. Para o efeito, foram consideradas as marcas mais prevalentes no conjunto

fornecido, Opel e Peugeot.

Os primeiros resultados para o uso de CNN revelaram-se promissores, com precisão de 88,9%

para a marca Opel e 95,3% para a Peugeot. Todavia, ao serem efetuados testes de validação cru-

zada para aferir o poder de generalização dos modelos, verificou-se um decréscimo significativo,

tanto para Opel (79,3%) como para Peugeot (84,9%), deixando antever a possibilidade de ter ocor-

rido overfitting na computação dos modelos. Por este motivo, foram efetuados novos ensaios com

imagens completamente novas para cada modelo, sendo obtidos resultados de 55,7% para a marca

Opel e 57,4% para a marca Peugeot. Assim, embora longe de serem resultados ideais, as CNN

aparentam ser a melhor via para um sistema integrado de reconhecimento de veículos, tornando o

seu refinamento e estudo numa solução viável para a continuação de um possível trabalho nesta

área.

Palavras-chave: Portagens, MMR, redes neuronais
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Abstract

For a long time, tolling has served as a way to finance and maintain publicly used roads. In

recent years, however, due to generalised vehicle use and consequent traffic demand, there has

been a call for open-road tolling solutions, which make use of automatic vehicle identification

systems which operate through the use of transponders and automatic license plate recognition. In

this context, recognising the make and model of a vehicle (MMR) may prove useful, especially

when dealing with infractions.

Intelligent automated license plate recognition systems have already been adopted by several

Accenture clients, with this new feature being a potential point of interest for future developments.

Therefore, the current project aimed to establish a potential means of integrating such a system

with the already existing architecture, with requirements being designed to ensure its current reli-

ability and performance would suffer as little an impact as possible.

Furthermore, several options were considered as candidates for the future development of an

integrated MMR solution, namely, image fingerprinting of a whole image, grille selection fol-

lowed by localised fingerprinting, and the use of convolutional neural networks (CNN) for image

classification. Among these, CNN showed the most promising results, albeit making use of images

in limited angle ranges, therefore mimicking those exhibited in captured tolling vehicle images, as

well as performing binary classification instead of a multi-class one. Consequently, further work

in this area should take these results into account and expand upon them, refining these models

and introducing more complexity in the process.

Keywords: MMR, open road tolling, convolutional neural networks
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Chapter 1

Introduction

1.1 Motivation

Traffic congestion constitutes a major problem in urban and suburban areas in both developed and
developing countries, leading to the differentiated application of taxation of road use as a means
of attempting to redirect traffic [1]. This taxation, usually called tolling, can be done manually
or automatically. Manual tolling requires the existence of a toll plaza with dedicated lanes and
booths were either there is an operator handling the transaction or there exists an automated way
of payment, such as debit/credit card or weight-based payment control, usually with no change
available. However, since manual tolling requires that the vehicles stop in order to process each
payment, queuing becomes a problem [2]. Moreover, due to financial, environmental and land use
constraints, building new highways to accommodate for the increasing number of commuting vehi-
cles has ceased to be a viable option [3], and inserting toll plazas into existing highways is a costly
and impractical endeavour [2]. These circumstances lead to the emergence of automated tolling
and intelligent transport systems (ITS), which include electronic toll collection (ETC). A 2014 re-
port by the European Commission stated that 60% of the European charged road infrastructure is
equipped with ETC, counting more than 20 million subscribed road users. The infrastructure used
is different from country to country and, in most cases, non-interoperable technologies coexist
within the European Union (EU) [4].

ETC uses automatic vehicle identification (AVI) to improve efficiency when collecting tolls
from road users, by use of a transponder or on-board unit (OBU), which communicates with a
road-side sensor or equipment (RSE) in order to identify the vehicle with no need for its driver
to provide further authentication [3]. Initially, its implementation relied on adapting existing toll
lanes into mixed lanes (allowing for the use of both ETC and manual toll collection) or converting
them into ETC-only lanes, which brought some advantage in terms of traffic flow regulation.
However, in roads with no taxation implemented, the constraints associated with constructing toll
plazas and dedicated lanes impeded the application of ETC methods as described [5].

In order to bypass these difficulties, the concept of Open-Road Tolling (ORT) arose. ORT
eliminates the need for constructing toll plazas altogether, as well as the need for stopping or
slowing down too much in order for the OBU to be correctly read. The more strict version of ORT
eliminates all vertical structure associated with toll plazas, replacing it with toll gantries from
which hang cameras and devices to read OBU from vehicles in transit [5–7]. ORT was adopted by
the Illinois Tollway in 2004 as part of their Congestion Relief Plan, a response to the increase in
the number of I-PASS (Tollway’s ETC system) transponder users, who were by then responsible
for 40-45% of the total of transactions performed [8].

The non-existence of barriers creates, however, another problem for tolling authorities, since
users who do not have a registered account can freely drive in these highways, incurring in tolling
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violations [9]. In these cases, the standard mode of recognition is through the use of automatic
license plate recognition (ALPR), in which cameras capture images of each vehicle that passes
through the toll gantry. If the vehicle does not carry a valid transponder, the tolling gantries then
run an optical character recognition (OCR) algorithm to detect its license plate number (LPN)
and proceed to file for payment. ALPR is usually dealt with using computer vision techniques,
sometimes aided by machine learning [10,11]. However, even a sophisticated technique like ALPR
can be avoided by using a diverse array of diversionary tactics, such as obscuring the license plate
or failing to notify authorities of a change of address [9, 10]. Another main issue arising from
the use of ALPR is the need for manual image review. Such techniques are indispensable, since,
even if drivers do not intentionally obscure or otherwise tamper with their vehicles’ license plates,
ALPR may not provide an answer with the required degree of confidence. Should such a situation
arise, the dubious image would then be forwarded to a human operator, who would be responsible
for identifying the offending vehicle’s LP whenever possible. This is, therefore, a costly and
time-consuming task, which reduces the profitability of tolling companies using ALPR solutions
[12, 13].

Alternative methods of identifying offending vehicles are, therefore, needed. Among these,
special attention must be paid to the yet unsolved problem of vehicle make and model recognition
(MMR), which can act complementary to ALPR in identifying transgressors [14]. This work aims
to create the basis for a model that can reasonably predict a vehicle’s make and model based on
footage collected from existing cameras in toll gantries.

1.2 Host institution

Accenture LLP is a global company founded in 1951 in the United States of America (US) by
Arthur E. Andersen and Clarence DeLany, under the name Andersen Consulting. Having been
rebranded in 1989 and formally adopting the name "Accenture" in 1991, the company boasted
a headcount of 425,000 collaborators and a revenue of USD 34.9 billion as of November 2017.
Accenture’s headquarters have been established in Dublin, Ireland, since 2009 [15, 16].

Providing services to clients in more than 120 countries and being established in more than 40,
Accenture is constituted by five business units, each with its defined purpose, whose identifying
logos are depicted in Figure 1.1 [17].

• Accenture Strategy: shapes the future at the intersection of business of technology. Re-
sponsible for the definition and reformulation of the clients’ business models in order to
stay competitive.

• Accenture Consulting: transforms businesses through industry expertise and insights. Re-
sponsible for designing and implementing transformative business solutions to improve the
clients’ success in their respective target markets.

• Accenture Digital: creates value through new experiences, new intelligence and new con-
nections. Responsible for enhancing the clients’ digital enterprise capabilities and connec-
tions through the use of digital marketing, mobility and analytics.

• Accenture Technology: powers businesses with cutting-edge solutions using established
and emerging technologies. Responsible for the implementation of technological solutions
that improve the clients’ businesses.

• Accenture Operations: delivers outcomes through infrastructure, security, cloud and busi-
ness process services. Responsible for business improvement by introducing scaling capa-
bilities and improving the clients’ processes, making them more efficient and flexible.
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Figure 1.1: Accenture’s business units. (Adapted from [17].)

In Portugal, Accenture has offices in Lisbon, Oporto and Braga, with its headquarters being
located on the 16th floor of Amoreiras’s Tower 1, situated in Av. Eng. Duarte Pacheco, Lisbon.
Among many other teams and projects also located in Lisbon is Accenture’s Tolling Centre of Ex-
cellence (TCoE, Lisbon Delivery Centre, Amoreiras Plaza, room 7B), where video-based tolling
solutions and platforms are developed for client businesses based both in Portugal and overseas
(USA, Australia). The tolling project’s scope falls in the technology and consulting business units,
with particular emphasis on the former.

The current project was performed in TCoE’s headquarters, under the supervision of its De-
livery Lead and Technology Consulting Senior Manager, Dr. Ricardo Pinto, with the aid of Bruno
Brito, Application Development Specialist, and with Faculty of Sciences’s (FCUL) mentorship be-
ing provided by Prof. Dr. Carlos Lourenço. This work was developed within the scope of FCUL’s
Master’s programme in Informatics Engineering (MEI)’s final project (PEI) course, lasting a total
of nine months, with its practical implementation spanning from September 2017 to June 2018.
Although not directly integrated in any of the formal teams the tolling project is composed by, this
project aims to benefit all of them in the long term, by setting the basis for an additional level of
certainty in vehicle identification for tolling transgressions, which may then be implemented by
each team as they see fit.

1.3 Summary and contributions

This work aimed at the establishment of a proof of concept for the integration of a make and
model recognition into an existing open-road tolling system, through the use of computer vision
and machine learning techniques. To this purpose, the following main objectives were defined for
contributions to the tolling teams:

• Definition of functional and non-functional requirements for the new MMR system, along
with their relative priorities

• Establishment of the quality model to be followed
• Analysis of the degrees of variability to be taken into account when performing MMR
• Proposal for a possible architecture for the system, as well as possible frameworks and

patterns that could be used in its implementation
• Comparison of possible computer vision and machine learning algorithms, and combina-

tions thereof

1.4 Structure of the document

This document is organised as follows:

• Chapter 1 - Introduction: provides information about the scope and problems addressed by
this work, its context, motivation and main goals.

• Chapter 2 - Contextualisation and methodologies: addresses the methodologies involved
in the course of this work and similar others.
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• Chapter 3 - Related work: details works performed by other authors on the topic.
• Chapter 4 - Analysis: details the work planning, quality parameters and requirements.
• Chapter 5 - Design: presents the system architecture and performance indicators.
• Chapter 6 - Implementation and results: describes how the system was implemented and

presents the obtained results.
• Chapter 7 - Discussion and conclusion: provides commentary on the work and its results,

and concludes the work by providing an overview, critical discussion of the work and future
work to be done.



Chapter 2

Contextualisation and methodologies

2.1 The tolling industry

Stretching as far back as the 7th century BC, levies have been applied to road use with the aim
of generating funds to help pay off and maintain the taxed roads [18]. Over the years, with the
development of modern civilisation, the demand for ownership of a private, personal vehicle has
increased to the point of becoming the norm, and therefore travelling demands have also increased
with time. However, since financing new road construction and improvements is increasingly dif-
ficult, the rate of growth of travel demand outstrips the growth of road capacity [1]. Modern tolling
systems continue to leverage the principle of users paying for the construction and maintenance
of the roads they use. However, nowadays tolling is also employed as a means to moderate traffic
congestion or air pollution [18].

Toll roads can be divided into three general systems [19]:

• Open: possessing mainline barrier toll plazas with payment lanes, this system serves as a
single-point access restriction site where all vehicles that intend to use the road are taxed
once. Also known as "barrier toll system".

• Closed: in which users go through entry and exit toll gantries, with both entry lanes and
payment lanes, paying for the distance they travelled on the taxed road. Also known as
"ticket system".

• Open road: with no toll booths, this method relies on electronic collection of levies when a
vehicle passes a strategic point in the road being taxed.

A study published by KPMG International in 2015, which collected data from 43 different
public and private entities in the Americas, Europe and Asia, detailed the relative prevalence of
each payment method used in the surveyed tolling agencies. [20]. These results are shown in
Figure 2.1.
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Figure 2.1: Payment methods used by various tolling agencies, according to KPMG International
(2015). (Retrieved from [20]).

As demonstrated by Figure 2.1, the collection of tolling fees can be done in several different
ways. For instance, payment may be manual, via cash or automatic payment methods (APM).
However, this approach is time-consuming, since it requires the customer to stop in order to make
the payment. Therefore, another possibility lies in the use of on-board units (OBUs) and other
intelligent systems, which allow the registered vehicles carrying them to be detected through a
signal emitted by the unit. The fee is assigned as a transaction to the user the vehicle is registered
to. Although this approach allows for free transit, it also increases the possibility of violations,
since a transgressing vehicle may not be equipped with an OBU [21].

Electronic toll collection (ETC) systems are not, however, limited to the use of on-board units,
relying on a complex set of systems depicted in Figure 2.2 [19].

Figure 2.2: Components of an ETC system according to 4icom and Steer Davis Gleave (2015):
automatic vehicle identification (AVI), automated vehicle classification (AVC), customer service
(CS) and violation enforcement (VE). (Retrieved from [19]).

According to an 4icom and Steer Davis Gleave report published in 2015, from which Figure
2.2 was retrieved, ETC components can be summarised as follows [19]:

• Automatic vehicle identification (AVI): transmission of an identification code between an
in-vehicle device, such as an OBU, and some sort of road-side equipment, or RSE.
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• Automated vehicle classification (AVC): determination of the appropriate vehicle classifica-
tion for toll collection, through examination of factors such as the number of axles, vehicle
length or the height above the front axle.

• Customer service (CS): includes tasks such as the creation and maintenance of customer
accounts, issuing transponders, or accounting.

• Violation Enforcement (VE): enforcing an acceptable level of compliance through the fol-
lowing key elements:

– License plate image capture
– Acquisition of the name and address of the violating party
– Violator payment
– Legal system interfaces (in countries where toll violations are a citable offence)

Video tolling involves the capture of images of vehicle license plates and their recognition,
being also dubbed Automatic Number Place Recognition (ANPR) or Automatic License Plate
Recognition (ALPR). ALPR is used in violation enforcement, both in ensuring a vehicle has paid
their toll and in pursuing non-payers. This system makes use of optical character recognition
(OCR) software, which scans the image and identifies the characters present in the plate. The
plate number is then run against existing databases in order to charge the corresponding vehicle
or identify the offender. This approach allows for the implementation of open-road tolling (ORT)
strategies [4]. However, this approach is dependent on the capacity of the system to accurately
identify the license plate number. As of 2015, the recognition rate of multiple European operators
was of about 85% [19].

2.2 Machine Learning

Machine learning (ML) is a field of study that involves adaptive mechanisms that enable computers
or other machines to learn from experience, by example and by analogy. This kind of system can,
by design and with the right algorithms, improve its learning capabilities over time [22]. ML
is organised around three main foci: task-oriented studies, cognitive simulation and theoretical
analysis [23]. Every instance in a dataset used by a ML algorithm consists in a same set of
features, which can be continuous, categorical or binary [24].

ML can be divided mainly into supervised and unsupervised learning. Supervised learning
requires the existence of a "teacher", normally in the form of data labels corresponding to what is
considered the correct and desirable output. On the other hand, unsupervised data emulates human
brain activity more closely, finding patterns in the data by itself with no external help [22]. One
other form of ML is reinforcement learning, in which an agent must learn its behaviour through
trial and error interactions with a dynamic environment. This environment has a set of pre-defined
states it can assume, similarly to the agent, which can perform an action belonging to a set of
predefined actions. Besides these two sets that constrain and define the system’s behaviour, there
is also a reinforcement signal, commonly discrete and either binary or integer, that represents a
reward (positive) or penalty (non-positive) for an action taken [25]. This third type of ML falls
outside the scope of the present work and will therefore not be further detailed.

2.2.1 Supervised learning

Supervised learning (SML), which may also be called inductive ML, consists in a process of learn-
ing a set of rules from instances, the examples in a training set, creating a classifier that can then
generalise from new instances [24]. In this form of ML, the machine is shown an instance and
outputs a vector of scores, one for each category. The class with the highest score is then consid-
ered to be the predicted one. The training process involves multiple iterations over this output, by
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computing a loss function that measures the error between the desired and obtained outputs for
each instance in the training set, which is optimised by the machine through the modification of a
set of internal adjustable parameters [26].

SML can be subdivided into the following categories [24, 27, 28]:

• Regression: used when the label being predicted is a value in a continuous spectrum.
• Classification: applied when the data is used to predict a category, dealing, therefore, with

discrete values. Can be divided into binary or two-class classification (two categories) or
multi-class classification (more than two categories).

• Anomaly detection: utilised to detect unusual data points. Applicable in contexts such as
fraud detection or security.

2.2.2 Unsupervised learning

Unsupervised learning (UspML) refers to a type of machine learning where the desired output
class is unknown. Therefore, these kind of algorithms aim to analyse the data and identify similar
patterns that can lead to grouping into classes [29].

UspML mainly consists of clustering and dimension reduction algorithms [24, 29]:

• Clustering: divides the input dataset into logical groups of related items.
• Dimension reduction: simplifies a large input dataset by mapping it to a lower dimensional

space.

2.2.3 Deep learning

Conventional ML techniques are limited in their capability of processing data in raw form, ne-
cessitating the emergence of new forms of learning. Representation learning is one such form,
in which a machine fed with raw data can automatically discover the representations needed for
detection or classification [26]. Deep learning is a subcategory of ML representation learning that
focuses on learning features from complex sets of input data. This field focuses on the alliance of
machine learning with the general purpose of artificial intelligence through the use of algorithms
called neural networks [30–32].

Convolutional neural networks (CNN) are a type of neural network model that possesses a
high learning capacity and the ability to incorporate large amounts of prior knowledge about the
domain being studied [33]. These structures draw inspiration from the visual cortex, which shows
specialisation of cell groups in regard to specific regions of the visual field, with these neurons
firing when they perceive a stimuli in the region they are mapped to [34]. To further this analogy,
the basic components of a convolutional neural network are also named neurons, and these CNNs
use different strategies to determine neuron activation, called activation functions. Likewise, each
neuron takes a number of binary inputs, producing a single binary output [35].

CNNs constitute an approach that aims to solve the problems posed in classifying images
which vary vastly. These networks model smaller pieces of information in layers, which are then
combined and processed to obtain a final result. The first layer applies edge detection, with sub-
sequent layers using this information as template to extract further details, such as shapes, or to
model different scales or positions. The last layers match the input images with the templates,
making the final output a weighed sum of the intermediary outputs [32].

A particular characteristic of convolutional neural networks lies in the distribution of its hidden
layers, which are set as three-dimensional, with height, width and depth. Therefore, neurons
belonging to a layer connect only to a subset of neurons in the next one. The purpose of these
hidden layers lies in feature extraction through convolution and pooling layers. A final, fully
connected layer is then responsible for the final output and classification. Convolution layers
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Figure 2.3: General example of the structure of a CNN according to Serengil (2017). (Retrieved
from [36].)

are composed by kernels or filters, square matrices on which matrix multiplication is performed
alongside the given input matrix. The kernels are applied in steps or strides, which determine
the pixel distance between kernel applications as described in Figure 2.4. Padding is also usually
added to the extracted feature map in order to prevent it from shrinking [32, 37].

Figure 2.4: Convolution of a 7 x 7 kernel with stride = 2 as depicted by Deshpande (2016).
(Retrieved from [34].)

After each convolution layer, CNNs typically feature a pooling layer, which is responsible
for reducing the dimensionality in order to help prevent overfitting. The most common pooling
technique consists in keeping the maximum value of each window, thus taking the name max
pooling. The final feature map is performed by the third type of layer, called fully connected layer,
in which neurons have connections to all the activations present in the previous layer, computing
the outcome in the same way a regular neural network would [32, 37].

2.2.4 Performance indicators for machine learning

Let us consider a binary classifier which aims to predict the presence or absence of a desired
property A. Since the presence of A is a desired trait, that would represent the positive class,
whereas the absence of A would be the negative one. However, when the data is run through the
classifier, one of four scenarios can occur [38]:

• A was present and the classifier predicted it as being present. Since the positive class was
predicted correctly, this scenario is a true positive (TP ).

• A was present and the classifier predicted it as being absent. Since the negative class was
predicted incorrectly, this scenario is a false negative (FN ).
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• A was absent and the classifier predicted it as being present. Since the positive class was
predicted incorrectly, this scenario is a false positive (FP ).

• A was absent and the classifier predicted it as being absent. Since the negative class was
predicted correctly, this scenario is a true negative (TN ).

These four scenarios will help inform the indicators presented below [39, 40].

Confusion matrix

A confusion matrix, or contingency table, can be informally considered a table of counts, recording
the amounts of correctly and incorrectly recognised examples for each class. The table is arranged
so that its lines represent the real or expected classes, while the columns represent the classes
actually returned by the classifier. Therefore, all the correctly predicted values will be placed in
the diagonal of the matrix [39]. A general example, with the positive class represented by 1 and
the negative one by 0, can be found in Table 2.1.

Table 2.1: General confusion matrix for a binary classifier.

Predicted
1 0

Real
1 TP FN

0 FP TN

The confusion matrix for a classifier is a powerful tool from which many metrics can be cal-
culated. Moreover, the real and predicted classes are specific cases of an inter-observer agreement
problem, widely studied in statistics. Therefore, in order to properly introduce these problems,
two common definitions must also be introduced. Let N = TP + FP + FN + TN [41, 42]:

• Bias is said to occur when two observers differ in their opinion on the frequency of occur-
rence of a class. The bias index (BI) is then defined as the difference in proportions for the
positive class. Ideally, BI = 0, as can be inferred from Equation 2.1.

BI =
TP + FN

N
− TP + FP

N
=
FN − FP

N
(2.1)

• Prevalence relates to the relative probabilities of the positive and negative classes. The
prevalence index (PI) is hence defined as the difference between these probabilities, taking
values comprised between -1 (when all the results are TN ) and 1 (when all the results are
TP ). This index is defined in Equation 2.2.

PI =
TP − TN

N
(2.2)

The notions of true/false positive/negatives can only exist if a threshold is taken into account.
This threshold or cut-off value (C) decides which values fall into each category of the confusion
matrix as described in Table 2.2 [43].
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Table 2.2: Effect of a cut-off value C in a classifier’s output. (Adapted from [43].)

Predicted probability
above C

(1)
below C

(0)

Real
1 TP FN

0 FP TN

By default, the cut-off value is defined as 0.5, meaning that a classifier will judge a value as
belonging to the positive class if the probability returned for that value is greater or equal than
0.5. Therefore, a classifier willing to accept almost any case as being positive would lower its
threshold. Likewise, augmenting the value of C would mean the classifier would establish more
rigorous patterns for selecting a value as being positive, and therefore the number of negative
classifications would increase [44].

Accuracy and error rate

Accuracy is the most generic and intuitive way of comparing algorithms. Also called classification
rate, this indicator measures the ratio of correct predictions, as defined in Equation 2.3 [45].

ACC =
TP + TN

TP + FP + FN + TN
(2.3)

Although high accuracy can mean a classifier is performing well, this evaluation can only be
trusted when all the other parameters of comparison are the same [46]. In fact, this metric is highly
susceptible to bias and prevalence, being unable to distinguish between the number of correct
labels for different classes [39, 47]. This indicator is sometimes indirectly alluded to through
another one, called error rate. The error rate, or misclassification rate, is a measure of how much
a classifier fails, being defined in Equation 2.4 [48]. This value may be contrasted with the error
rate the classifier would assume if it were to always predict the negative class as a baseline, called
null error rate. However, this comparison does not always predict the best classifier [49].

ER =
FP + FN

TP + FP + FN + TN
= 1−ACC (2.4)

Precision, recall, precision/recall curve and F-score

Precision is an estimate of the predictive value of a label, being usually defined for the positive
values, and can be regarded as a measure of exactness [39, 50]. Sometimes titled confidence or
positive predictive value (PPV), this metric addresses the amount of values predicted as positive
that actually belong to the positive class, as defined in Equation 2.5 [47].

PRC =
TP

TP + FP
(2.5)

By definition, precision focuses only on analysing positive cases, ignoring the negative ones
altogether. Therefore, this metric alone does not suffice to characterise a classifier. Therefore, pre-
cision is usually paired with a second metric, called recall, true positive rate (TPR) or sensitivity,
which is defined in Equation 2.6 [47].

REC =
TP

TP + FN
(2.6)
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Recall is a measure of correctly classified and misclassified positive examples (TP and FN ,
respectively), being a measure of completeness [39, 50]. In practice, this performance indicator
assesses the amount of actual positive values that were predicted as being positive. However, sim-
ilarly to what happens with precision, this metric does not provide measurements for the negative
values [39]. In fact, precision and recall are both unable to detect a change in TN if all the other
elements in the confusion matrix remain the same. This constitutes a problem when the negative
class is also important and well-defined (for instance, a binary classification between male and
female may see either class considered as the positive one). Therefore, Sokolova and Lapalme
(2009) believe that “an appropriate evaluation measure should take into account the classification
of negative examples and reflect the changes in TN when the other matrix elements stay the same”
[40].

One attempt to weigh precision and score as a whole is the definition of a precision/recall
curve [44, 50]. This plot takes into account not only the intuitive inverse relationship the two
metrics share, but the fact that precision is sensitive to the way the data is distributed. Therefore, by
plotting the two variables against each other and comparing them with a baseline determined by the
dataset distribution (y = P

P+N ), some information can be gained about a classifier’s performance
[44, 51]. The main goal of a precision/recall curve is to reside in the upper right hand of its space.
Nevertheless, and although these curves provide visual output, comparing two curves is not easy,
and so this method is best used when complemented by others [51]. Saito and Rehmsmeier (2017)
illustrated how generic perfect curve for a 1:1 positive to negative ratio should look like (Figure
2.5 (a)) and the comparison between two more realistic precision/recall curves (Figure 2.5 (b)),
where the comparison between two curves is relatively easy, since classifier A (in red) clearly
outperforms classifier B (in blue) [52].

Figure 2.5: Precision/recall curve samples by Saito and Rehmsmeier (2017). (a) Ideal curve for
a 1:1 positive to negative ratio. (b) Comparison between two classifiers where classifier A (red
curve) outperforms classifier B (blue curve). (Adapted from [52]).

It should be noted that this curve is threshold-free, being plotted across a range of cut-off
values and showing model-wide behaviour patterns. Moreover, intermediate values between two
points A and B pertaining to this curve cannot be obtained through linear interpolation, needing
to follow Equation 2.7 [44, 52].
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y =
TPA

+ x

TPA
+ x+ FPA

+
FPB

−FPA

TPB
−TPA

x
, 0 ≤ x ≤ |TPB

− TPA
| (2.7)

Another way of assessing precision and recall is by computing a new indicator. The F -score
or F -measure is a harmonic mean of precision and recall that attempts to unite both indicators
into a sole one that attempts to translate the relationship between the positive labels and the labels
predicted by a classifier [40]. Since different models might benefit more from one of the indicators
than the other, this harmonic mean may be weighted by a parameter β such that β ≥ 0. This
general formula for the F -score is described in Equation 2.8 [53].

F -score = (1 + β2)
PRC ×REC
β2PRC +REC

=
(1 + β2)TP

(1 + β2)TP + β2FN + FP
(2.8)

Depending on the chosen β, this score may favour either metric as follows: [53]

• β < 1: F becomes precision-oriented.
• β > 1: F becomes recall-oriented.
• β = 1: F is the exact harmonic mean between precision and recall, with both contributing

equally. In this case, F takes the special denomination F1 score, defined in Equation 2.9.
This is the most widely used form of F -score in the literature.

F1 score = 2
PRC ×REC
PRC +REC

(2.9)

The F1 score is a proportion of specific agreement for the positive class [47]. Since it is a
similarity measure, its ideal value is 1, denoting maximum similarity. In contrast, an F1 score of
0 indicates complete dissonance between real and predicted values. However, despite its being a
metric indicator, it has a number of disadvantages. For instance, it inherits the flaws inherent to
accuracy, precision and recall in their susceptibility to bias, focuses only on one class and doesn’t
average well in real situations. F -scores also assume that the real and predicted sets are identically
distributed [54].

Sensitivity, specificity and ROC curve

As stated above, a classifier’s recall can also be called sensitivity or true positive rate (TPR). These
two alternative denominations are usually employed when this measure is used in conjunction
with another, called specificity. This indicator measures how effectively a classifier identifies
negative labels, being synonymous with a classifier’s true negative rate (TNR) and defined as seen
in Equation 2.10. Conversely, the false positive rate (FPR or fallout) can also be defined as shown
in Equation 2.11 [40].

SPC =
TN

TN + FP
(2.10)

FPR =
FP

TN + FP
= 1− SPC (2.11)

The receiver operating characteristic (ROC) curve describes the inherent detection character-
istics of a classifier by letting the receiver of the test information operate at any point of the curve



Chapter 2. Contextualisation and methodologies 14

through the choice of an appropriate threshold, hence its name [46]. This curve is built by plotting
the false positive rate (FPR) along the x-axis and the TPR along the y-axis [55]. Therefore, this
plot shows the trade-off between sensitivity and specificity, as shown in Figure 2.6 [44].

Figure 2.6: ROC curve as explained by Engelman et al. (2013). The term hit rate is synonymous
with true positive rate and false alarm rate is the same as the false positive rate. (Retrieved from
[43]).

As Figure 2.6 shows, ROC curves have a distinctive baseline in the y = x axis, corresponding
to the performance of a random or naïve classifier. [43] Conversely, an ideal classifier would pass
through the point (0, 1), indicating the absence of misclassification [56]. Nevertheless, any ROC
curve must pass through two specific points. The first, at (0, 0), corresponds to the case where
the cut-off value is highest and all cases are considered negative. On the other hand, these curves
also include (1, 1), since setting the threshold at its lowest level will cause all the values to be
considered positive [46].

A property of ROC curves is their insensitivity to class distribution [56]. This means that,
unlike precision/recall curves, these curves may overestimate the performance in skewed datasets.
Another difference is the interpolation between values, which is linear for ROC curves [44].

The area under a ROC curve (AUC) can be translated into the classifier’s ability to avoid false
classification [40]. ROC AUC can also be interpreted as the average power of the tests corre-
sponding to all possible cut-off values C, being is 0.5 for a random model with no discriminative
power and 1.0 for a perfect model [43]. The area under the curve is most easily estimated by using
trapezoidal integration [57, 58].

Cohen’s kappa and inter-rater agreement

The kappa (or κ) statistic was introduced by Cohen (1960) to measure the degree of concor-
dance between two raters in a binary classification task, taking into account agreement expected
by chance [42, 59]. When translated into machine learning terminology, besides the observed
concordance (p0) given by a classifier’s accuracy, a second, more intricate term pe is introduced
to account for chance agreement. Numerous ways of estimating pe are described in the litera-
ture, generating different notions for the kappa statistic [41]. However, Cohen assumed that the
disagreement between different categories would be equally weighted, with the order they were
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presented in being irrelevant [42]. Moreover, these categories would have different distributions
that could be estimated as the products of the corresponding marginal coefficients of the confusion
matrix [59]. Cohen’s kappa can hence be described by Equation 2.12 [60].

κ =
p0 − pe
1− pe

(2.12)

where
p0 = ACC and pe = pPOS + pNEG

pPOS =
(TP + FN )

TP + FP + FN + TN
× (TP + FP )

TP + FP + FN + TN

pNEG =
(TN + FP )

TP + FP + FN + TN
× (TN + FN )

TP + FP + FN + TN

The Cohen’s kappa score agreement can be analysed as per Landis and Koch (1977) [60]:

• κ ≤ 0.00: Poor
• 0.01 ≤ κ ≤ 0.20: Slight
• 0.21 ≤ κ ≤ 0.40: Fair
• 0.41 ≤ κ ≤ 0.60: Moderate
• 0.61 ≤ κ ≤ 0.80: Substantial
• 0.81 ≤ κ ≤ 1.00: Almost perfect

However, the kappa statistic has some inherent flaws. Feinstein and Cicchetti (1990) identified
two problems they termed as “paradoxes”. Firstly, high values of concordance can yield low values
of κ. Moreover, asymmetric and imbalanced tables tend to have a higher κ than perfectly balanced
and symmetric ones [42]. These two paradoxes occur because the statistic is affected by both bias
and prevalence issues [41]. Kappa can hence be adjusted for prevalence and bias as described in
Equation 2.13, taking the name PABAK (prevalence-adjusted bias-adjusted kappa) or weighted
relative accuracy [47].

PABAK = 2× p0 − 1 = 2×ACC − 1 (2.13)

Moreover, Cohen’s kappa score can also be influenced by the maximum κ achievable for the
classifier, described in Equation 2.14. This value (κmax) can be translated into the extent to which
the raters’ ability to agree is constrained by pre-existing factors that result in unequal marginal
totals and may explain low κ scores due to these marginal totals instead of them being directly
caused by low concordance [42].

κmax =
p0min − pe

1− pe
(2.14)

where

p0min = min(
TP + FP

N
,
TP + FN

N
) +min(

TN + FN

N
,
TN + FP

N
)

Another, albeit less generic, statistic for inter-rater agreement is Matthews correlation coef-
ficient (MCC), which is calculated from all four values of the confusion matrix [44]. Varying
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between -1 and +1, this coefficient measures the way normalised variables tend to have the same
sign and magnitude. MCC applies to binary classification only, being described in Equation 2.15
[61].

MCC =
TP × TN − FP × FN√

(TP + FP )× (TP + FN )× (TN + FP )× (TN + FN )
(2.15)

Root mean square error and mean average error

Classifier evaluation is not solely dependent on confusion matrix-based metrics. One of the most
widely used error measures in academia is the root mean square error, or RMSE. This indicator is
a dimensioned measure, expressing average prediction error in the units of the variable of interest
[62, 63]. The squaring of each individual error is a means to remove the sign and take only the
magnitude of the values into account, as shown in Equation 2.16 [62].

RMSE =

√∑N
i=1(xireal − xipredicted)2

N
(2.16)

An alternative to the use of RMSE is the mean average error, or MAE, which is conceptually
simpler to understand, since it averages the unaltered magnitude of each error and does not take
the root of N as a factor [62]. This metric is displayed in Equation 2.17 [62, 63].

MAE =

∑N
i=1 |xireal − xipredicted |

N
(2.17)

2.3 Computer Vision

Computer vision (CV) is a field within computer science that can be defined as the process of
using machines to understand and analyse images. Unlike computer photography, the contents
of an image are of paramount importance, with the focus residing not the image itself, but on
the interpretation of its context. The main objectives for CV can be described on a biological
and engineering level, since this field aims not only to establish computational models of the
human visual system, but also to build autonomous systems that either perform the same tasks
as this system, or surpass its capabilities [64, 65]. This technology implements deep learning
techniques which aid in building functions such as image classification, object detection, tracking
and image manipulation. However, CV still faces a number of complex challenges nowadays, such
as differing light conditions, zoom noise, image angles and motion, background clutter or even the
existence of variations of the same object, such as different types of cars. In fact, computer vision
plays a considerable role in the automotive industry, both from devices installed in the vehicles
themselves (such as sensors and cameras), as well as from external sources, which can help ensure
the vehicle’s compliance with parking or tolling situations [31].

2.3.1 Image fingerprinting

The distinction of digital content is a major concern when it comes to copyright laws, in order
to detect improper or unsanctioned use of said content. In order to identify images, two main
approaches have been considered: watermarking, which means adding information to the content
of the object in order to identify it, and fingerprinting, or extracting content-based signatures from
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an object [66]. Drawing a parallel to how human fingerprints uniquely identify an individual,
Boneh and Shaw (1995) first attempted to define digital fingerprints using a terminology that
defined a mark as a bit of information encoded in an object, and a fingerprint as a collection of
such marks. [67]. Retrieving a signature from an image can be achieved by using techniques
similar to the concept of locality-sensitive hashing (LSH), which differs from normal hashing in
that similar items will have similar hashes [66, 68].

Image content fingerprinting is closely associated with the field of object recognition, aiming
to identify image duplicates. In order for this identification to occur, image features have to be
identified. These features correspond to properties or attributes of an image. Image features can
be classified into three main categories: edge, corner and region features [69, 70].

2.3.2 Edge detection

Edges are a section of an image that represent information about its contours, being therefore one
of the principal contributors of information about an image. An edge is defined as a change in the
colour or brightness or an oriented localized change in intensity of an image, and can belong to
one of four types (step edge, ramp edge, roof edge or line edge, sometimes also called bar edge),
as described in Figure 2.7. [71–73].

Figure 2.7: Edge types as described by Senthilkumaran and Rajesh (2009). (a) Step edge (b) Ramp
edge (c) Line edge (d) Roof edge. (Retrieved from [72]).

Edge detection (ED) is a process that simplifies the analysis of images by reducing the amount
of data to be processed, while at the same time preserving useful structural information about
object boundaries [74]. ED is often the first step undertaken in image segmentation, transforming
images into simpler edge images by taking advantage of changes of grey tones in the original ones
[72].

ED consists of three main steps [73]:

1. Filtering: in the filtering stage, a filter is applied in order to remove or reduce noise in the
image [73]. It should be noted, however, that there is a trade-off between edge strength and
noise reduction, since more filtering results in loss of strength [72].

2. Enhancement: this step aims to improve the quality of the digital image, sharpening it [73].
The purpose of this sharpening is the facilitation of the process of determining changes in
intensity in the neighbourhood of a point, emphasising pixels where there appears to be a
significant change. This stage is usually performed by computing the gradient magnitude
[72].

3. Detection: this phase’s objective is to determine which of the obtained points are actually
edge points, since many points in an image have a non-zero value for the gradient, and not
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all are edge points. Thresholding is frequently used for detection [72, 73].

Moreover, ED can be subdivided into two main types: gradient-based and Laplacian-based
[71]. Gradient-based edge detection works by looking for the maximum and minimum in the first
derivative. Examples of use of this method include the Sobel, Prewitt and Roberts edge detectors
[75]. Laplacian-based ED, however, takes this one step further, detecting edges by calculating
zero-crossings in the second derivative of the image in order to further highlight edge locations
[76]. This type of detector, which is sometimes called Laplacian of Gaussian (LOG) includes
the Marr-Hildreth and Canny edge detectors, the last of which is the most commonly used edge
detection method [75].

Canny edge detection

Canny edge detection (CED) was primarily proposed by J. Canny (1986), who defined a detection
operator based on the maxima of Gaussian-smoothed images [74]. Canny assumed the edge to be
detected as being a step edge subject to white Gaussian noise [50]. The Gaussian filter used by
CED works by eliminating noise from the image, enabling clearer edge detection [74].

In his original work, Canny defined three main criteria for CED that aimed to posit it as an
improvement over other ED algorithms. The first and most obvious criterion considered was a
low error rate, minimising the responses to non-edges and maximising the detection of actual
edges. Secondly, Canny intended that his improved detection method have good edge localisation,
meaning that the distance between the pixels considered as edge pixels and the edge itself should
be minimal. The last criterion applied was single response, in that there should be one and only
one response for an edge [74, 76, 77].

The CED algorithm comprises the following steps [73, 75, 77]:

1. Smoothing the image: this first stage is accomplished with the application of a Gaussian
filter.

2. Computing the magnitude: the next step consists of finding the gradient magnitude and
orientation.

3. Applying non-maximal suppression: the third step takes the gradient magnitude and ap-
plies non-maximal suppression to it, hence converting all the points that are not maxima to
zero.

4. Thresholding: next, the hysteresis thresholding algorithm is used to detect and link edges
to one another. Hysteresis is a method that makes use of two thresholds, one high and the
other low.

5. Edge tracking: finally, the final edges are determined by suppressing all edges that are not
connected to a very certain and strong edge [73, 76].

Sobel edge detection

The Sobel edge detection method consists of a pair of 3 x 3 convolution kernels, which differ by a
rotation of 90◦, as shown in Equation 2.18 [76]:

Gx =

−1 0 +1

−2 0 +2

−1 0 +1

Gy =

+1 +2 +1

0 0 0

−1 −2 −1

 (2.18)

The kernels represented in Equation 2.18 respond maximally to edges that run either vertically
or horizontally to the pixel grid. These masks are slid over the image, with calculations being
made against a square of pixels at a time in order to calculate the gradient of the image in each
point. Edges are then identified as the areas that represent strong intensity contrasts [73, 76].
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2.3.3 Corner detection

Corners are one of the most intuitive types of feature point, being image points that show a strong
2D intensity change and can thus be easily distinguished from neighbouring points [78]. Corner
detection is used as the first step of many vision tasks such as SLAM (simultaneous localisation
and mapping), tracking, localisation, image matching and recognition [79]. The detection of these
localised isolated events must obey three main criteria, listed below [78, 80]. It should be noted
that the first criterion gives a measure of detection, whilst the second provides a way to determine
localisation, which makes them conflicting since good detection can lead to poor localisation [80].

1. Consistency: if an algorithm seeks to use corners as features, it must detect them consis-
tently. Detected positions should be insensitive to the variation of noise, nor should they
move when multiple images are acquired.

2. Accuracy: corners should be located precisely or as close as possible to their correct posi-
tion, since errors in location are magnified in subsequent steps.

3. Complexity: real-time jobs require speed, which favours corner detection algorithms with
reduced algorithmic complexity.

Feature point and corner detectors can be divided into three main groups: contour-based,
intensity-based and parametric [78, 81]. Contour-based methods start by extracting contours and
then searching for their maximal curvature or inflexion points, or perform a polygonal approxi-
mation and search for intersection points [81]. These algorithms consist of three cascaded basic
blocks: edge detection, contour extraction and corner decision on those contours [82]. On the
other hand, parametric or model-based methods fit a parametric intensity model to the signal, of-
ten providing sub-pixel accuracy but being of limited use [81]. These algorithms find corners by
matching image patches to predefined models, which makes it difficult to cover all the corners
present in real images [82].

Intensity-based methods compute a measure that indicates the presence of an interest point
directly from the grey-values [81]. These methods exploit an intuitive definition of a corner as a
point on the boundary of two image regions where the curvature is sufficiently high. Therefore,
the "cornerness" of a region was defined by Kitchen and Rosenfeld (1982) as a product of the
magnitude of the gradient of image intensity and the rate of change of gradient direction at the
considered point [78].

The majority of feature detection algorithms work by computing a corner response function
across the image. Pixels which exceed a threshold "cornerness" value and are local maxima are
retained while the rest are discarded [79].

Moravec’s detector and Harris corners

In 1980, Moravec defined the notion of points of interest as being those where there was a large
intensity variation in every direction. [78] The author then introduced an interest operator for cor-
ner detection, since he considered corners to be regions of high contrast in orthogonal directions,
which made for good features. [83] This interest operator functions by considering a local win-
dow in the image and determining the average changes in intensity that result from shifting that
window slightly in different directions[84].

Moravec’s algorithm uses four discrete shifts in directions parallel to the rows and columns
of the image, detecting an interest point if the minimum is superior to a threshold [81]. However,
since this variation is computed along only four directions, this operator is sensitive to strong edges
under certain directions [78].

Harris and Stephens (1988) introduced a corner operator by modifying Moravec’s interest op-
erator, using only first order derivatives to approximate the second derivatives used in the original
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detection method [80]. For each pixel location, these authors compute a 2 × 2 auto-correlation
matrixM with eigenvalues α and β proportional to the principal curvatures of the local autocor-
relation function. Therefore, three different scenarios can occur [78, 84]:

1. Both curvatures are small: the local autocorrelation function is flat, and so the windowed
image is flat.
Parameters: α and β are small.

2. One curvature is high and the other low: the local autocorrelation function is ridge-shaped,
indicating the presence of an edge in the image.
Parameters: α� β or β � α.

3. Both curvatures are high: the local autocorrelation function is sharply peaked, indicating a
corner.
Parameters: α and β are large, with α ∼ β.

A graphic depiction of curvatures in Harris corners according to the parameters α and β can
be found in Figure 2.8 [84, 85].

Figure 2.8: Three possible scenarios for curvatures in Harris corners (1988). (Adapted from [84,
85]).

Given the eigenvalues α and β, the authors defined the Harris operator for corner response,
described in Equation 2.19. The constant parameter k was empirically determined to be optimal
when equal to 0.04, although values in the [0.04, 0.06] range were deemed acceptable [82, 84]. A
commonly used variant for the Harris corner response operator is also described in Equation 2.20
[85].

R = αβ − k(α+ β)2, with k ∈ [0.04, 0.06] (2.19)

R =
αβ

α+ β
(2.20)
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In order to categorise a given point as being a corner, Harris and Stephens then consider local
maxima. A corner region pixel is considered as effectively being a corner if it has a positive
response R which is an eight-way local maximum. Similarly, an edge region pixel is classified
as an edge if R is both a local minimum and negative in either the x or y directions, according
to which gradient is larger. The authors also applied thresholds in order to perform hysteresis to
enhance the continuity of edges [84].

FAST

The features from accelerated segment test (FAST) algorithm was developed by Rosten and Drum-
mond (2006) to identify interest points in an image, being is ten times faster than the Harris corner
detector without degrading performance, according to Jeong and Moon [79, 86]. This algorithm
works by examining a small patch of an image to see if it resembles a corner. For that purpose, the
authors built a training set where all edges met at a multiple of 45◦ and near the centre of an 8× 8
window, thus determining the kind of corner features to be detected [79].

The segment test criterion for FAST considers a set of 16 pixels around the pixel chosen
as a corner candidate (p). p is then considered a corner if there are n contiguous pixels in the
circle which are either brighter than the intensity of pixel p (Ip) plus a threshold t or darker than
Ip − t [86]. The authors chose n = 12, since that number admits a high-speed test that improves
computation by excluding a large number of non-corners. This test takes pixels 1, 5, 9 and 13,
which are placed at the four compass directions as shown in Figure 2.9. In order for p to be a
corner, then at least three of these have to be brighter than Ip + t or darker than Ip − t. If none of
these two conditions apply, p cannot be a corner. However, if it does, the test can then be applied
to the remaining pixels. It should be noted that this test does not generalise well for n < 12 [79].

Figure 2.9: Corner detection with FAST using 16 pixels around a pixel p. (Retrieved from [79]).

2.3.4 Image feature descriptors

Feature extraction is the process of computing a representation of some attribute of digital images
to derive the image contents, being directly related to the visual characteristics of the image. These
representations are usually numerical or alphanumerical and are associated with image regions,
with an object within an image being characterised by its own measurements [50, 87].

A type of object within an image may be characterised perfectly by one feature, but if this
proves impossible, a similar result may still be achieved through the combined use of multiple
features [50]. Among the information used in content-based image retrieval, the most popular
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features are colour, texture and shape [88]. Colour is the most intuitive physical characteristic and
possesses robustness for some basic image operations, such as rotation, scaling, and translation,
making it a popular feature [88]. In turn, texture is defined as a function of the spatial variations
in the pixel intensity of an image [89]. This feature is a property of any surface that describes
the visual patterns present in it and gives insight into its structure [90]. Shape is a more general
concept which pertains to relative positional information. Because of its wide scope, the use of
shape features tends to suffer from difficulties such as losing information by mapping the shape
to a small amount of numbers or limiting applicability by restricting the descriptors to silhouettes
and closed curves [91].

The use of features in lieu of an image’s pixels themselves has a number of advantages. For
instance, features can act to encode domain knowledge that is difficult to learn using a finite quan-
tity of training data. Moreover, the use of image features helps reduce in-class while increasing
out-of-class variability compared to the raw data, making classification easier. A feature-based
system also operates much faster than a pixel-based one, causing gains in efficiency [92, 93].

Haar-like features

Wavelets are functions that integrate to zero. Haar wavelets are the simplest kind of wavelet,
consisting of a step-function defined in Equation 2.21 and depicted in Figure 2.10 [94, 95].

Figure 2.10: Haar wavelet function graph as de-
picted by Khadtare et al. (2011). (Adapted from
[95]).

Ψ(t) =


1, 0 ≤ t < 1

2

−1, 1
2 ≤ t < 1

0, otherwise

(2.21)

Haar-like features (HLF) are an over-complete set of two-dimensional (2D) Haar functions
which can be used to encode local appearance of objects, having been proposed by Papageorgiou
et al. in 1998, based on theoretical work by Mallat in the previous decade [96–98]. HLF are well-
suited to the detection of horizontal, vertical, and symmetric structures and consist of k rectangular
regions (k ≥ 2) enclosed in a template [97, 99].

HLF were explored by Viola and Jones in order to build a cascade classifier. These authors
defined three kinds of rectangular Haar-like features with different values based on Papageorgiou’s
work [92]:

• Two-rectangle feature: difference between the sum of the pixels within two rectangular
regions (Figure 2.11 A and B).

• Three-rectangle feature: sum within two outside rectangles subtracted from the sum in a
centre rectangle (Figure 2.11 C).

• Four-rectangle feature: difference between diagonal pairs of rectangles (Figure 2.11 D).
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Figure 2.11: Haar features described by Viola and Jones (2001), surrounded by their respective
detection windows. A) vertical two-rectangle feature. B) horizontal two-rectangle feature. C)
three-rectangle feature. D) four-rectangle feature. Black areas represent negative and white areas
positive weights. (Retrieved from [92]).

Lienhart and Maydt build upon the work of Viola and Jones by introducing 45◦-rotated fea-
tures, which are used by the open-source computer vision library OpenCV, depicted in Figure 2.12
[93, 100]. It is worth noting that the four-rectangle features described by Viola and Jones (Figure
2.11 D) have been removed from the set, since Lienhart and Maydt considered that they could be
well approximated using features 2(e) and 2(g) from Figure 2.12 [92, 93].

Figure 2.12: Haar features as defined by Lienhart and Maydt and used by OpenCV, according to
Bradski and Kaehler (2008). (Retrieved from [100]).

Local binary patterns

The local binary patterns (LBP) operator is a texture descriptor first proposed in 1994 by Ojala et
al. [101, 102]. The operator works by labelling pixels through thresholding the 3 × 3 neighbour-
hood in relation to the central pixel value, in a total of eight neighbours per pixel. This process
is described mathematically in Equation 2.22. Let P = (xp, yp) be the central pixel, n the po-
sition of a neighbouring pixel relative to P (n ∈ {0, ..., 7}), and in and ip the grey levels of the
neighbouring and central pixel, respectively [89]:
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LBP (xp, yp) =
7∑

n=0

s (in − ip) 2n, where s (x) =

{
1, x ≥ 0

0, x < 0
(2.22)

Equation 2.22 produces a value between 0 and 255 (
7∑

n=0
2n), being in fact a two-level version

of a three-level texture unit described by Wang and He (1990). This original unit consisted of
a 3 × 3 matrix where the central cell represented the pixel P and the remaining ones were its
neighbourhood, akin to what was defined in Ojala et al.’s work. The main difference between
the two approaches lies in the number of values each cell can take (called levels by the authors),
with the original unit assuming values in the {0, 1, 2} range and Ojala et al.’s being binary, and
thus simplifying the process, since the total number of possibilities for texture units is reduced
from 38 = 6561 to 28 = 256 [89, 101, 103]. Each pixel surrounding P is uniquely identified
in P ’s neighbourhood by a number n between 0 and 7, as depicted in Figure 2.13 (a), and its
corresponding value in the neighbourhood is given by 2n (Figures 2.13 (b) and 2.14 (c)).

Figure 2.13: Definition of a pixel’s neighbourhood in the LBP operator by Ojala el al. (1994). (a)
Unique identifiers for each neighbour pixel. (b) Values used by the operator for each neighbour.
(Adapted from [101]).

The basic steps undertaken by the operator for each texture unit are described succinctly in
Figure 2.14 [102]. After selecting a pixel, a matrix is created with the grey level of that pixel in
the central position and the grey level of each neighbour in its due place (Figure 2.14 (a)). Each
neighbour is then evaluated according to the s(x) component in Equation 2.22 as follows: if the
neighbour’s grey level is greater or equal than the central pixel’s grey level, its value is set to one;
otherwise, the value is set to zero (Figure 2.14 (b)). The resulting values are then multiplied by
the intrinsic value of the cell they belong to (depicted in Figures 2.13 (b) and 2.14 (c)). The values
resulting matrix shown in Figure 2.14 (d) are then added together in order to produce the final
result (in this case, 169, represented in binary as 10101001) that will be assigned to pixel P .

However, the information provided by a single texture unit may not be enough to characterise
the amount and spatial structure of local texture. Therefore, Ojala et al. identified the need for
the use of complementary feature pairs, which consider joint occurrences of features, improving
the classification accuracy [101, 102]. Another way to regard this problem would be a look at the
feature histograms. LBP coefficients can be collected in a LBP histogram, which results in a loss
of spatial information. A way to mitigate this problem is to divide the image into several smaller
blocks and compute a histogram for each one. The result is a descriptor that contains information
about features at the global, region and pixel levels [104].

Both LBP and Haar-like features are commonly used in OpenCV cascade classifiers, which are
multistage classifiers where the output of a stage is fed to the next stage, discarding non-matching
regions along the way. This means that each classifier may be weak, but their combination can
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Figure 2.14: Two-level version of LBP as described by Ojala et al. (1994). (a) Original pixel
matrix. (b) Evaluation according to pixel P. (c) Intrinsic pixel values. (d) Final result. (Adapted
from [102]).

produce fast and strong results even with low computational power. A region is considered a match
when it successfully traverses all the assembled stages [105].

SIFT and SURF

The scale invariant feature transform, commonly known as SIFT, was developed by David G.
Lowe in 1999 and patented in 2004 [106, 107]. SIFT works by transforming an image into a
collection of local feature vectors, each of them invariant to translation, scaling, and rotation,
as well as partially invariant to illumination changes and affine or 3D projections [100, 106]. A
SIFT descriptor for a keypoint is a 128-dimensional vector created containing 16 orientation sub-
histograms, each consisting of 8 bins [106, 108–111].

Figure 2.15: Schematic computation of the SIFT descriptor from sampled values of gradient ori-
entation as depicted by Lindeberg (2012). (Retrieved from [112]).

A number of authors have introduced variations to SIFT, namely: [113, 114]

• PCA-SIFT: This technique was developed by Ke and Sukthankar in 2004 and introduces
principal component analysis (PCA) to reduce the dimensionality of describing each key-
point, making the image feature matching faster [110, 113, 115].

• GSIFT: Introduced by Mortensen et al. in 2005, this variation aims to introduce global
information instead of relying only on local context. This is done via the introduction of a
global texture vector to the basis of SIFT, giving this approach the acronym GSIFT for its
use of global features [111, 113].
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• CSIFT: SIFT was designed with grey-scale images in mind. However, Abdel-Hakim and
Farag (2006) considered colour to provide valuable information in object description and
matching tasks, which led to their development of colour-invariant SIFT, or CSIFT, which
integrates colour invariance into the basis of SIFT [113, 116, 117].

• ASIFT: Affine-SIFT or ASIFT was first proposed by Morel and Yu in 2009. ASIFT sim-
ulates scale, camera longitude angle, and latitude angle or tilt, normalising translation and
rotation [113, 118].

• n-SIFT: This approach, called n-dimensional SIFT, extends SIFT features to images with
an arbitrary number of dimensions, being especially adequate for 3D and 4D medical im-
agery [114].

A special SIFT derivative is the use of speeded-up robust features (SURF). This algorithm
was developed by Bay et al. in 2006, being structurally similar to SIFT but adopting different
processing methods for each step [113]. An application of SURF was patented in 2012 by its
creators [119]. This detector is considered to possess good performance in computation time and
accuracy [120]. This algorithm can be described by modified Gaussian functions, coding each
pixel point in grey-scale according to the value of the filter at that point: grey for zero, black for
negative values and white for positive ones. The cropping is achieved by limiting the mask sizes to
M ×M pixels, whereM is preferably odd so as to allow the existence of a central pixel. The ratio
between M and the standard deviation for the approximated Gaussian function σ is kept constant
for all filter sizes. The derivatives are then further approximated by the use of digital filters with
discrete sub-regions, shown in the bottom half of Figure 2.16 [119].

Figure 2.16: Box filter approximation of the Gaussian second-order partial derivatives used in
SURF by Bay et al. (2006). (a) Gaussian second order partial derivative in the y direction (above)
and Bay et al.’s approximation (below). (b) Gaussian second order partial derivative in the xy
direction (above) and Bay et al.’s approximation (below). Both partial derivatives have been dis-
cretised and cropped and the grey regions are equal to zero. (Adapted from [120]).

The SURF descriptor is also based on the same basic principles as SIFT’s, possessing a lower
complexity than the latter [120]. A qualitative summary of the strengths and weaknesses of each
SIFT-derived algorithm according to Wu et al. (2013) can be found in Table 2.3. A higher number
of + signs indicates better performance, with ++++ being the highest and + being the lowest [113].
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Table 2.3: Comparison of performance between SIFT and its derivatives according to Wu et al.
(2013). (Adapted from [113].)

Scale and
rotation Blur Illumination Affine Time

Cost
SIFT ++++ ++ +++ ++ +++

PCA-SIFT +++ +++ +++ ++ +++
GSIFT ++ ++++ ++++ ++ +++
CSIFT ++++ +++ ++ +++ ++
ASIFT ++ + + ++++ +
SURF + + + + ++++

Key: ++++ Best +++ Better ++ Good + Common

BRIEF and ORB

While SIFT is highly discriminant, being a 128-dimensional vector (or 128-vector, for short),
means it is relatively slow to compute and match. Even approaches such as the one employed in
PCA-SIFT, which involves dimensionality-reducing techniques, require that the whole descriptor
be computed before having its dimensions reduced, which wastes time and resources. Therefore,
Calonder et al. (2011) created a new feature descriptor, called binary robust independent elemen-
tary features (BRIEF), that bypasses this first stage, directly computing binary strings from image
patches [121]. This algorithm describes the appearance of an image patch p centred on the de-
tected feature point with a binary string computed by comparing the intensities of a number of
pair-wise pixels in p. BRIEF defines an individual test τ on a smoothed patch p of size S × S as
described in Equation 2.23, where p(x) is the pixel intensity for patch p at a location x = (u,v)T

[122].

τ(p;x, y) =

{
1, if p(x) < p(y)

0, otherwise
(2.23)

A unique set of binary tests can then be defined by choosing a set of nd (x, y)-location pairs,
with the BRIEF descriptor being the nd-dimensional bit string that corresponds to the decimal
counterpart of the value computed in Equation 2.24 [121, 122].

fnd
(p) =

nd∑
i=1

2i−1τ(p;xi, yi) (2.24)

An alternative to the use of SIFT and SURF was introduced in 2011 by Rublee et al., under
the self-explanatory name of Oriented FAST and Rotated BRIEF, or ORB for short. This method
uses FAST to locate keypoints, followed by a direction-normalised BRIEF to extract descriptors,
therefore combining the fast and accurate orientation component from FAST with the efficient
computation of features provided by BRIEF, with modifications to allow for rotational invariance
[123, 124].

KAZE and AKAZE

KAZE features are a method for feature detection and description in non-linear scale spaces, hav-
ing been introduced by Fernández Alcantarilla et al. (2012) [125]. This method uses an edge-
preserving non-linear filtering strategy to locate image features, reducing noise [124]. AKAZE
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differs from KAZE in that its features are invariant to scale, rotation, and have more distinctive-
ness at varying scales because of non-linear scale spaces [126].

2.4 Goals

The principal aims of the present work are as follows:

1. Conceive a system architecture, quality model, requirements and their respective priorities,
as well as performance measures for a putative system that should be able to:

(a) Identify a vehicle’s manufacturer and model in near-real-time and without disturbing
the work of the current system in place.

(b) Implement a more efficient way of identifying tolling violators, reducing the associated
costs related to misidentification of the perpetrators.

(c) Significantly reduce the number of violations necessitating human intervention and the
costs associated with manual image review.

2. Provide proof of concept for the possible workings of such a system and analyse techniques
that could be used in its development.

2.5 Project life-cycle

2.5.1 Quality models and requirement prioritisation

Quality models

Quality standards are a defining characteristic of successful and durable projects. In particular,
software quality is defined by Pressman as "conformance to explicitly stated functional and per-
formance requirements, explicitly documented development standards, and implicit characteris-
tics that are expected of all professionally developed software" or "an effective software process
applied in a manner that creates a useful product that provides measurable value for those who
produce it and those who use it" [127, 128].

The definition of quality attributes for requirement definition in a software project is not con-
sensual, leading to the creation of various analytical models that define different types of require-
ments that should be considered in a software project [129].

McCall’s quality model Originating in the US military and General Electrics and first presented
in 1977, Jim McCall’s quality model for defining software requirements attempts to bridge the gap
between users and developers by focusing on a number of software quality factors that reflect both
the users’ views and the developers’ priorities [129, 130]. Having started by contemplating 55
quality characteristics or factors, this model then compressed those into a set of 11 main factors:
correctness, efficiency, flexibility, integrity, interoperability, maintainability, portability, reliability,
reusability, testability and usability [131]. These factors reflect the external view of the software,
that of a user, and can be further decomposed into 23 quality criteria that reflect the internal view
of the software, as regarded by a developer1 [130].

McCall’s quality model contemplates three main categories or abilities a software product
most possess [131]:

• Product revision: also defined as a product’s ability to undergo changes, this category
includes the maintainability, flexibility and testability factors [131, 132].

1Definitions for each factor and respective criteria can be found in the Glossary.
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• Product transition: defined as a product’s adaptability to new environments, this category
addresses the factors portability, reusability and interoperability [129].

• Product operations: reporting to the product’s ability to be quickly understood, operated
and capable of providing the required results, this category covers the correctness, reliability,
efficiency, integrity and usability factors [132].

Boehm’s quality model Boehm’s quality model was proposed similarly to McCall’s model,
introducing an additional second set of quality factors in an attempt to automatically and quan-
titatively evaluate the quality of software [130, 131]. This model was presented according to an
hierarchical structure containing three basic software requirements (also called primary uses) at
the highest level, which can be broken down into intermediate characteristics, which in turn can
be divided into primitive constructs2 [129, 130, 132].

• High-level characteristics: also called primary uses, this set of characteristics is constituted
by as-is utility, maintainability and portability.

• Intermediate-level characteristics: this level comprises a total of seven characteristics,
distributed by each of the three high-level ones as follows:

– As-is utility characteristics: comprised in this group are reliability, efficiency and hu-
man engineering.

– Maintainability characteristics: the characteristics constituting this group are testabil-
ity, understandability and modifiability.

– Portability characteristics: not subdivided at this level.

• Low-level characteristics: also called primitive constructs, this group comprises the fol-
lowing distribution of 15 characteristics:

– Reliability constructs: self-containedness, accuracy, completeness, robustness/integrity
and consistency.

– Efficiency constructs: accountability, device efficiency and accessibility.
– Human engineering constructs: robustness/integrity, accessibility and communicative-

ness.
– Portability constructs: device independence and self-containedness.
– Testability constructs: accountability, communicativeness, self-descriptiveness and

structuredness.
– Understandability constructs: consistency, structuredness, conciseness and legibility.
– Modifiability constructs: structuredness and augmentability.

Dromey’s quality model R.G. Dromey presented an alternative product-based quality frame-
work in the mid-90s, stating that high-level quality attributes could not be built directly into soft-
ware [129, 132]. This framework consisted in three separate models: the requirement quality
model, the design quality model and the implementation quality model. Focusing on the relation-
ship between quality attributes and their sub-attributes, as well as attempting to connect software
product properties with software quality attributes, Dromey established a hierarchical structure that
depicts the implementation model at the top, branching into intermediate-level correctness quali-
ties present in the design quality model, which in turn were based on the characteristics present in
the requirements model3 [132].

• Implementation model: deals with the final quality of the software product.

2Definitions for each characteristic and respective subcharacteristics or constructs can be found in the Glossary.
3Definitions for each property and respective attributes can be found in the Glossary.
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• Design model: lists the high-level product properties correctness, internal, contextual and
descriptive.

• Requirements model: comprises four sets of quality attributes that must be present for the
high-level properties in the design model:

– Correctness: includes the functionality and reliability software quality attributes.
– Internal: comprises the quality attributes of maintainability, efficiency and reliability.
– Contextual: deals with the maintainability, reusability, portability and reliability at-

tributes.
– Descriptive: addresses the quality attributes maintainability, reusability, portability and

usability.

FURPS and FURPS+ quality models The FURPS model was proposed by R.Grady and Hewlett-
Packard Co. in 1987, being primarily defined by characteristics that were based on the system
requirements, and therefore divided into functional (FR) and non-functional (NFR). The name
FURPS is acronym that stands for the following characteristics, some of which can be obtained
from sets of others [129, 131]:

• FR characteristics:

– Functionality: the only functional attribute of the lot, functionality is defined as in-
cluding feature sets, capabilities and security.

• NFR (or URPS) characteristics:

– Usability: defined by human factors, overall aesthetics, consistency and the existence
of documentation.

– Reliability: includes the frequency and severity of failure, recoverability, predictabil-
ity, accuracy and MTBF.

– Performance: defined as the conjunction of processing speed, response time, resource
consumption, throughput and efficiency.

– Supportability: includes testability, extensibility, adaptability, maintainability, com-
patibility, configurability, serviceability, installability, and localisability.

This model has since been built upon by IBM and expanded into the FURPS+ model. FURPS+ in-
cludes every characteristic present in FURPS, besides taking into consideration design, implemen-
tation, interface and physical constraints (DIIPC). However, akin to what happens in the original
FURPS model, this expansion lacks attributes to specify the system’s portability [131].

ISO-9126 quality model Owing to the amount of quality models proposed, ISO decided to
include a standardised quality model in its international standard for the evolution of software,
ISO-9126, which also includes sections addressing external metrics, internal metrics and quality
in use metrics. This standard specifies and evaluates the quality of a software product in terms
of internal and external software qualities and their connection to attributes, categorising quality
attributes into six independent high-level quality characteristics, which can in turn be broken down
into secondary quality attributes or subfactors 4 [129, 132]:

• Functionality: decomposable into suitability, accuracy, security, interoperability and com-
pliance.

• Reliability: can be broken down into maturity, fault tolerance, recoverability and compli-
ance.

4Please note that compliance is present for every attribute. Further definitions can be found in the Glossary.
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• Usability: may be further decomposed into understandability, learnability, operability, atrac-
tiveness and compliance.

• Efficiency: comprising time behaviour, resource behaviour and compliance.
• Maintainability: subfactor constituted by analysability, changeability, stability, testability

and compliance.
• Portability: composed by adaptability, installability, co-existence, replaceability and com-

pliance.

Requirement priorities

Although many requirements may be defined for a project, their fruition depends on real-world
constraints such as limited resources or budget, scheduling or differing levels of importance in
the requirements themselves. It is, therefore, important to establish priorities regarding a project’s
requirements, taking into account either their implementation order or their relative importance to
the stakeholders [133]. A number of techniques have been described and compiled in the literature
and are summarised below [134–136].

• Analytical hierarchy process or pairwise comparison technique: establishes a pairwise
comparison for the requirements to determine which of the two is more important, and to
what extent, using weighed scores and producing numerical outputs.

• Bubble sort: starts by aligning the requirements in a vector and comparing each requirement
with the one directly above, swapping positions if their relative priorities seem misadjusted.
The process is repeated for every single combination of requirements until the vector is
ordered.

• Cost-value prioritization: determines the top requirements by creating graph plots to visu-
alise the perceived value of the requirement vs. its implementation cost.

• Hundred-dollar test: works through a system of cumulative voting, in which imaginary
USD 100 bills are distributed across the requirements according to their perceived relative
importance. The requirements are then ordered by the number of bills each one has garnered.

• Minimal spanning tree: similar to the pairwise comparison, but avoids establishing com-
parisons that can be inferred (e.g. if requirement A is judged as being of higher priority
than requirement B and requirement B is of higher priority than requirement C, then A is
automatically judged to be of higher priority than C and that comparison does not have to
be explicitly stated).

• MoSCoW rule: categorises requirements according to whether they are mandatory, highly
desirable or nice to have in relation to the final product. The requirements are ranked from
higher to lower priority by using the following mnemonic:

M: MUST HAVE. Non-negotiable or mandatory requirements. Failure to deliver these
requirements results in the failure of the project itself. These are the requirements
with the highest priority.

S: SHOULD HAVE. High priority requirements. Features that the project would benefit
from, if their implementation is possible.

C: COULD HAVE. Nice-to-have requirements. Features considered desirable but not
necessary, that will be included if there is any time left after completing M and S.

W: WILL NOT (or WISH TO) HAVE. "Wish list" requirements. Features that will not
be implemented within the desired time frame, but may be considered in the future.
These requirements have the lowest priority.

• Numerical assignment: works by grouping requirements into different categories deter-
mined by the person or team doing the assignment (e.g. high, medium and low).
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2.5.2 Project planning

The current project was initially set to have duration of nine months, with its workload having
been planned as described in Table 2.4, which can be translated into the Gannt charts shown in
Figures 2.17, 2.18, 2.19 and 2.20.

Table 2.4: Project planning

Activities Begin date End date
1 Analysis 20/09/2017 22/12/2017

1.1 Understanding the business problem 20/09/2017 03/11/2017
1.2 Identification of business and operational requirements 06/11/2017 23/11/2017
1.3 Requirement documentation and high-level solution design 24/11/2017 07/12/2017
1.4 Preliminary report 11/12/2017 22/12/2017

2 Design 03/01/2018 31/01/2018
2.1 Business and operational process design 03/01/2018 09/01/2018
2.2 Functional architecture design 10/01/2018 16/01/2018
2.3 Technical architecture design 17/01/2018 23/01/2018
2.4 Test strategy definition 24/01/2018 25/01/2018
2.5 Functional and technical design documentation 26/01/2018 29/01/2018
2.6 Test strategy documentation 30/01/2018 31/01/2018

3 Development and testing 01/02/2018 31/05/2018
3.1 Development environment setup 01/02/2018 01/02/2018
3.2 Component and unit test coding 02/02/2018 26/04/2018
3.3 Component tests and bug fixing 23/02/2018 26/04/2018
3.4 Integration tests and bug fixing 27/04/2018 10/05/2018
3.5 System tests and bug fixing 11/05/2018 24/05/2018
3.6 Setup, coding and test documentation 25/05/2018 31/05/2018

4 Statistical results and report production 25/05/2018 20/06/2018

Figure 2.17: High-level Gantt chart containing the main tasks of the project.
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Figure 2.18: Gantt chart containing the subtasks of the project pertaining to task 1: Analysis.

Figure 2.19: Gantt chart containing the subtasks of the project pertaining to task 2: Design.

Figure 2.20: Gantt chart containing the subtasks of the project pertaining to task 3: Development
and testing.

For the most part, the practical tasks for stages 1 and 2 (Analysis and Design, respectively)
adhered to the specified time frame, with the preliminary report having been delivered in an in-
complete state. The main exception, however, lies in the lack of definition, and therefore also
the documentation of a testing strategy. The failure in delivering these steps is mainly due to the
lack of focus on the methods to be used in the practical aspect of the putative solution. From this
point on, an architecture was defined and basic unit tests were performed within the time limits,
but the developed system was never subject to integration and system tests, nor was its possible
incorporation with the parent system considered. The lack of useful results and general disperse
nature of the work then made the production of the final report drag on for the better part of two
years, with a report having finally been finished in July 2020.
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The presented outcome, which differs significantly from the proposed schedule, can mainly be
attributed to demotivation. I chose this project because I wished to perfect my skills in software
engineering while learning a bit about artificial intelligence (AI) and computer vision, which I
had never explored significantly. However, the project proved much more AI-oriented than I
had foreseen, which curbed my initial enthusiasm. This demotivation was then built up in the
following months, being compounded with the lack of promising results and general frustration
with my difficulty to understand the technologies I was working with and what I could do to fine-
tune the system and improve the results based on a solid theoretical background. This frustration
was directly translated into the development of a poor and unstructured work ethic, with results
being analysed and filed away instead of committing said analysis to paper immediately. The end
result was the prospect of writing the whole work almost from scratch at the end, which eventually
caused me to give up for the best part of two years, due to how insurmountable the task seemed
and how little pride I managed to muster for the work that had been done. An aggravating factor
also lied in the fact that I ceased being a full-time student in July 2018, which drastically reduced
the time available for writing. The emergence of the COVID-19 pandemic in early 2020 and
the resulting confinement rekindled my desire to see this work handed in, and therefore it was
eventually finished in July 2020.
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Related work

Make and model recognition (MMR) is an increasingly important tool in traffic monitoring, license
plate and vehicle recognition and law enforcement surveillance. The most distinctive feature in
recognising a vehicle’s manufacturer is the logo, which is usually present at the front of the vehicle
and easily identifiable to the customer. Model recognition, however, is not so easily achieved,
having to rely on the vehicle as a whole in order to extract patterns that allow for its classification
[137, 138].

3.1 Recognising a vehicle’s manufacturer

Wang et al. (2007)

Wang, et.al. (2007) [139] attempted logo recognition through the application of mathematical
formulae. In order to achieve their ends, 11270 test images were used, pertaining to 17 classes
which represented vehicle manufacturers. The general flow used can be found in Figure 3.1.

Figure 3.1: Processing flow used by Wang et al. (2007). (Retrieved from [139].)

The logo, or region of interest (ROI), was firstly subject to vertical coarse detection from the
number plate, using the mathematical formula represented in Equation 3.1, where x is the rough
position of the number plate, y is the rough position of the vehicle logo, y1 is the bottom boundary,
y2 is the top boundary, and n is an adjustable parameter, 1 ≤ n ≤ 3, with the authors choosing
n = 2. These parameters are depicted in Figure 3.2.

|y1 − y2| > nh = n|x− y|
y2 > y

x < y1 < y

|y2 − y| = |y − y1|

(3.1)

35
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Figure 3.2: Vertical logo coarse location deployed by Wang et al. (2007). (Retrieved from [139].)

Following the determination of this vertical coarse location of the logo, edge features were
computed using Sobel edge detection and projection of edge images, with determination of max-
ima and minima that helped refine the coarse location already obtained.

Given the symmetry inherent to the disposition of the logo in a grille image, an axis was
then computed in order to obtain the left and right boundaries for a horizontal coarse location, as
described by Equation 3.2, where x1 and x2 are the left and right boundaries, respectively, x0 is
the symmetry axis, and n is a coefficient, with n ∈ [1, 2].{

x1 = x0 − n|x− y| = x0 − nh
x2 = x0 + n|x− y| = x0 + nh

(3.2)

Finally, the obtained results were refined taking all the calculations into account, as depicted
in Figure 3.3.

Figure 3.3: Logo location results obtained by Wang et al. (2007). Key: (a) coarse location results,
(b) gradient image, (c) edge detection, (d) logo location results, (e) actual location in the original
image. (Retrieved from [139].)

The obtained samples were then subject to recognition using edge orientation histograms,
which were compared with histograms obtained for each logo in order to perform the matching.
These histograms can be viewed in Figure 3.4.

Two different approaches were attempted: template matching in the location vehicle logo
area (M), and fine location and coarse recognition by edge feature information (M+E). From this
process, a recognition rate of 89.85% was achieved for the M+E method, with a lower performance
(78.01%) being obtained for M, which did not use edge information. However, this work is limited
in scope, since the proposed methods fail to account for factors such as different light conditions,
as the authors acknowledge in their final conclusions.
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Figure 3.4: Edge histograms for different logos, depicted by Wang et al. (2007). (Retrieved from
[139].)

Sam and Tian (2012)

In 2012, Sam and Tian [140] presented a solution that aimed to take distortions due to viewpoint
variation into account. In order to do so, the authors made use of the extended set of Haar features
proposed by Lienhart and Maydt [93], depicted in Figure 3.5. The value of each feature was
calculated as the difference of the sum of the pixels of rectangular areas.

Figure 3.5: Haar features used for vehicle logo detection by Sam and Tian (2012). (Retrieved from
[140].)

Using these features, detection was then performed using a modest AdaBoost algorithm, which
makes use of a series of weak classifiers and searches over its pool to find the one with the lowest
classification error, rectifying its weights with each iteration, as shown in Figure 3.6. The results
were then normalised and classification was made by making use of Euclidian distances between
points of interest, with a recognition rate of 92 % having been achieved.
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Figure 3.6: Modest AdaBoost algorithm as described by Sam and Tian (2012). (Retrieved from
[140].)

Huang et al. (2015)

In 2015, Huang et al. [141] presented a promising work on car model recognition through the logo
region. The authors chose to use CNNs containing maxpooling layers, and pre-training the data
by use of principal component analysis (PCA). A total of 11 500 images from the 10 manufac-
turers considered to be the most popular in China were used, obtaining a classification accuracy
of 99.07%. The authors operated on assumptions about the location of the vehicle’s license plate
(LP), using coarse segmentation to define a general ROI. The CNN constructed operates on these
ROIs thus obtained, according to a hierarchy. To Huang et al., logos are objects in these images,
which can be deconstructed into motifs, which in turn can be decomposed into edges, making this
a hierarchical extraction of features. PCA was used in order to improve the CNN’s performance,
since it allows for initialisation at interesting points (as opposed to completely random ones) and
therefore requires less iterations, avoiding the use of backpropagation (BP). The architecture of
the CNN implemented is translated as follows:

1. Input layer
2. 1st convolutional layer: six feature maps, with a kernel size of 7× 7
3. 1st pooling layer: six feature maps, with a kernel size of 2× 2
4. 2nd convolutional layer: twelve feature maps, with a kernel size of 21× 21
5. 2nd pooling layer: twelve feature maps, with a kernel size of 2× 2
6. Fully-connected layer
7. Output layer

The CNN’s architecture is illustrated in Figure 3.7.

Figure 3.7: Architecture of the convolutional neural network used by Huang et al. (2015). (Re-
trieved from [141].)

The authors obtained an overall accuracy of 99.07 %, with perfect recognition for manufactur-
ers such as Honda and Peugeot. These results are displayed in Table 3.1.
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Table 3.1: Detailed results obtained by Huang et al. (2015). (Retrieved from [141].)

3.2 Recognising manufacturer and model

Psyllos et al. (2011)

Psyllos et al.’s 2011 study [142] attempted RT matching in two phases, first recognising a vehicle’s
manufacturer and then, using one DB for each vehicle make, detecting its model. The authors used
frontal photos only, identifying the ROI through a mask based on the LP’s location, using SCW
segmentation. The general architecture presented in the paper is described in Figure 3.8.

Figure 3.8: Vehicle manufacturer and model recognition system architecture used by Psyllos et al.
(2011). (Adapted from [142].)

• VLPR: The first step undertaken by the authors was to convert each image to greyscale,
using the PGM format and 8-bit resolution, and scaling it. The images were then fed to a
LPR module, which used SCW segmentation followed by the application of Anagnostopou-
los’s mask (a binary mask produced by SCW) [143] and Sauvola’s binarisation method,
which takes a greyscale image and computes a threshold at each pixel in order to clean up
the image [144, 145]. The binarised image was then labelled using connected-component
labelling, which transforms a binary image into a symbolic image so that each connected
component is assigned a unique label, and binary measurements were applied [146]. The
output of this module are the coordinates of a rectangular area that includes the vehicle plate
number. The success rate for plate segmentation was of 96.5% and for content recognition
of 89.1%.

• Frontal view image segmentation: In this section, the ROI is defined as the vehicle’s mask.
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This mask is defined as possessing width and height Wmask = 4×W and Hmask = 2×H ,
whereW andH are the width and height of the segmented LP. This method was introduced
by co-author Anagnostopoulos in 2002 [147].

• Mask image segmentation: At this stage, the authors applied a method based on phase
congruency calculation to assess the existence of significant features. The phase congruency
map gradient threshold applied yielded five general segments (left light, left part of the grill,
logo, right part of the grill and right light), as described in Figure 3.9.

Figure 3.9: Mask image segmentation used by Psyllos et al. (2011). a) Phase congruency feature
map. b) Derivative of phase congruency. c) Mask segmentation based on the phase congruency
map gradient threshold. (Retrieved from [142].)

• Colour recognition: After determining the vehicle mask, the image was cropped using the
area over the mask and covering the hood. RGB colour histograms were computed, and the
peak of each histogram (Rmax, Gmax, Bmax) defining the colour of the vehicle.

• Manufacturer recognition: the vehicle brands were subject to a probabilistic neural net-
work (PNN) with 4 layers, as depicted in Figure 3.10, achieving an accuracy of 85%.

Figure 3.10: Architecture for the PNN developed by Psyllos et al. (2011). (Retrieved from [142].)



Chapter 3. Related work 41

• FP measurements and model recognition: this technique employed SIFT keypoint de-
scriptors, achieving an accuracy of 54% in model recognition.

Pearce and Pears (2011)

In 2011, Pearce and Pears [148] presented a comparison work for various methods of MMR, using
177 test images pertaining to 74 distinct make and model classes. The ROI, comprising the full
width of the vehicle, the lights and grill, was defined manually, using 6-DOF affine mapping, and
normalised for each of 60 images, allowing for a definition of an optimal estimated ROI for the
whole dataset. A set of methods was posteriorly applied and successively refined.

• Canny-edge detection: The authors started by building upon the work of Munroe and
Madden (2005) [149], who had studied multi-class and single-class techniques of model
recognition in frontal images of cars, settling on techniques based on kNN as the most
promising ones. The features were detected by a Canny edge detector, using thickened
edges (1px) and then applying kNN with one and three neighbours, evaluating the results
using Euclidean metrics. The results were of 79.1% correct classification rate for 1-NN
and 81.4% for 3-NN. The authors established this solution as the baseline to measure the
subsequent experiments against.

• Square mapped gradients: Using the methodologies proposed by Petrović and Cootes
(2004) [150], the authors concatenated the values of gx and gy in order to form a single
feature vector with two values for each pixel, as exemplified in Figure 3.11a. The correct
classification performances achieved for 1-NN and 3-NN were of 91.0% and 89.8%, respec-
tively.

• Harris corners: Basing this section on the work of Harris and Stephens (1988) [84], the
authors decided to use Noble’s (1989) [151] corner strength measure to construct a feature
vector, as shown in Figure 3.11b, and achieving a performance similar to the CED (78.0%)
when using a 1-NN classifier.

• Recursive partitioning and local normalisation: After performing the methods already
described, the authors noticed that, since the structures did not line up perfectly after nor-
malisation, one of two approaches should be attempted: either employ a metric with a con-
cept of neighbourhood, replacing Euclidean metrics with "earth mover" ones, or rethink the
feature vector so that it would be less sensitive to alignment. The authors then decided to
recursively divide the images into quadrants (2 columns × 2 rows), constructing summed
feature outputs within the divisions of each level, and taking normalisation in a localised
way. Using this technique with a recursion depth of 5, the authors retested Harris corners,
achieving a performance of 94.9% when using a 1-NN classifier.

• Naïve Bayes: The authors decided to test a Naïve Bayes classifier in order to exploit prior
information about the relative frequencies of cars in each class, assuming independence
between observations. The use of Naïve Bayes improved the correct classification rates
of locally normalised Harris corners and square mapped gradients to 96.0%, although the
authors state these results to be harder to replicate than the ones obtained using kNN.
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(a) Results for the square mapped gradients. Left:
original image. Right: gradient results for the gx
(left) and gy (right) components, prior to concate-
nation.

(b) Results for the Harris corners algorithm. Left:
original image. Right: corner strength.

Figure 3.11: Graphic results for the algorithms used by Pearce and Pears (2011). (Retrieved from
[148].)

Ramnath et al. (2014)

A different attempt was performed by Ramnath et. al. [152] in 2014, through the use of 3D curve-
matching using partial 3D models based on different viewpoints. For this purpose, the authors
made use of Chamfer matching, which minimises the distance between edge points in two images,
and which was then projected into a 3D virtual hull, or approximate shape representation, using
silhouette cones. The authors then proceeded to estimate each vehicle’s pose by observing the
relative positioning of its wheels. A representation of the results obtained in each stage is depicted
in Figure 3.12.

Figure 3.12: Stages for the development of a vehicle’s 3D model used by Ramnath et al. (2014).
Top: three of the images used to generate the hull; centre: visual hull; bottom: 3D space curves
projected into the visual hull. (Retrieved from [152].)

This work was focused in a single brand (Honda), having used 20 images for each of 8 distinct
Honda models as well as 30 images for other vehicles, in a total of 190 test images. The authors
determined a 95% recall rate as the threshold for rejection, with the results being displayed in the
confusion matrix depicted in Table 3.2.
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Table 3.2: Confusion matrix obtained by Ramnath et al. (2014). (Retrieved from [152], comple-
mented by information from Hsiao et al. (2014) [153].)

Key: CivC = Honda Civic Coupe, CivS = Honda Civic Sedan, InsH = Honda Insight, Ody = Odyssey
2011, Pil = Pilot 2011, Rid = Ridgeline 2011, Ele = Element SC 2010, Fit = Honda Fit 2011.

Baran et al. (2015)

Baran et al. (2015) [137] made use of two different approaches to the MMR problem, a real-
time one based on speed and another, non-real-time, based on accuracy. The region of interest
(ROI) for each image was calculated using Haar-like features (present in OpenCV’s haartraining
functionality).

(a) Real-time algorithm (b) Non-real-time algorithm

Figure 3.13: Algorithms used by Baran et al. (2015). (Retrieved from [137].)

• Real-time: the real-time solution aimed to estimate a car’s model in milliseconds, com-
bining the use of a SURF detector with a SVM algorithm. The SURF descriptors were
calculated for each image’s ROI and the collection of descriptors was then partitioned by
use of the k-means algorithm. The assignment of SURF descriptors related to a given pattern
image lead to the creation of sparse vectors of occurrence counts (SVOOC). A multi-class
SVM was then constructed using those SVOOC, with a one-against-one algorithm. The
training and testing processes are summarised in Figure 3.13a.

• Non-real-time: the non-real-time solution aimed to achieve a higher classification accuracy,
making use of visual descriptors. The authors used visual content classification (VCC) with
MPEG-7 EH descriptors, as well as SIFT and SURF descriptors for local features, applying
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distance metrics to the images presented for classification and merging the various outputs
in order to establish a final prediction. The process is summarised in Figure 3.13b.

The authors used a set of 1360 training images and 2499 test images, depicting 17 models of
cars from 6 manufacturers. The accuracy reported was of 91.7% for the real-time algorithm and
of 97.2% for the non-real-time one.

3.3 Overview

3D models

Table 3.3: Summary of related works: 3D models

Work Type of 3D model Techniques Performance
Ramnath et al.
(2014) [152]

Partial, based on
different viewpoints

Virtual hull model + minimisation of
reprojection errors + pose estimation

95% recall

ROI extraction

Table 3.4: Summary of related works: ROI extraction

Work ROI ROI extraction Accuracy
Baran et al.
(2015) [137]

Grill + head and indicator
lights

Haar-like detector 97.2%

Huang et al.
(2015) [141]

Logo
Based on LP location
(coarse segmentation)

N/A

Pearce and Pears
(2011) [148]

Full width + lights + grill
Average of manually defined
ROI for samples

N/A

Psyllos et al.
(2011) [142]

Grill + head and indicator
lights

"Mask" based on LP location N/A

Sam and Tian
(2012) [140]

Logo
Extended Haar-like features +
modest AdaBoost

N/A

Wang et al.
(2007) [139]

Logo
Sobel edge detection +
coarse detection + refinement

N/A

Fingerprinting by use of feature descriptors with ML classifiers

Table 3.5: Summary of related works: feature descriptors with ML classification techniques

Work Descriptors Classification Accuracy Observations
Baran et al.
(2015) [137]

RT SURF K-means 91.7%
33.69 ms (SVOOC)
4.24 ms (classification)

Huang et al.
(2015) [141]

N/A CNN 99.07% Pretraining with PCA

Pearce and Pears
(2011) [148]

Harris corners +
partitioning

Naïve Bayes
classifier

96.0% N/A

Psyllos et al.
(2011) [142]

Make
SIFT PNN

85% PNN setup: 1428 ms
Model 54% Fixed model (VOLK)

Sam and Tian
(2012) [140]

Radial Tchebichef
moments +
normalisation

1-NN 92% >2 s/image
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Fingerprinting by use of of feature descriptors with distance metrics

Table 3.6: Summary of related works: feature descriptors with distance metrics

Work Descriptors Accuracy Observations
Baran et al.
(2015) [137]

NRT SIFT + SURF + MPEG-7 (edge histogram) 97.2% 1.93 s/frame

Wang et al.
(2007) [139]

Sobel edge detectors 89.85% N/A





Chapter 4

Analysis

4.1 System requirements

4.1.1 Stakeholders

Stakeholders are defined as individuals or groups who have a stake in, or expectation of, a project’s
performance [154]. The current project’s stakeholders can be divided into three main groups:
clients, Accenture’s TCoE team and FCUL’s academic interested parties.

• Accenture clients want to accurately identify transgressors from RSE images to charge
them in the minimum time possible, to minimise transaction costs and to be able to configure
the system to their will if they so desire.

• TCoE’s team comprises a number of people with distinct interests.

– The project managers want a new and innovative MMR product that can be monetised
and sold to their clients as fast as possible, with quality and minimal costs.

– The software architect wants the new system to interact modularly with the existing
ones and adopt the same architectural constraints without compromising the parent
system’s efficiency.

– The developers and testers want the new system to be easily maintainable, not provoke
undesired changes in the existing system’s code or functionality and to not compromise
it in case a fault occurs.

• Academia members also have separate and well-defined roles that determine what each of
them want from the project.

– The internal supervisor wants to obtain innovative and publishable results in the MMR
field.

– The external supervisor wants to obtain innovative and marketable results in the MMR
field, as well as a viable plan of action and descriptions of the challenges his team may
face while developing an MMR solution.

– The student wants to design a system that fulfils the requirements imposed by FCUL’s
PEI and Accenture, including the proper documentation.

4.1.2 Quality models

Of the models presented for the definition of quality for a project, the FURPS quality model was
chosen for the definition of the project requirements, due to its simplicity and explicit distinction
between FR and NFR. However, this model omits some important concerns. Therefore, besides
the requirements based on the FURPS quality model, Accenture- and TCoE-enforced architecture

47



Chapter 4. Analysis 48

concerns on functional and technical requirements were considered for the NFR. These concern
the following requisites, giving definitions about how they should be interpreted and defined:

• Availability: "Is the system available 24 × 7? And is it available 99.9% or 99.99% of the
time?"

• Maintainability: "How easy is it to maintain?"
• Operability: "How easy is it to use and manage the system? How is it operated?"
• Performance: "How fast does the system respond? What is the maximum throughput?"
• Recoverability: "How does the application recover from a fault?"
• Resilience: "If there is an issue, is the data protected? What needs to be preserved?"
• Scalability: "How many users or transactions can the system process concurrently?"
• Security: "Can the system sustain attacks? Is the data protected?"

It should be noted that performance is also addressed in FURPS. Moreover, in the definition of
the system requirements, operability requirements have been combined with usability, since in
this case there will not be final users, but only developers and systems that access this one. All
requirement types are identified in capitals, using the first three letters of their name (FR for
functional requirements, the specific type otherwise, e.g. AVA for availability).

4.1.3 Functional requirements

Functional requirements (FRs) are those requirements that deal with the way a software system
is supposed to work according to its stakeholders. In other words, FRs are focused solely on the
system’s functionality [155, 156].

The functional requirements considered for this project are listed as follows:

FR-01 The system shall recognise the manufacturer of a vehicle from frontal and rear images
taken from a selected image set.

FR-02 The system shall recognise the manufacturer of a vehicle from frontal and rear images
taken in real visibility conditions.

FR-03 The system shall recognise the model of a vehicle from frontal and rear images and given
its manufacturer.

FR-04 The system shall recognise vehicle makes from all the top-selling manufacturers in the US.

4.1.4 Non-functional requirements

Non-functional requirements (NFR) are those that deal with constraints and attributes of the sys-
tem or system environment, being sometimes colloquially referred to as "-ilities" or "-ities". The
definition of NFR is not consensual between authors, but it is generally agreed that the term en-
compasses those concerns that are not related to the functionality of the software [155, 156].

The non-functional requirements considered for this project are listed by type as follows:

Availability

AVA-01 The system shall possess the same availability values as the parent system (OBO).

Maintainability

MAI-01 The system shall be accompanied by a high-level document explaining what the configu-
ration values affect, to ensure that anyone can tweak the system for optimal performance.

MAI-02 The system’s architecture shall be documented and accompanied by an element catalogue
detailing the responsibilities of each architecture module.



Chapter 4. Analysis 49

MAI-03 The code produced for the system shall be properly commented and annotated.
MAI-04 The code produced for the system shall adhere to the standardised company good prac-

tices.

Performance

PER-01 The system shall deliver its results in near RT, that is, within the same range as OBO.
PER-02 The system shall have a maximum time-limit to produce an answer, passing which a

default answer will be provided.
PER-03 The system shall be able to support a throughput at least equal to OBO’s.
PER-04 The system shall be able to incorporate a new element into the model and update said

model with no downtime.

Recoverability

RCV-01 Should the system experience a fault, there shall be mechanisms to restore it as close to
its previous state as possible.

RCV-02 The system shall implement logging.
RCV-03 In case of fault, a back-up system or server shall be kicked into action.

Reliability

REL-01 The system shall be able to recognise a vehicle’s manufacturer with an accuracy of at
least 80% and with as few false positives as possible.

REL-02 The system shall be able to recognise a vehicle’s model given its manufacturer with an
accuracy of at least 80% and with as few false positives as possible.

REL-03 System downtime shall not affect OBO’s performance.
REL-04 The system shall always provide an answer.

Resilience

RES-01 The system shall guarantee the persistence of every image fingerprint calculated.
RES-02 The system shall guarantee the persistence of the computed models and networks.
RES-03 The system shall guarantee the persistence of the output labels it computes.
RES-04 The system shall guarantee the recording of every transaction it handles.

Scalability

SCA-01 The system shall be able to process as many parallel transactions per time unit as its
parent system.

Security

SEC-01 Any permanently stored data shall be subjected to the same security measures as the data
stored by the parent system.

SEC-02 Any flux of information between logical components and/or physical machines shall be
subjected to the same security measures as those implemented in the parent system.

Supportability

SUP-01 The system’s services shall be accessible through an API that provides them indepen-
dently of the kind of system that might use them.
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SUP-02 The system implementation shall withstand the addition of further modules without com-
promising its performance and reliability properties.

Usability/operability

USA-01 The system shall be delivered/hosted as software-as-a-service (SaaS).
USA-02 The system shall provide an interface that renders its implementation transparent to other

using services.
USA-03 The system shall be accompanied by a high-level document explaining how it works to

increase its understandability.
USA-04 The system’s weights and configurations shall be able to be changed without causing

system downtime.
USA-05 The system shall be able to undergo fine-tuning according to consumer tendencies in a

given region/country.

4.1.5 Requirement prioritisation

The requirements identified in the previous sections do not all hold the same degree of importance
or urgency to the project. Therefore, a prioritisation technique must be employed to ensure the
proper relative importance of these requirements is established. Among the techniques described
for requirement prioritisation, the MoSCoW rule was chosen, since it has a set of intuitive pre-
established categories that allow for a relatively fast categorisation of requirements without the
need for exhaustive comparisons. Since the project is set as an isolated entity, in that it is consid-
ered as a single release for academic purposes, it was agreed that the W level would not be used,
as the requirements defined are all supposed to be part of the project to some extent.
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4.2 Variability in MMR

The process of vehicle make and model recognition (MMR) is a complex one, since a diverse
array of factors contribute to determine its success. It was, therefore, desirable that these factors
be properly identified and documented so that future efforts by the TCoE team might be able to
identify and prevent potential issues related to variability in MMR.

In order to identify potential sources of variability, a divide-to-conquer strategy was adopted.
Therefore, three main categories were considered:

• Road-side equipment (RSE) properties
• Capture event properties
• Vehicle properties

Each category was then further divided in order to determine some causes for variability, as
described below. It should be noted that each category was discussed under the assumption that
the remaining ones would remain constant, so as to reduce complexity.

4.2.1 RSE properties

Road-side equipment (RSE) is a vital component of electronic toll collection (ETC) systems, being
responsible for recognising a tolling event and creating the corresponding transaction. According
to documentation made available by EasyGo, the main components of a RSE module are [157]:

• Beacon: responsible for identifying and communicating with on-board units (OBU) of pass-
ing vehicles.

• Controller: computer that collects information from beacons and other subsystems, gener-
ates transactions according to that information and is responsible for their transmission for
processing.

• Sub-modules and peripherals: including, but not limited to, a vehicle detection system ca-
pable of detecting, positioning and, if applicable, classifying a vehicle. These modules may
also include a video registration system for enforcement, traffic lights and/or a barrier, dif-
fering according to the needs of the toll collecting company using the RSE.

When it comes to MMR, the registration of images of passing vehicles is particularly impor-
tant, since those images will serve to analyse those vehicles. However, these images and their
quality depend on a number of factors related to each RSE, namely:

• Camera resolution: this factor is inherent to each camera, and therefore constant for each
RSE, barring equipment replacements. Image quality is, nonetheless, extremely relevant in
vehicle classification of any kind, since an insufficient resolution may lead to misclassifica-
tion due to lack of data.

• Type of image capture performed by the RSE: each equipment is typically focused on
capturing a certain type of image, be it lateral, frontal or rear shots of passing vehicles.

• RSE position or angle: vehicle recognition may be affected by the angle in which a photo
is taken even if the type of capture performed is the same, since a change of perspective
may enhance or disguise important or distinguishing features of the brand and/or model of
a vehicle.

• Frame rate: the frame rate of video capture affects the amount of images captured per
second, meaning that a lower frame rate will result in fewer images of the vehicle being
available for analysis.
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4.2.2 Capture event properties

Besides the restrictions imposed by the equipment, another main source of variability is the way
the tolling event is captured given its surrounding environment, actions taken by the driver and
constraints imposed by the act of driving itself.

• Distance of the vehicle to the camera: although various stills of the same vehicle may
be captured, given that a vehicle is an object in motion when it comes to open-road tolling
(ORT), the distance between said vehicle and the camera when each image is captured may
vary greatly. This may render some of the stills unusable or diminish the information that
can be retrieved from them if the vehicle is either too far away from the camera or too close
to it.

• Angle of the vehicle in relation to the camera: although the camera is theoretically always
focused on the same point (which may not be true in reality due to strong winds or disrup-
tions of any other kind, such as accidents), ORT provides a flexible enough environment
for a vehicle to adopt slight changes in position relative to the camera while circulating in a
lane, as well as change lanes while crossing the tolling gantry.

• Complete or partial image capture: when the tolling event is detected, the images cap-
tured by the camera may capture a whole vehicle or only part of it, depending on the way
the vehicle is positioned on the road, its distance to the camera and the speed at which it
circulates.

• Luminosity and visibility conditions: the identification of a car’s brand and model can be
severely impacted by the surrounding environmental conditions and their effect on the cap-
tured images. Luminosity and visibility issues contemplate not only the problems caused by
obtaining photos in dark environments, like at night, but also rain or fog, which might ob-
struct camera vision and/or blur it, or sunlight, which may interact with reflective elements
such as license plates and cause glare effects.

• Vehicle speed: the speed at which a vehicle circulates impacts the number of images taken
of said vehicle and may produce blurring.

• Presence of other objects: since roads subject to tolling typically possess more than one
lane and are not completely isolated, other vehicles or objects may appear in the captured
images at various distances, thus making the identification process more difficult.

4.2.3 Vehicle properties

• Vehicle type: vehicles can generally be divided into passenger, light- or heavy-duty, ac-
cording to the International Council on Clean Transportation and the United States Envi-
ronmental Protection Agency. Other definitions are possible, depending from each country
or state’s jurisdiction. For each category considered, there are a number of sub-categories
it can be divided into, with the divisions being done mainly by weight and purpose. (For
instance, passenger vehicles can be divided into light-duty - also called passenger cars - and
medium duty, according to their weight.) [158] These differences introduce a high degree
of variability, since many types of vehicles have to be identified. The complexity increases
even further should bikes and other motorised vehicles be also considered.

• Vehicle brand, model and year: this is the main focus of MMR. For each brand and model,
a change in year may mean a completely different appearance, and thus a reliable solution
may be to consider a vehicle’s model as being the pair (model, year).

• Vehicle colour: many algorithms do not take colour into account. However, even if images
are converted to grey-scale, different tonalities of black, white and grey may improve or hin-
der recognition, depending on the algorithm’s ability to tell the vehicle from its surroundings
and the ease with which the vehicle’s contours can be discerned.
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• General condition of the vehicle: real world vehicles suffer from the passage of time and
use, accumulating dirt, suffering modifications when necessary (for instance, a change of
tyres, wing mirrors, having roof racks fitted to transport big objects, replacing or hammer-
ing dented components, etc.) or being involved in accidents which change the vehicle’s
appearance.

4.2.4 Analysis and summary

Given the numerous sources of variability, MMR systems should establish scenarios where some
of them are considered constant, at least in the initial stages. A system would, therefore, be
composed by a conjunction of several subsystems, each with a specific purpose and constants.

From the factors identified above, the easiest to remain constant would be the equipment. By
choosing one RSE at a time, be it a single camera or a similar group, the angle and direction in
which the image is captured remains practically unaltered, easing the differentiation of images
by eliminating or mitigating rotation factors. Of course, vehicles may still be located in different
points in the lane they are travelling in, which means the images will not be completely similar.
The use of various shots of the same vehicle may lessen this problem, since the system would
theoretically learn to recognise a vehicle at various distances and at a small angle range. In order
to simplify the workings of the MMR system as a whole, one further step would be to minimise
the amount of foreign objects present in the images the model learns from. Finally, when it comes
to the vehicles themselves, a possibility would be to define subsystems according to vehicle type.
Likewise, since heavily damaged or dirty vehicles could be difficult to identify, images could be
limited to relatively clean and undamaged vehicles to begin with.

A summary of the variability issues that an MMR system may face is presented in Figure 4.1.
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Figure 4.1: Main causes of variability identified for the MMR problem. Left, green: RSE proper-
ties. Centre, blue: image capture event properties. Right, orange: vehicle properties.





Chapter 5

Design

5.1 System architecture

5.1.1 Parent system overview

The solution developed by the Tolling Centre of Excellence (TCoE) team relies on three main com-
ponents: the road-side equipment (RSE), the operational back-office (OBO) and the commercial
back-office (CBO). Users can interact with the system via two websites. The first, named public
website or PW, aims to provide information and allow interactions with social media, possessing
a content management system where the tolling company publishes any information it deems per-
tinent. In turn, the self-service website (SSW) is used by customers to manage their information
and that of their transponders and vehicles, as well as checking their transactions or violations and
providing payment details.

The RSE information is handled externally through company ETCC’s RITE system [159],
generating event and transaction information that is in turn handled by TCoE’s solution. CBO
is a systems, applications and products (SAP) system developed by Accenture which handles
billing and payments, as well as performing account maintenance and management. This project,
however, focuses solely on functionalities provided by the OBO component.

OBO is a custom application built by TCoE to process the information generated by RITE,
being the owner of the client account balance and information. It is a modular system responsible
for the creation of transactions, with loosely-coupled components. OBO possesses, however, a set
of core components that are required if any other modules are to function properly, namely:

• Publishing and services: module which allows bidirectional communication between the
OBO and CBO components.

• BSMS: module responsible for statistics and alerts.
• Validation and formatting: module that converts information received from external sources

into a format compatible with OBO’s internal representation.
• PMM: module which concentrates operational data, relationships and status for customer,

vehicle and tag information, charging the client’s account balance.

Besides these core components, OBO contains a set of stand-alone functional modules:

• RSE event gathering: includes information extraction, transformation and loading (ETL)
capabilities, preconfigured controls and the ability to convert RSE events into a standard
internal format.

• RSE provisioning: provides back-office to RSE communication capabilities and is prepared
by default to create black and white lists and tariff lists, controlling the upload process.

61
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• Intelligent automatic license plate recognition (IALPR): supports manual and automatic
license plate reading, using optical character recognition (OCR) to identify the vehicle de-
picted in an image and supporting human-based validation as well.

• Trip builder: converts toll point crossing events into transactions.
• Reporting: provides a set of reports for each functional module and allows for configuration

of further reports if desired.

Of these, IALPR in particular proves to be a major asset in Accenture’s tolling solution, having
been patented by TCoE’s lead supervisors [160]. This process is aimed at combining data from
multiple sources in order to identify a vehicle through the use of OCR and fingerprinting. However,
neither of these techniques are infallible, having limitations when it comes to low-quality images
and producing false positives sometimes. Therefore, IALPR also implements 2nd level OCR as
a mitigating strategy, using a second OCR engine from a different supplier. Another mitigating
strategy adopted is the use of business rules, which compare and evaluate, for example, the results
of reading frontal and rear license plates or the results returned by the 1st and 2nd level OCR
engines.

However, accuracy problems are not completely solved by this new layer of automation, neces-
sitating the use of image review (IR) by human operators. Nevertheless, this method of overriding
the result can also introduce inaccuracy and increase costs, making the introduction of further au-
tomation methods desirable, such as evaluating a vehicle’s attributes and behaviour and the context
of the trip made.

Overall, the architecture of this application can be described using three layers atop a data
model layer, as described by the architecture module view depicted in Figure 5.1.

Element catalogue for Figure 5.1:

• Matching layer: the topmost layer is responsible for calculating confidence levels and de-
ciding whether or not there is a match.

– Automatic Vehicle Recognition Engine: module that holds the algorithms that allow
for the computation of a composite value of confidence in the recognition of a vehicle
based on the evaluations performed and decides if a match has occurred or not based
on the business rules.

• Evaluation layer: the middle layer produces the necessary information to augment the
knowledge basis.

– Vehicle Fingerprint Engine: extracts and correlates the vehicle fingerprint data.
– 2nd Level OCR Engine: performs a second pass over the license plate images.
– Traffic Behaviour Analyser: evaluates traffic patterns that can be associated with a

specific vehicle.

• Management layer: this layer contains the Image and Transaction Management APIs,
which contain methods to validate system data.

– Image Management API: system module that performs validation of image data for
completeness, consistency and relevance.

– Transaction Management API: system module that performs validation of transaction
data for completeness, consistency and relevance.

• Data access layer: comprises the knowledge bases (KB), indexes and metadata of the ap-
plication, as well as any computed behaviour models. This layer is not truly applicational,
serving instead as a persistence unit.

The technical architecture of the IALPR application was set up to be horizontally and vertically
scalable, with the evaluation modules separated from the KBs in application server domains/farms.
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Figure 5.1: OBO architecture: module view of the IALPR system.

Each evaluation module holds an instance of the management APIs in order to perform indepen-
dent processing. The image data and files are stored in a specific separate infrastructure (typically
a storage area network, or SAN). The allocation view of the architecture is described in Figure
5.2.

When it comes to the implementation, the application flow is depicted in Figure 5.3 and de-
scribed as follows:

Element catalogue for Figure 5.3:

1. Initial Data Validation: performed in the management layer by the management APIs.
This activity validates the incoming transaction and image data to verify completeness, con-
sistency and relevance so data can be posteriorly evaluated.
2. Fingerprint Extractor: corresponds to the detection and extraction of interest points and
image features from a picture.
3. 1st Level OCR: extracts the vehicle’s license plate characters, mask, jurisdiction and plate
type.
4., 6. LPN Derivatives: calculates a set of LPN similar to the identified one. May use
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Figure 5.2: Allocation view of the IALPR system.

grammatical inference algorithms based on Hamming or Levenshtein distances.
5. 2nd Level OCR: extracts the vehicle’s license plate characters, mask, jurisdiction and
plate type. Produced by a different vendor than the 1st Level OCR.
7. Business Rules: this activity evaluates if the front plate matches the rear one with a
confidence level above the established threshold.
8. Fingerprint Matching: compares image features from different images in order to detect
if the same object is present. This activity includes:

a. Region Interest Detector: algorithm used to detect license plates in a picture, which
can be parametrised to detect other regions of interest.

b. Fingerprint Candidate Selector: algorithm used to select the most appropriate finger-
print from the knowledge base to perform the comparison against the new one.

c. Image Normalisation: set of algorithms used to increase image quality and improve
fingerprint and 2nd level OCR results.

d. Fingerprint Knowledge Base Builder: algorithm used to create and maintain the fin-
gerprint knowledge base.

9., 10., 14., 15. Matching Evaluator: set of algorithms based on fingerprinting, OCR, RSE
and all other components of the IALPR that evaluate and decide the identification output,
based on a fuzzy Bayesian network.
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11. Adjacent Toll Point Analyser: set of algorithms that, based on positive identification on
an adjacent toll point, help improve the recognition confidence level.
12. Vehicle-based Behavioural Analyser: set of algorithms that, based on historical traffic
patterns, help improve the recognition confidence level.
13. Vehicle Attributes Analyser:set of algorithms that, based on vehicle attributes (e.g.
make, model or colour), help improve the recognition confidence level.
16. Human Image Review: activity performed if a decision cannot be reached within the
defined confidence level threshold, in which the images of the vehicle are sent for revision
by a clerk in order to be identified.
17. Knowledge Base Augmentation: activity that extends the knowledge base information
using the results of the evaluation, in order to further tune the evaluation capabilities of the
system in the future.

Figure 5.3: Application flow of the IALPR system.
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5.1.2 Architecture

The present work aims to design a new stand-alone module complementary to IALPR’s OCR that
lessens the likelihood that an image will be sent to be reviewed by a human operator, thus lowering
the operating costs. The current system’s architecture was designed so that it could blend as
modularly and effortlessly as possible with the existing architecture. Therefore, the module view
remains the same as described in Figure 5.1, with the only addition being a new module (Vehicle
MMR Engine) being inserted into the Evaluation layer, as depicted in Figure 5.4.

Figure 5.4: Module view of the modified IALPR system.

Element catalogue for Figure 5.4:
The element catalogue is identical to the one described for Figure 5.1, save for the new module
introduced, Vehicle MMR Engine.

– Vehicle MMR Engine: responsible for extracting and evaluating data pertaining to the make
and model of a vehicle.

When it comes to the deployment view of the system, the less costly solution would be to
somehow integrate the MMR component into an existing server farm. However, this would po-
tentially compromise the performance of the existing system, something undesirable according
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to the requirements established for this new system. Therefore, the solution found relies on the
deployment of a new server farm/domain specifically built for hosting the MMR services. The im-
age repository and system database will remain the ones previously used, so that any other OBO
application may access this data.

Figure 5.5: Allocation view of the modified IALPR system.

The application flow of the new system deviates from the original one significantly, introduc-
ing a new parallel branch of computation to allow for the calculations associated with MMR, as
described in Figure 5.6.

Element catalogue for Figure 5.6:
Described below are the elements added to the flow when compared to Figure 5.3. Since there
were six elements inserted, starting after number 8 (Fingerprint Matching), the elements num-
bered 9–17 in Figure 5.3 were renumbered to 15–23 in Figure 5.6. Nevertheless, their functions
remain the same, and so the only elements described in this element catalogue are the following:

9. Manufacturer Extractor: corresponds to the detection and extraction of a region of interest
in an image for the logo region.
10. Manufacturer Derivatives: calculates a set of logos similar to the identified one in the
image.
11. Business Rules MMR: evaluates whether the vehicle back and front logos match with a
confidence level above the established threshold.
12. Matching Evaluator: algorithm that evaluates and decides the manufacturer classifica-
tion output.
13. Model Extractor: corresponds to the detection and extraction of multiple regions of
interest in an image for identifiable characteristics in a model, namely grill, wing mirrors
and lights.
14. Make and Model Matching: compares results from different images to evaluate whether
the results are the same and rules out impossible make and model combinations.

The MMR application does not, however, stand on its own in terms of technology, needing
the aid of external APIs in order to function. Such is the case of the Google Tensorflow API, used
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Figure 5.6: Application flow of the modified IALPR system.

to efficiently compute machine learning models, and the OpenCV API, which is used in image
processing and fingerprinting.

The interactions established between the system and these APIs are described in the top-level
service-oriented architectural view depicted in Figure 5.7.

Element catalogue for Figure 5.7:
Most of the modules described in this top-level SOA view have already been documented in Figure
5.1, so the focus falls on the description of the new components depicted in this view.

• Vehicle MMR Engine: see the element catalogue for Figure 5.4.

– Manufacturer Recognition module: extracts a region of interest and identifies the ve-
hicle’s manufacturer through its logo.

– Model Recognition module: extracts regions of interest and identifies the vehicle’s
model through its wing mirrors, grill and lights.

– Make and Model Matching module: makes a decision about the vehicle’s make and
model based on the results obtained in the previous two models and excludes impossi-
ble results (e.g. if a vehicle’s manufacturer is Volkswagen, its model cannot be Astra,
an Opel model).

• Google Tensorflow API: external API that provides machine learning capabilities.
• OpenCV API: external API that provides image processing capabilities.
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Figure 5.7: Top-level SOA view of the modified IALPR system. For convenience purposes, only
some modules are described for each layer, while the others are omitted (see Figure 5.4).

5.2 Implementation considerations

TCoE’s existing OBO solution relies on Java 1.7 for its implementation. However, since this
work’s main focus rests on the employment of machine learning techniques for vehicle make and
model recognition purposes, and upon review of the existing documentation, it was concluded
that this language might not be the best choice for implementing the MMR components, due to its
high level of abstraction hindering performance, as well as the lack of available APIs for the TCoE
team’s libraries of choice, OpenCV for image processing and Tensorflow for the prospective use
of neural networks, as recommended by internal supervisor Dr. Ricardo Pinto. Therefore, Python
was chosen as the implementation language, given its fulfilment of the requirements above, as
well as the amount of machine learning libraries available and its relative ease of learning when
compared to languages such as C++.

Although this step will not be put into practice in the current work, it is nevertheless important
to establish how this new code would be integrated into the existing one. The physical establish-
ment of a new server farm discards more low-level implementations such as process-launching
from the same machine, which would be impossible to escalate properly. A possible approach
would be to make these new functionalities available through a REST API, hiding their implemen-
tation details from the caller. This would be a viable approach for communication between OBO
and this new MMR system - OBO could simply make a POST call with the image and receive the
most probable classification in return, as well as the confidence level for said classification. How-
ever, different functionalities within the MMR unit must also be taken into consideration, since,
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although the classification of a single image could be done almost simultaneously, this image must
also be fed to the existing classification system in order to fine-tune it. Each image must be clas-
sified in near real-time so as not to compromise the existing ALPR system, so a possible solution
would be load-balancing synchronous requests across a number of distributed server nodes for
optimal performance.

Causing the system to recalibrate itself with the arrival of each new image would be imprac-
tical, if not completely impossible, since most machine-learning methods are time-costly when it
comes to calculating models. A possible solution to allow for the improvement of this knowledge-
base without exhaustive use of resources could be batch processing of images - for instance, im-
ages that arrive after the start of the new execution of model fine-tuning could be stored temporar-
ily or placed in a queue, since this activity would be inherently asynchronous, which calls for
an event-driven architectural style. The recalibration process could then be run using a cron job,
which would allow this recalibration to be triggered at the most convenient time for the system
(for example, overnight or during the weekend).

Moreover, the pre-existing model would have to be available while the new one was calculated,
which makes the use of redundancy advisable. In fact, redundancy and distribution of the entire
system would be ideal, were it not for the increasing levels of difficulty in maintaining such a
system over extended periods of time and still making it scale efficiently. A possible mitigation
plan would be the use of cloud providers such as Google Cloud Platform (GCP), Azure or Amazon
Web Services (AWS), which allow for more flexible allocation and management of resources and,
in the case of GCP, allow native support for the development and maintenance of Tensorflow
models.

5.3 Code quality and performance indicators

5.3.1 Code quality

The current project aims to establish a novel MMR solution for TCoE’s tolling projects. There-
fore, the tools used to ensure the development and quality of any code produced for the MMR
component should match the ones currently used by TCoE’s teams.

The TCoE tolling projects use static code analysis to enforce the quality of the code produced
by the teams. Static code analysis consists in analysing the source code for both structure and
content, ensuring that all code adheres to the industry standards and best practices, and detecting
security threats, bugs and maintainability issues [161].

SonarLint was the tool chosen by TCoE to perform static code analysis, being integrated in
their IDE of choice, Eclipse. Operating under the basis that poor code quality causes a variety
of issues, such as low team velocity, application decommissioning, crashes in production or bad
reputation, developer company SonarSource established their tools with three types of issues in
mind [162]:

• Maintainability (code smells): issues relating to the effort of adding to the code in terms of
ability, cost and time it would take to perform those changes. These issues are sometimes
referred to as technical debt.

• Reliability (bugs): issues that deal with operational risks or unexpected runtime behaviour,
generally caused by critical programming errors and/or non-use of best practices.

• Security (vulnerabilities): issues pertaining to the existence of flaws that can be exploited
to make the code behave differently from its intended purpose.

Complementing the use of this code analyser, TCoE also uses the following assortment of quality
project and code management applications:



Chapter 5. Design 71

• Arquillian: testing platform for the JVM that enables developers to create automated inte-
gration, functional and acceptance tests for Java middleware [163].

• Git/SourceTree: git is a widely used open-source, free software version control system,
with SourceTree being a commonly-used GUI [164, 165].

• Jenkins: open-source automation server, used for project building and deployment [166].
• JON: acronym for JBoss Operations network, middleware manager and monitoring system

[167].
• Nexus: centralised repository manager [168].
• Phabricator: toolset platform for software development which includes applications for

code review, repository hosting, bug tracking and project management [169].

5.3.2 Performance indicators

The use of performance indicators and measurements in software development is essential to ob-
tain critical and objective information about the software itself, its performance and the decisions
that need to be applied to it [170]. An MMR system, being highly centred on image recognition,
should rely heavily on machine learning (ML) and/or image fingerprinting. Therefore, the use of
ML performance indicators was applied.





Chapter 6

Implementation and results

6.1 Stanford dataset

The Stanford cars dataset was put together by Krause et al. (2013) and consists of 16185 images
of cars, roughly equally divided into a training set containing 8144 images and a test set which
comprises the remaining 8041. The vehicles displayed in the images of this dataset assume a
variety of poses in relation to the camera, with frontal, lateral, rear, bird’s eye view, lower view
and many combinations thereof being represented. These cars belong to 196 different classes
or pairings (brand,model, year), which are referred to as the car’s model in this context, and
represent 49 different brands, distributed as described in Figure 6.1 [171].

Figure 6.1: Distribution of the images in the Stanford dataset according to the vehicle’s brand. The
most sold brands in 2006 and 2016 are depicted in red and the remaining ones in blue. (Based on
[171–173].)

Since the number of classes and images was very high and would theoretically require costly
computation times, a sample of 12 brands was used for performing evaluations on this dataset.
This sample was determined by analysing reports on the most purchased cars in the US in 2006
and 2016 and determining the top vehicles’ brands in order to judge which ones would be more

73
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representative. These brands are depicted in Figure 6.1 in red bars [172, 173].

A more thorough analysis for the entirety of the Stanford dataset can be found in Appendix A,
Table A.1.

6.1.1 Fingerprinting

The first application of the Stanford images was through the use of image fingerprinting with
AKAZE features [174].

The main goal of this approach was not to find exact image matches, as would be conventional
in fingerprinting, but instead to determine whether the presence of multiple images, taken in vari-
ous angles, of vehicles belonging to the same model, would allow for successful matches according
to the specificities inherent to each model that could contain points of interest (for instance, grills,
lights or wing mirrors). Therefore, in this stage all the images from the brands represented by red
bars in Figure 6.1 (Chevrolet, Dodge, Ford, Honda, Hyundai, Jeep, Land Rover, Mercedes-Benz,
Nissan, Ram and Toyota) were used, independently of the angle the vehicle was depicted in.

These images were then assessed on vehicle brand/make and model. For that purpose, 1000
images belonging to the Stanford test set were converted to grey-scale and subject to matching
with every image in the training set. This matching was performed in three different ways:

1. Brute-force matcher with ratio test (as proposed by Lowe (2004) in his SIFT paper [109]
and illustrated in Figure 6.2)

2. Brute-force matcher with cross-check
3. FLANN matcher with ratio test

Matcher type Two kinds of matcher were considered in accordance with the literature. The
first one was a brute-force (BF) matcher. BF or naïve matchers take a descriptor in a set and
match it with another in a second set by trying each descriptor in that set, applying distance met-
rics and choosing the closest one [175, 176]. On the other hand, Fast Library for Approximate
Nearest Neighbours (FLANN) matchers contain a collection of algorithms optimised for nearest
neighbour search in large datasets and for high dimensional features, being therefore faster than
BF matchers [177]. FLANN matchers use randomised kd-trees or hierarchical clustering trees for
better performance [176].

Restrictions to the neighbour candidates When it comes to the neighbours found for a key-
point descriptor, in order to limit the amount of possible matches, two types of restriction methods
were used. Firstly, Lowe’s ratio test was applied. In his SIFT paper, Lowe considered that correct
matches needed to have the closest neighbour significantly closer than the closest incorrect match
in order for reliable matching to be carried out. This author then conducted an experiment on real
image data, using a database of 40000 keypoints and calculating the probability density functions
for correct and incorrect matches in terms of the ratio of closest to second-closest neighbours of
each keypoint. Lowe concluded that matches should be discarded when the distance ratio was
greater than 0.8, thereby eliminating 90% of the false matches while discarding less than 5% of
the correct ones. This experiment is illustrated in Figure 6.2 [109].
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Figure 6.2: Ratio test method developed by Lowe (2004), showing the probability density func-
tions (PDF) of correct (blue triangles) and incorrect (red squares) matches according to the dis-
tance ratio for the closest neighbour relative to the second closest one. (Adapted from [109].)

The second match-discarding technique consisted in using OpenCV’s boolean built-in crossCheck
parameter, which, when set to True, alters the behaviour of the BF matchers. In this case, the
matcher will only return (i, j) pairs that have the jth descriptor in the collection as the nearest
to the ith query descriptor, and vice-versa, i.e., crossCheck causes only consistent pairs to be
returned as matches. It should be noted that, since FLANN matchers create an indexing search
tree, removing nodes can be hard or even impossible to do, necessitating retraining of the data
structure. Therefore, FLANN matchers do not take this parameter [177].

Implementation In order to simplify the analysis, each of the brands belonging to the Stanford
dataset was encoded with a number from 1 to 49. The 12 brands considered for fingerprinting with
AKAZE features were then extracted, yielding the following list:

10 Chevrolet
13 Dodge
18 Ford
19 GMC

22 Honda
23 Hyundai
27 Jeep
29 Land Rover

35 Mercedes-Benz
37 Nissan
40 Ram
46 Toyota

For each brand, all the available models were considered, returning 91 vehicle models that can
be consulted in Appendix A, Table A.2.

The evaluations were performed by computing the keypoint descriptors for each image and us-
ing, in turn, a brute-force matcher and a FLANN matcher to perform the matching. Since AKAZE
computes binary descriptors, the distance metric chosen for the BF matcher was the Hamming
distance. The amount of matches was then reduced by applying Lowe’s ratio test or cross check-
ing between the descriptors, in order to discard matches where the two nearest neighbours are not
too dissimilar to each other. Through the analysis of Figure 6.2, and taking into account that the
ratio chosen by Lowe was 0.8, which already showed some probability of incorrect matching, a
slightly lower ratio of 0.7 was chosen. A second ratio value of 0.4 was also tested for comparison
purposes, since although it would theoretically halve the probability for correct matches, it also
rendered the probability of incorrect ones almost null.
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Finally, classification was accomplished through ordering the matches obtained for the image
and choosing one in accordance to the ordering function used. Three approaches were attempted.
In the first, maximum value, for each test image, the number of matches for each training image
(m) were added and then sorted in descending order. The first image in that list (the one possessing
the highest number of matches) was then considered the resulting match, and its label taken as the
test image’s classification, as described in Equation 6.1 [107, 177].

BMMV = max {m} (6.1)

The second approach, minimum absolute difference between ratios, took into account the
number of keypoints for the image being matched (kptest) as well as the number of keypoints
for each image it was compared against (kptrain), by establishing ratios between the number of
matches for an image pair (m) and the number of keypoints produced by each image. Therefore,
two fractions were calculated for each pair (testImage, trainImage). The evaluation was then
performed according to Equation 6.2. The rationale behind this method is that two images would
be most similar when both fractions approached 1, meaning each keypoint in the test image would
have a match in the training image and vice-versa, and hence taking the absolute difference be-
tween the ratios and minimising it would yield better results than simply taking the highest number
of matches. Nevertheless, this approach is not without fault, since the objective of these assays is
not to find exact image matches, but instead enough similarities that two images could be consid-
ered to belong to the same class. In fact, even the same image in different resolutions could pose a
problem due to the likelihood of there being a different number of generated keypoints. Likewise,
in order for this approach to work, instances where no match was found have to be discarded prior
to its application.

BMAD = min

{∣∣∣∣ m

kptest
− m

kptrain

∣∣∣∣} (6.2)

A further attempt, maximum match to keypoint ratio, was performed using solely the infor-
mation pertaining to the image being tested, as shown in Equation 6.3. This method of choosing
the classification result eliminates the need to explicitly take the images the sample is compared
against into account by prioritising the highest fraction of keypoints that are being matched in the
test image. Therefore, a higher ratio would mean the test image would bear more resemblance to
the image the comparison is made against. However, this method does not guarantee the matches
being made are satisfactory and translate into real similarities between the two images. Likewise,
the comparison against an image that yields a lower number of keypoints when compared to the
test image will automatically limit the number of matches that can be performed and may cause
that matching to be unduly discarded.

BMMR = max

{
m

kptest

}
(6.3)

Results and discussion The various techniques mentioned were combined to yield 15 different
assays, whose results are displayed in Table 6.1.
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Table 6.1: Results of the fingerprinting assays for the Stanford dataset.

Brand Model Brand Model

MV 1 0.128 0.007 -0.098 -0.002
AD 2 0.091 0.009 0.041 -0.002
MR 3 0.104 0.020 0.092 0.011
MV 4 0.168 0.112 0.045 0.102
AD 5 0.152 0.083 0.099 0.073
MR 6 0.168 0.112 0.125 0.102
MV 7 0.095 0.005 -0.064 -0.003
AD 8 0.098 0.009 0.045 -0.002
MR 9 0.091 0.005 -0.064 -0.003
MV 10 0.000 0.000 --- ---
AD 11 0.000 0.000 --- ---
MR 12 0.000 0.000 --- ---
MV 13 0.000 0.000 --- ---
AD 14 0.000 0.000 --- ---
MR 15 0.000 0.000 --- ---

Key: BF = brute force, R = ratio, CC = cross check, N/A = not applicable
Key: MV = maximum value, AD = minimum absolute difference between ratios, 
Key: MR = maximum match-to-keypoint ratio

BF

R

R

Assay 
No.

Ratio 
used

Match 
selection
(R,CC)

Matcher type
(BF, FLANN)

FLANN

N/A

0.4

0.7

0.4

CC

0.7

Classification 
selection

Cohen's 
kappa

Accuracy

An initial analysis of Table 6.1 shows that the results obtained through the use of FLANN did
not bear any fruit, whereas the use of a brute-force matcher did not achieve an accuracy higher
than 20%, with the best value being 16.8% for a ratio testing of 0.4, both using the maximum
value(MV (r = 0.4)) and maximum match-to-keypoint ratio (MR(r = 0.4)) ordering functions.
On the other hand, the minimum value obtained (9.1%) also appears twice on the table, once for
AD(r = 0.7) and then again for MR(cross − check). In fact, the following conclusions can be
extracted when it comes to the brute-force matching attempts:

Vehicle brand: µACC = 0.122± 0.033

1. There was little distinction between the three ordering approaches when taken across
the three algorithms used (r = 0.7, r = 0.4 and cross-checking). The average accu-
racy values obtained were of 0.130±0.037 for the maximum value function, followed
by 0.121±0.041 for the maximum match-to-keypoint ratio function, and finally yield-
ing 0.114± 0.033 for the minimum absolute difference between ratios.

2. A more noticeable distinction occurred when accuracy results were compared within
the same algorithm and across the three ordering functions. The use of a ratio of 0.4
stands out when compared to the remaining two approaches, with an average accuracy
of 0.163 ± 0.009. The remaining two approaches are similar in comparison, with the
use of a ratio of 0.7 seeming slightly more advantageous than cross-checking results
(0.108± 0.019 vs. 0.095± 0.004).

Vehicle model: µACC = 0.040± 0.048

1. Averaging the results of each of the three ordering approaches did not yield reliable
results, with the highest result being 0.046±0.058 for the maximum match-to-keypoint
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ratio algorithm. The low accuracies obtained were also reflected in small values of
kappa, which invariably fell in the "slight" agreement range, per Landis and Koch [60].
Another characteristic of the model evaluations for MV , AD and MR was the fact
that, for each one, the standard deviation was higher than the mean value, indicating
a very spread-out distribution of values. Therefore, it can be inferred that a general
approach of grouping results in this fashion cannot lead to reliable conclusions.

2. More interesting results were obtained when averaging the values according to the use
of ratio-testing value or cross-checking. This analysis shows, once again, that the use
of r = 0.4 produces higher accuracy results (0.102 ± 0.017) when compared with
the use of a ratio of 0.7 or cross-checking, which demonstrates some agreement with
the results obtained for brand classification. In fact, the best accuracy values for the
prediction of vehicle models were obtained for the same assays that yielded the highest
results for brand classification (assays 4 and 6, pertaining to theMV andMR ordering
functions, respectively).

The results obtained for the fingerprinting can be explained by a number of factors discussed
more thoroughly below. This discussion is mainly centred in the conclusions for brand classifi-
cation that can be surmised from: (i) the preferred type of matcher, (ii) the use of each ordering
function, (iii) the most advantageous alternative between ratio and cross-checking, and (iv) the
general effectiveness of this approach to the current MMR problem.

Matcher: The only type of matcher to produce any kind of result was the brute-force one,
with the FLANN matcher being unable to produce matches between images presented to it. These
results may be explained by two main factors. Firstly, the use of a FLANN matcher requires the
use of a number of parameters that describe the algorithm used for nearest neighbour detection,
which would have to be fine-tuned to the current problem and would probably have been handled
better by someone with more experience in the field. Another contributing factor may have been
related to the type of detection desired, since the current work aims to match images based on a
few local features and not as a whole. For this purpose, a brute-force matcher will inevitably yield
more combinations of possible matches, although they may not be as polished or precise as those
yielded by FLANN. It should also be noted that, due to FLANN producing an indexed search tree,
matches considered almost aleatory are unlikely to happen when using that algorithm.

Ordering function: When it comes to the ordering functions used, the results for the brand
evaluation were very similar to one another. Nevertheless, taking into account that the best values
were obtained for the approaches corresponding to the two highest averages, it can be surmised
that the second algorithm presented (minimum absolute difference between ratios, or AD for
short) is the weakest approach, and thus the less advisable one when ordering matches. This issue
can be understood when one considers that similar images at different resolutions may yield a
vastly different number of keypoints, shifting the absolute difference of ratios from its ideal value
of zero. It should also be considered that a value near zero may also be the result of very poor
matches, such as those where only one point in each image has a match, which would cause the
fractions to be already tending to zero to begin with. Therefore, the use of this ordering function
is ill-advised.

Ratio/cross-checking: The use of Lowe’s ratio testing proved overall more effective than
the cross-checking approach, both in brand and model recognition. One possible explanation for
the cross-checking algorithm to fail to provide good results could be due to the absence of true
matching images (i.e., the images being matched were not in fact different representations of the



Chapter 6. Implementation and results 79

same image or even of similar ones in most cases). However, the ratio proposed by the literature
did not fare much better, averaging an accuracy of 0.108 ± 0.019 for the brand classification
(against the 0.095±0.004 achieved by the use of cross-checking), and 0.012±0.007 (vs. 0.006±
0.002) for model recognition. The altered ratio relatively to what is proposed by Lowe may also
be explained by the absence of true matches in most images, which instead bore small degrees
of similarity meant to be detected as matches (for example, a vehicle logo or grille shape as
opposed to the whole vehicle). It may be that the results for the use of CC and r = 0.7 are not
very different because the first acted by eliminating matches that were not considered rigorous
enough for a typical fingerprinting assay, such as unidirectional ones, while the second allowed
too many false positives to stand for correct matches. Therefore, by lowering the ratio as a means
of experiment control, a more flexible option was inadvertently provided, since more false matches
were discarded from the potential result set. A more desirable ratio could also be determined had
more ratio values been used for comparison, which could serve as a basis for further work.

Classification analysis for the best result: From the assays undertaken in these attempts,
numbers 4 and 6 obtained the best results for accuracy and kappa score in the brand scope, with
assay number 6 (MR(r = 0.4)) also producing a higher kappa value for models. Its brand
confusion matrix is presented in Table 6.2.

Table 6.2: Confusion matrix detailing the results obtained for brand classification in assay 6 (ratio-
testing with r = 0.4 and maximum match-to-keypoint ratio ordering function). The shaded entries
in the diagonal correspond to true positive matches.

10 13 18 19 22 23 27 29 35 37 40 46 Total
10 48 13 11 10 1 10 3 0 2 2 1 5 106
13 14 26 7 5 2 8 3 0 8 0 0 3 76
18 13 4 22 2 6 9 1 2 0 0 1 5 65
19 4 4 3 9 1 5 0 0 1 0 0 0 27
22 1 2 1 0 3 4 0 0 0 1 0 2 14
23 8 7 7 4 2 17 0 0 4 3 0 4 56
27 6 2 6 1 1 5 9 1 4 1 0 0 36
29 3 0 2 1 1 1 0 3 0 0 0 0 11
35 4 5 3 2 2 6 1 0 19 3 0 0 45
37 0 2 4 1 1 2 0 2 1 2 0 0 15
40 1 0 0 0 0 0 0 0 0 0 2 0 3
46 2 1 1 0 2 4 1 1 0 0 0 8 20

Total 104 66 67 35 22 71 18 9 39 12 4 27 474
0.474

Predicted

R
ea
l

The confusion matrix for the brand results obtained for this assay shows that the numbers of
real and predicted images for each of the twelve brands considered in this study are generally
similar, which means that Chevrolet (10) was the brand that obtained the most matches, while
Ram (40), for example, produced a suitably lower number of classifications. It should also be
noted that every brand was correctly classified at least once. However, this is not reflected in the
number of true positives, depicted in green, which explains the low accuracy rates. Similarly,
from a total sample of 1000 images, only 474 were actually classified, which lowers the accuracy
even further. In fact, should only these 474 results be taken into consideration, the accuracy for
assay 6 would rise from 0.168 to 0.354, which demonstrates the impact of non-classification in the
outcome of this assay, further shown in Table 6.3. Additionally, Ram (40), one of the brands which
only produced two true positive matches, was the most difficult to match overall, with 76.9% of
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its images not having been classified. In contrast, Mercedes-Benz (35) was the easiest brand to
match, with only 34.8% non-classifications, and correctly matching the remaining instances in
42.2% of the cases. These two values stand out in comparison to the rest, although they cannot
statistically be called outliers. Ram is especially vulnerable to non-classified images, since the
Stanford dataset only contains 82 Ram pictures to begin with, and of those only 3 can be found in
the sample used for the assays.

Table 6.3: Frequencies of non-classification for each brand in assay 6.

10 13 18 19 22 23 27 29 35 37 40 46
Absolute 144 81 74 29 20 60 25 11 24 23 10 25

Relative to real 
brand total

0.576 0.516 0.532 0.518 0.588 0.517 0.410 0.500 0.348 0.605 0.769 0.556

Brand

Frequency of 
non-

classification

Overall effectiveness: The brute-force matcher proved to be a poor classifier of vehicle
brands, being virtually unable to perform any kind of reliable classification for the model save
for two assays (no. 4 and 6). These results are not unexpected, since the images in the Stanford
dataset differ wildly in size, resolution, vehicle pose and light conditions, among other factors,
which renders the recognition of vehicle models more difficult. Although vehicle brands tend to
be distinctive enough for humans to tell them apart, generally through either the logo or grille,
the results showed that fingerprinting assays were not the best method to achieve this end, and
therefore further attempts using different technologies had to take place.

6.1.2 Cascade classifiers

Through the review of related literature detailed in Chapter 3, vehicle grilles stood out as a possible
distinguishing feature. Therefore, a different approach was attempted based on the use of cascade
classifiers. In order to avoid bias, the first step undertaken was to generate an independent dataset
containing positive and negative examples. The cascade classifiers were then trained using the
aforementioned dataset, by making use of Ball and Mehner’s tutorial scripts [178,179] and tweak-
ing them for the desired purpose. Therefore, two kinds of cascade were calculated: faster but less
precise LBP cascades, and more accurate but much heavier and more complex Haar cascades. A
set of 300 images from the Stanford dataset was then fed to each cascade, which determined the
grille ROI when deemed applicable and created a new image from it for further analysis. These
outputs were then examined according to a number of factors detailed in Table 6.4.
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Table 6.4: Parameters used to classify output images from cascade classifiers.
Code Name Description
(a) Grille present Did the original image possess a grille?
(b) Grille detected Did the output image show the presence of

a grille?
(c) Other detected Were any other elements detected besides,

or instead of, the grille?
(d) Grille at least partially detected Did the output capture any part of the

grille?
(e) Grile completely detected Was the grille detected fully or only par-

tially?
(f) Only grille detected Did the output show only the grille or also

other elements?
(g) Grille perfectly detected Did the output capture the whole grille and

nothing else?

Finally, the resulting ROI crops were to be subjected to classification via the fingerprinting
techniques presented in subsection 6.1.1.

ROI determination The determination of the vehicle ROI from the cascade output was per-
formed according to two different metrics.

The first one, called the intersections metric, consisted in taking the areas judged to be the
most likely to contain the ROI by the cascade and choosing the one which intersected more distinct
areas. This algorithm seeks to determine the area which most probably contains the ROI as being
the one most densely populated by the calculated rectangles (i.e., the rectangle with the most
intersections). The rationale for this proposed metric was that a more densely-populated area
would be the most likely to contain an actual region of interest.

The second metric evaluated in these assays was named min-neighbours, consisting of an
adjustable parameter for the sliding concentric window (SCW) approach applied by the cascade
classifiers, which specifies how many neighbours each candidate ROI rectangle should possess in
order to be retained.

Cascade calculation Each cascade was calculated according to the script shown in Fig-
ure 6.3, which makes use of OpenCV’s opencv_traincascade function as well as Ball and
Mehner’s previous work for their tutorials [178–180].
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1 # ! / b i n / bash
2 # c r e a t e l i s t o f p o s i t i v e and n e g a t i v e images
3 f i n d . / p o s i t i v e _ i m a g e s −iname " * . j p g " > p o s i t i v e s . t x t
4 f i n d . / n e g a t i v e _ i m a g e s −iname " * . j p g " > n e g a t i v e s . t x t
5 # c r e a t e samples from t h e p o s i t i v e images
6 p e r l b i n / c r e a t e s a m p l e s . p l p o s i t i v e s . t x t n e g a t i v e s . t x t s amples 1500 "

o p e n c v _ c r e a t e s a m p l e s −b g c o l o r 0 −b g t h r e s h 0 −maxxangle 1 . 1 −maxyangle 1 . 1 −
maxzangle 0 . 5 −maxidev 40 −w 80 −h 40 "

7 # remove f i l e s w i th 0 KB
8 f i n d . / s amples −s i z e 0 −p r i n t 0 | x a r g s −0 rm
9 # merge a l l s amples i n t o one v e c t o r

10 py thon . / t o o l s / mergevec . py −v samples / −o samples . vec
11 # c a l c u l a t e c a s c a d e
12 sudo l n −n s f / dev / n u l l / dev / raw1394
13 o p e n c v _ t r a i n c a s c a d e −d a t a c l a s s i f i e r −vec samples . vec −bg n e g a t i v e s . t x t −

numStages 20 −m i n H i t r a t e 0 .999 −maxFalseAlarmRate 0 . 5 −numPos 1000 −numNeg
600 −w 80 −h 40 −mode ALL −p r e c a l c V a l B u f S i z e 1024 −p r e c a l c I d x B u f S i z e 1024

Figure 6.3: Code used for cascade calculation, based on Ball and Mehner’s tutorial scripts [178–
180].

- Preparation of training data: This step was achieved by using Google’s image search en-
gine, filtering the search to only yield images that could be reused and modified for both academic
and commercial use1, and finally cropping each image whenever necessary. The positive samples
included images of car grilles in various frontal-based poses (Figure 6.4 (a)), whereas the nega-
tive ones depicted other car parts (e.g. wheels, windscreen, doors, mirrors, boot, as represented
in Figure 6.4 (b1) and (b2)), as well as the surrounding environment (e.g. roads, highways or
people, depicted in Figure 6.4 (c1) and (c2)). All the images considered were subject to a step of
conversion to grey-scale before being fed to the cascade calculation algorithm.

Figure 6.4: Positive and negative examples of images used to train the cascades. (a) Positive
example of a vehicle grille. (b) Negative examples representing vehicle components: 1) rear/boot;
2) exhaust pipe. (c) Negative examples representing other undesirable features: 1) driver; 2) road.

Positive samples are generally created from an object image through random rotation, intensity

1Usage rights: free to use, share or modify, even commercially.
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and background changes, with the degree of randomness being subject to a number of customis-
able parameters. A set of 1557 positive images was chosen to calculate the cascade classifier
as foreground samples which represented grilles belonging to vehicles of different brands and in
various frontal poses, with Figure 6.4 (a) being an example. These images were then fed into the
opencv_createsamples utility, being subject to perspective transformation according to the
following parameters [180]:

• maxxangle/maxyangle: maximum rotation angle (in radians) across the x and y axis, re-
spectively. The value chosen was 1.1rad ≈ 63◦.

• maxzangle: maximum rotation angle across the z axis, given in radians. The value used was
0.5rad ≈ 28◦.

• maxidev: maximum intensity deviation of pixels in the foreground samples. The value
chosen was 40, as indicated in Ball and Mehner’s original scripts [178, 179].

• vec: name of the output file.
• w/h: width and height of the output samples, in pixels. The values chosen were w = 80 and
h = 40, so that the samples would be twice as wide as they were tall, which is a reasonable
approximation of a grille shape. A possible exception to this rule could be, for example,
the brand Alfa Romeo, since vehicles belonging to this brand tend to possess a grille in an
inverted triangular shape.

For the negative examples, two sets of images were chosen, the first containing 637 images
and the second 8171. This discrepancy served as a means to study the influence of the amount
of background negative samples in the overall quality of detection. It should be noted that the
implementations that serve as a basis to this study feature a number of negative examples (600)
much higher than the number of positive ones (40), hence why the second attempt was performed
[178]. The parameters applied in relation to the negative samples were bgcolor and bgthresh.
The first parameter relates to the background colour, denoting which colour the algorithm will
consider as being transparent. A threshold of tolerance may then be defined so that all pixels
between bgcolor − bgthresh and bgcolor + bgthresh will interpreted as transparent [180].

- Cascade training: In order to train the cascades, two main algorithms were used, one
based on Haar features and another on LBP ones. The samples computed in the previous stage
were fed to OpenCV’s opencv_traincascade function with the following arguments [180]:

• data: output directory.
• vec: .vec file containing the positive samples, previously created through the use of opencv_
createsamples.

• bg: file containing the background descriptors, which in this case was negatives.txt,
which comprised the file paths for every image within the negative sample.

• numStages: number of cascade stages, or individual classifiers, to be trained. The number
chosen for this study was 20, in accordance with the tutorials [179].

• minHitRate: minimal desired hit rate for each individual classifier, with the overall hit rate
being estimated as minHitRatenumStages. The minimal hit rate chosen was 0.999, so as
to ensure the cascade would be trained as rigorously as possible. Such a hit rate would
theoretically yield an overall hit rate of 0.99920 = 0.9802.

• maxFalseAlarmRate: maximal desired false alarm rate for each stage, with the overall false
alarm rate being estimated as maxFalseAlarmRatenumStages. The rate chosen was 0.5.
This prevents each stage from overfitting, in accordance with the definition of a cascade
classifier, whilst ensuring a theoretically good overall performance at a false alarm rate of
0.520 = 9.537× 10−7.

• numPos/numNeg: number of positive/negative samples used in each stage.
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• w/h: width and height of the training samples, which must match the values used while
creating the samples (i.e. w = 80 and h = 40).

• mode: specified when using Haar-like features, this parameter selects the types of HLF to
be used in each stage - BASIC for upright features only or ALL for the full set of upright and
45 ◦-rotated features described by Lienhart and Maydt [93]. In order to maximise matches,
the ALL mode was chosen.

• precalcBufSize/precalcIdxBufSize: sizes of the buffers for pre-calculated feature values and/or
indices, in Mb. The buffer sizes used were of 1024 Mb each, so as to balance speed with the
need to not render the machine otherwise unusable, since there were no dedicated servers.

• featureType: used to specify whether the features used will be HAAR (default) or LBP, which
needs to be explicitly stated.

Cascade results and discussion Two types of cascades were computed for each method,
one for a negative sample containing 637 images (Nsmall) and another for a negative sample of
8171 images (Nbig).

The first method to be tested was the intersections one, using both Haar and LBP cascades.
The results for these attempts for Nsmall are described in Tables 6.5 and 6.6 and Figure 6.5. On
the other hand, the results for Nbig are summarised in Tables 6.7 and 6.8, as well as Figure 6.6.

Table 6.5: Confusion matrix detailing the results obtained for grille detection using the intersec-
tions method with Haar features for the Nsmall samples.

Detected
Grille No grille

Real
Grille 0.132 0.118

No grille 0.625 0.125

Table 6.6: Confusion matrix detailing the results obtained for grille detection using the intersec-
tions method with LBP features for the Nsmall samples.

Detected
Grille No grille

Real
Grille 0.122 0.030

No grille 0.817 0.032
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Figure 6.5: Results for the intersections method (Nsmall), comparing Haar (left) and LBP (right)
cascades.

Table 6.7: Confusion matrix detailing the results obtained for grille detection using the intersec-
tions method with Haar features for the Nbig samples.

Detected
Grille No grille

Real
Grille 0.052 0.070

No grille 0.798 0.080

Table 6.8: Confusion matrix detailing the results obtained for grille detection using the intersec-
tions method with LBP features for the Nbig samples.

Detected
Grille No grille

Real
Grille 0.038 0.032

No grille 0.887 0.043
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Figure 6.6: Results for the intersections method (Nbig), comparing Haar (left) and LBP (right)
cascades.

An analysis of Tables 6.7, 6.8, 6.5 and 6.6, as well as Figures 6.6 and 6.5, shows significant
discrepancies in detection accuracy depending on the number of negative samples used to train the
cascade. It should be noted that these results can be translated into metric c (detection of other
objects) as described by Table 6.4.

The LBP results for Nbig show that only 8.1% of the detection was accurate, with 3.8% of true
positives and 4.3% true negatives, which deems it inadequate for the detection of car grilles in the
given conditions. However, despite some of the available literature stating that a ratio of 1 positive
sample for at least 2 negative ones is desirable [178,181], the results forNsmall proved better, with
an accuracy of 15.4% (12.2% true positives and 3.2% true negatives detected). These results are
also consistent with those verified for the Haar assays, in which the Nbig samples (ACC = 13.2%,
TP = 5.2% and TN = 8.0%) ranked poorly when compared to the Nsmall ones (ACC = 25.7%, TP
= 13.2% and TN = 12.5%).

An overall analysis of the results for this method shows a large prevalence of false positives in
all cases, which would hinder reliable recognition of a vehicle’s make and model. Even so, should
one of these cascade models be picked for fine-tuning, the Nsmall Haar cascade is the one that
shows the most promise, with a higher accuracy and lower ratio of false positives.

The results for the second method used, the neighbours method, are evidenced by Tables 6.9
and 6.10 for the Nsmall assays, as well as 6.11 and 6.12 for the Nbig ones. Figures 6.7 and 6.8
show the comparison between the two cascade types for Nsmall and Nbig, respectively.

Table 6.9: Confusion matrix detailing the results obtained for grille detection using the neighbours
method with LBP features for the Nsmall samples.

Detected
Grille No grille

Real
Grille 0.242 0.003

No grille 0.747 0.008
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Table 6.10: Confusion matrix detailing the results obtained for grille detection using the neigh-
bours method with Haar features for the Nsmall samples.

Detected
Grille No grille

Real
Grille 0.323 0.002

No grille 0.503 0.172

Figure 6.7: Results for the neighbours method (Nsmall), comparing Haar (left) and LBP (right)
cascades.

Table 6.11: Confusion matrix detailing the results obtained for grille detection using the neigh-
bours method with LBP features for the Nbig samples.

Detected
Grille No grille

Real
Grille 0.138 0.097

No grille 0.722 0.043

Table 6.12: Confusion matrix detailing the results obtained for grille detection using the neigh-
bours method with Haar features for the Nbig samples.

Detected
Grille No grille

Real
Grille 0.215 0.018(3)

No grille 0.743(3) 0.023(3)
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Figure 6.8: Results for the neighbours method (Nbig), comparing Haar (left) and LBP (right)
cascades.

Once again, the difference in negative samples had a significant impact on the results, with
a smaller number of negative images producing more advantageous results. One possible expla-
nation for this result is the quality of the data presented as negative. Since the Nsmall negative
images were more carefully picked out, it is possible that the newer negative images introduced in
Nbig ended up being not as representative or informative to the construction of the cascade classi-
fier, allowing some noise in the data that seems to have been less critical in the original negative
sample pool. The problem in the approach may, therefore, lie not in the quantity of data used, but
in its quality, and so more assays would have to be done to consistently verify any claims over the
effect of the negative sample size on the quality of the produced cascade.

When it comes to these newly calculated cascades, it is possible to see that, although not satis-
factory, these results are nonetheless more significant than the ones obtained for the intersections
method. This was an expectable result, since it stems from the comparison of a tried and tested
method with a new, experimental one.

For Nbig, the most reliable cascade algorithm proved again to be Haar, with 23.8% correct
predictions (against 18.1% for LBP). The differences experienced in these results corroborate the
comparisons between Haar and LBP in the existing literature: whereas LBP is computationally
faster, Haar produces more accurate results [182]. The same pattern occurred with the Nsmall

negative samples, with the Haar cascade presenting an accuracy of 49.5 % whilst the LBP one
achieved only 25.0%. Due to these results, the best cascade to adopt for further experiments
would be the neighbours Haar cascade, Nsmall variant. An example of a result for a ROI obtained
for this cascade and its LBP counterpart can be viewed in Figure 6.9.
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Figure 6.9: Example of ROIs obtained for the neighbours Nsmall method, for the Haar cascade
(a)) and its LBP counterpart (b)). The ROI candidates are noted in the blue rectangles, with the
selected final ROI being represented in green.

In spite of the better results obtained by the neighbours method, these assays proved inefficient,
with very high false positive rates. Such results may be attributed to a number of different factors.
Firstly, the dataset in itself may not have been specific enough, both in the distinction between
positive and negative samples (e.g. car grilles vs. boots) and in the definition of said negative
samples. Moreover, the parameters chosen in the sample creation stage may have been too lax, in
that high rotation angles in all directions were allowed.

The image outputs were also evaluated in relation to Table 6.4, which sought to appraise the
quality of the output in more general terms than those strictly defined by the metrics described
above. The results for this analysis can be found in Table 6.13. It should be noted that metrics
d), e), f) and g) are valid in relation to the cases where the original image actually contained a
grille. The percentage of such images is given by metric a), which is presented at a factual level
and will not be analysed in the discussion. Metric b) was the only one calculated given the total
set of images.

Table 6.13: Grille image output evaluation.

An initial analysis of Table 6.13 suggests that the use of the neighbours method used in con-
junction with the Haar algorithm could yield potentially interesting results in regards to grille de-
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tection. This superiority is demonstrated specially when using a smaller set of negative examples,
with the grille being detected 81.1% of the times when it was present (0.527/0.650). However, a
closer analysis indicates that, while this method might be able to pinpoint a general location of a
vehicle’s grille, it is not reliable enough, picking up a lot of noise along with its actual target. For
instance, from the subset of images that depicted a car’s grille, only 32.3% detected the grille with
no other elements present in the image with enough prominence to warrant a different classifica-
tion. On the other hand, the use of LBP with the bigger set of negative samples is confirmed to not
be advantageous independently of the method being employed.

Given the unreliability of the grille detection methods discussed, the approach was discon-
tinued, with no fingerprinting assays being performed on the detected ROIs to attempt MMR on
them. This decision was taken due to the time constraints for the practical work not being compat-
ible with producing a good grille detection cascade, fine-tuning it, and then proceeding to perfect
a fingerprinting process on top of its results. Therefore, another, more powerful and complex
technique was employed in order to try to achieve working results within the allotted time: convo-
lutional neural networks.

6.2 Proprietary dataset

The Stanford cars dataset proved to be too diverse to be properly handled and analysed in a short
timespan, and so TCoE provided a dataset comprising 105634 tolling images from one of its
clients, with a resolution of 1392 x 1082 pixels, and captured in grayscale. Since these images
belong to that company, representing actual drivers and vehicles, and are not in the public domain,
said client’s identity has been omitted.

Since this proprietary dataset contains images sourced from the tolling industry, there are a
number of variables in MMR that are mitigated through its use - for instance, a vehicle cannot be
captured sideways, since the angle variation is limited by the camera’s placement relative to the
road. The images are also already captured in grey-scale, eliminating the need for further image
conversion steps. Altogether, the use of an industry-provided dataset would be helpful with the
standardisation of the type of image to be processed, eliminating unwanted degrees of freedom.
However, these images had to be labelled by hand, with 18 brands having been recognised. There-
fore, in order not to introduce undue human error, only the vehicle’s brand was considered when
working with the dataset, and images that did not correspond to a frontal pose were removed.

Each brand was encoded with a number from 1 to 18, yielding the following list:

1 Audi
2 BMW
3 Citroen
4 Daihatsu
5 Ford
6 Honda

7 Hyundai
8 Mercedes-Benz
9 Mitsubishi

10 Nissan
11 Opel
12 Peugeot

13 Renault
14 Seat
15 Skoda
16 Subaru
17 Toyota
18 Volkswagen

The distribution of the used pictures in the dataset by brand is depicted in Figure 6.10.
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Figure 6.10: Distribution of the vehicles in the proprietary dataset according to the vehicle’s brand.

A brief analysis of Figure 6.10 shows that there is an overwhelming prevalence of Opel cars,
which amount to 200 of all 450 vehicles (44.4% of the dataset by vehicle). By a small margin,
the second most prevalent brand is Peugeot, with 50 vehicles (11.1% of the dataset). It should be
noted that there is a brand that does not contain any images (Mercedes-Benz). Its inclusion in the
graphic shown in Figure 6.10 is due to all brands having been listed for the dataset prior to the
exclusion of rear-end images. So as not to upset the nomenclature already established, Mercedes-
Benz was not removed as a label in the front-only assays shown in this work, even though all the
images depicting cars of this brand were rear-end ones.

6.2.1 Convolutional neural networks

The difficulty in determining the appropriate features to be used when classifying vehicle images
spurred the decision to use a technique that worked as an automatic feature extractor in itself.
The proprietary images were therefore used to train and test a set of CNNs, using Tensorflow.
Moreover, in order to further diminish the complexity of the task, it was decided that specific
brands were to be the focus of these new models, as opposed to a general model to predict every
brand.

A number of attempts were performed, of which three will be the focus of this discussion.
The first, an Opel-specific model, aimed to classify images as Opel (1) or not Opel (0). The
second one worked analogously, but for the Peugeot brand. Finally, a new, more intricate model
was developed in order to distinguish between Opel (0), Peugeot (1) and other vehicles (2). The
choice in the brands to be tested was not arbitrary, taking into account the two brands with the
highest vehicle frequency in the available data pool. The decision to use the brands with the most
vehicles instead of those with more total images was made because, even though a brand like
Renault possessed more photos than Opel, those photos had less variability, increasing the risk of
overfitting the model.

Brand-specific models for Opel and Peugeot vehicles

When it comes to model analysis, the following metrics were calculated:

• Accuracy
• Precision
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• Recall
• F1 score
• Matthews correlation coefficient (MCC)
• Cohen’s kappa
• Root-mean-square error (RMSE)
• Receiver operating characteristic (ROC) curve and its respective area under the curve (AUC)

Training and test distributions The Opel-specific model was trained using 300 images and
tested with the remaining 150. The training image set was distributed as follows:

• Opel: 100 images
• Other brands: 200 images, of which:

– Citroen: 45 images
– Ford: 36 images
– Peugeot: 36 images
– Renault: 40 images
– Volkswagen: 43 images

On the other hand, the test image set was comprised of the following:

• Opel: 100 images
• Other brands: 50 images, of which:

– Audi: 2 images
– BMW: 3 images
– Citroen: 3 images
– Daihatsu: 1 image
– Ford: 6 images
– Honda: 1 image

– Hyundai: 1 image
– Mitsubishi: 1 image
– Nissan: 1 image
– Peugeot: 14 images
– Renault: 6 images
– Seat: 4 images

– Skoda: 1 image
– Subaru: 1 image
– Toyota: 1 image
– Volkswagen: 4 im-

ages

Akin to the Opel model, the Peugeot-specific model was trained using 300 images and tested
with the remaining 150. The training image set exhibited the following distribution:

• Peugeot: 100 images
• Other brands: 200 images, of which:

– Citroen: 45 images
– Ford: 36 images
– Opel: 36 images
– Renault: 40 images
– Volkswagen: 43 images

Moreover, the test image set was established as follows:

• Peugeot: 100 images
• Other brands: 50 images, of which:

– Audi: 2 images
– BMW: 3 images
– Citroen: 3 images
– Daihatsu: 1 image
– Ford: 6 images
– Honda: 1 image

– Hyundai: 1 image
– Mitsubishi: 1 image
– Nissan: 1 image
– Opel: 14 images
– Renault: 6 images
– Seat: 4 images

– Skoda: 1 image
– Subaru: 1 image
– Toyota: 1 image
– Volkswagen: 4 im-

ages
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Convolutional neural network For each model, the images were redimensioned into 128 x
128 pixels each and then two convolution kernels were applied, the first sized 7x7 pixels and
the second 5x5. In each convolution layer, 64 filters were used. The convolution layers were
interspersed with pooling layers, which used max-pooling to reduce sample sizes. The final layer
in the applied CNNs was a fully-connected one with 1024 nodes and subject to a ReLU activation
function, designed to extract as much information as possible from the output.

Both the Opel and the Peugeot brand models were subject to the same hyperparameter con-
ditions, with a learning rate of 1 × 10−7 and a softmax_cross_entropy loss function. The
optimizer chosen was Tensorflow’s GradientDescentOptimizer and the dropout rate chosen
for these assays was 0.4.

Results The first model to be built was the Opel-specific one, which yielded the testing results
below.

• ACC = 0.889
• PRC = 0.879
• REC = 0.870

• F1 score = 0.874
• AUC = 0.923

Figure 6.11: ROC curve for the Opel-detecting CNN attempt.

On a first analysis, these results appear very satisfactory, implying a very good generalisation
power for this model in its classification of Opel images. However, the accuracy value for this
testing set was much higher than the one obtained for the training set, which topped at 0.680.
Allied with the nearly perfect results seemingly obtained for the test images, this disparity sug-
gests that the images chosen to test the network may not have been the most suitable, since their
classification proved to be too easy for the network. Another possible explanation would be the
dropout rate being too large for the classification being performed, artificially making the task of
calculating the training accuracy more difficult.

The Peugeot model was calculated afterwards, with no change in the input parameters when
compared to the Opel one, and produced the following results.
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• ACC = 0.953
• PRC = 0.969
• REC = 0.925

• F1 score = 0.946
• κ = 0.905
• AUC = 0.974

Figure 6.12: ROC curve for the Peugeot-detecting CNN attempt.

Once again, the accuracy obtained for the test image set was much higher than the training
one (0.456), with this being an even more unequal case than what happened for the Opel scenario.
These results seem to support the hypothesis of the testing set being unfit, and so they were set
aside as unreliable and further validation was conducted on both models in order to assess their
true classification potential for both brands.

Cross-testing

In order to validate the Opel and Peugeot models, cross-validation tests were carried out. These
tests took the 450 images originally used to build the Peugeot model and fed them to the Opel
model to be classified and vice-versa. Since not all the images were common in the construction
of the two models, this allows for a fair attempt at estimating the generalisation power of each of
the computed models.

In both cases, the negative (0) samples correspond to vehicles that do not belong to the brand
(Opel or Peugeot) being considered by the model. Therefore, the original labels were adjusted,
resulting in a total of 50 images that represented the considered brand (labeled 1) and 400 that did
not (labeled 0) for each cross-validation test.

The disparity between the amounts of positive and negative images can be explained by the
original composition of each dataset, described in detail above. Since, for instance the focus in the
composition of the dataset for the Opel model was in choosing images of vehicles that belonged
to the brand and contrasting those with images from other brands, the conversion of the dataset to
consider Peugeot vehicles leaves all the Opel images, which represent approximately half of the
dataset, as negative examples. On the other hand, the only positive samples are now given by the
fraction of the non-Opel images in the dataset that belong to Peugeot vehicles. Consequently, the
formerly balanced datasets are now skewed, consisting of 89% negative samples and only 11%
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positive ones, which led to the need to evaluate not only the usual metrics (accuracy, precision
and recall), but to introduce Cohen’s kappa coefficient and Matthews correlation coefficient in an
effort to provide normalised evaluations that attempt to minimise this bias.

The results obtained from these cross-validations are detailed separately below.

Cross-test 1: Peugeot images fed to Opel model

• Confusion matrix

Predicted

1 0

Real
1 44 6

0 87 313

• ACC = 0.793

• PRC = 0.336

• REC = 0.880

• F1 score = 0.486

• MCC = 0.458

• κ = 0.388

• RMSE = 0.455

The first cross-validation consisted of feeding the 300 train and 150 testing images originally
used to compute the Peugeot CNN model into the Opel model. For this purpose, each image was
re-labeled according to whether or not it represented an Opel vehicle, yielding 50 Opel images
(labeled 1) and 400 that represented other brands (labeled 0). It was, therefore, inevitable that the
second row of the confusion matrix bore the bulk of the results.

This cross test resulted in an accuracy of 79.3%, meaning that 20.7% of the images were
misclassified:

• Type I errors: the amount of false positives (FP ) was 87, meaning there were more non-Opel
images being misclassified as Opel than there were actual Opel images in the set. Given this
fact, the precision was predictably low, with only 33.6% of the images classified as being
Opel vehicles actually belonging to the brand.

• Type II errors: there were 6 false negatives (FN ) in this cross-validation, corroborating the
fact that the model has a high recall (0.880). This means that the model correctly identified
almost every positive example in the provided set, only misclassifying 12% of the Opel
images as belonging to another brand.

Given the misclassification rates, the RMSE for this set amounted to 0.455 and the F1 score
result was 0.486. Both these values point to a average to poor classifier that can only be counted
on to determine which images do not belong to the Opel brand, which would be expected given the
over-representation of the negative class. Cohen’s kappa score also hints that, while these results
are better than those produced by a random classifier, they are also not highly trustworthy when
it comes to predicting positive values. According to Landis and Koch, this classifier would be a
fair one (0.21 ≤ κ ≤ 0.40). In turn, the MCC for this test was 0.458, indicating a strong positive
relationship between the values predicted by this CNN and the actual ones, but falling short of a
satisfactorily correct classification.

Subsequently, the ROC curve for this model was computed. To do so, the output of the clas-
sifier that corresponded to the probability of a vehicle belonging to the positive class (P (1)) was
taken and judged against different thresholds ranging from 0 to 1 in steps of 0.1, with 0.5 being the
default one. For said image to be effectively considered as positive (1), the output should, there-
fore, be higher than, or equal to, the threshold. These results showed that the best outcomes were



Chapter 6. Implementation and results 96

located at the far end of the scale, at a threshold of 0.9. Given these conditions, the accuracy would
be 0.89, the F1 score 0.62 and the RMSE would drop to 0.34. For each scenario, the true positive
rate (TPR = TP

TP+FN
) and false positive rate (FPR = FP

FP+TN
) were computed and the ROC curve

calculated as shown in Figure 6.13. The complete results for this analysis can be viewed in the
Appendix (Table A.3).

Figure 6.13: ROC curve for the cross test using Peugeot images against the Opel model.

The area under the curve (AUC) of the ROC curve described in Figure 6.13 was calculated
using the Python sklearn.metrics library, yielding a value of 0.883. These results, along with
the fact that the calculated accuracy was unexpectedly above the one returned by the CNN itself,
suggested that the model was biased towards images it had seen before. Therefore, all the images
that were common between the Opel and Peugeot datasets were discarded and the cross-validation
was run anew with the remaining images and some more previously unseen ones. This process
and its results are described in Section 6.2.1.

Cross-test 2: Opel images fed to Peugeot model

• Confusion matrix

Predicted

1 0

Real
1 44 6

0 62 338

• ACC = 0.849

• PRC = 0.415

• REC = 0.880

• F1 score = 0.564

• MCC = 0.537

• κ = 0.487

• RMSE = 0.389

The second cross test took the images originally used to compute the Opel model and fed
them to the Peugeot model. Once again, the images were divided into 300 training and 150
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testing images, as when computing the model. Each one of the images was re-labeled according
to whether or not it represented a Peugeot vehicle, yielding 50 Peugeot images (labeled 1) and 400
that represented other brands (labeled 0). Due to this fact, and similarly to what happened in the
previous cross test, the second row of the matrix, which represents the negative images, is more
densely populated than the first.

This test had an accuracy of 84.9%, meaning that 15.1% of the images were misclassified as
follows:

• Type I errors: the amount of false positives (FP ) was 62, which denounces a lack of preci-
sion in the model (41.5%). Therefore, this model is not very good at detecting which images
belong to Peugeot vehicles, picking wrong ones more than half the time.

• Type II errors: there were 6 false negatives (FN ) in this test, with the model having a high
recall (0.880). This means that the model correctly identifies almost every positive example
in the provided set, only misclassifying 12% of the Peugeot images.

The RMSE calculated for this model was 0.389, slightly lower than the one computed for
the previous model, which hints at the Peugeot model being slightly more credible than the Opel
one. This small advantage is confirmed by the higher F1 score, at 0.564, and Cohen’s kappa score
(0.487), which is considered moderate in the Landis and Koch scale (0.41 ≤ κ ≤ 0.60), albeit on
the lower end of the spectrum. Moreover, the MCC for this test was 0.537, which corresponds to a
strong positive relationship between predicted and real values, lending credence to the conclusions
stated above.

The procedures for drawing the ROC and precision/recall curves for this test were identical to
the ones described above for the first cross test. The resulting optimal threshold is similar, falling
somewhere between 0.8 (which yields an accuracy of 0.92 and RMSE of 0.28) and 0.9 (where the
F1 score is 0.63). The ROC curve for this test can be visualised in Figure 6.14. The ROC AUC
computed by the sklearn.metrics library was 0.900, which would make this classifier very
promising. The full results for this analysis can be found in the Appendix, Table A.4.

When taken as a whole, these results hint that a problem similar to that thought to be happening
in the first test might be occurring here as well. Therefore, the process of discarding all images
known to the model was carried out, and the model was tested again using images it had not been
introduced to in previous tests, in order to test its generalisation power.
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Figure 6.14: ROC curve for the cross test using Opel images against the Peugeot model.

Validation of the Opel and Peugeot models using new images Given the seemingly biased
results obtained in the previous section, the Opel and Peugeot models were tested according to
new image libraries. These libraries consisted of 151 images of vehicles not belonging to the
brand being tested, which differed between the models, as well as 131 new Opel images (fed only
to the Opel model) and 126 new Peugeot images (fed only to the Peugeot model). The images
were picked so as to provide as little bias as possible when it came to lighting conditions, distance
and position of the vehicles relative to the camera.

Validation 1: Opel model

• Confusion matrix

Predicted

1 0

Real
1 69 62

0 63 88

• ACC = 0.557

• PRC = 0.523

• REC = 0.527

• F1 score = 0.525

• MCC = 0.109

• κ = 0.109

• RMSE = 0.666

• AUC = 0.587
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Figure 6.15: ROC curve for the test using previously unseen images against the Opel model.

The new assessment performed on the Opel model seems to confirm the previous assumption
that the model was biased towards images it had already seen, with the accuracy dropping to 55.7%
and inter-rater agreement now profiling itself as "slight". Further analysis of the area under the
plotted curve shows that this model does not seem promising, performing only slimly better than
a naïve classifier would.

The misclassification rate was of 44.3%, distributed as follows:

• Type I errors: the validation assays produced 63 false positive results, with a precision of
52.3%. This means that the model struggles to identify which images actually belong to
Opel vehicles, with its predictions being marginally better than random estimates.

• Type II errors: similarly to what happened with the precision metric, the assays yielded 62
false negatives, bringing the recall to 52.7%. The model cannot, therefore, correctly identify
positive samples much more efficiently than a naïve one.

Validation 2: Peugeot model

• Confusion matrix:

Predicted

1 0

Real
1 65 62

0 56 94

• ACC = 0.574

• PRC = 0.537

• REC = 0.512

• F1 score = 0.524

• MCC = 0.139

• κ = 0.139

• RMSE = 0.653

• AUC = 0.622
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Figure 6.16: ROC curve for the test using previously unseen images against the Peugeot model.

The results for the validation of the Peugeot model are in line with those obtained for the Opel
one, with a slightly better accuracy. The kappa statistic is also similar in scope, showing a "slight"
level of inter-rater agreement. Moreover, the area under the curve for this assay set (0.622) lends
further credence to the poor performance of the model, which can only classify instances 1.244
times better than a random one.

The analysis for type I and II errors is also corroborative of these conclusions.

• Type I errors: a total of 56 false positives were identified, with a precision of 53.7% for this
model. In practice, this means that 53.7% of the images classified as belonging to Peugeot
vehicles actually depict vehicles of the aforementioned brand.

• Type II errors: the test results produced 62 false negative results, with the recall being
of 51.2%. Therefore, of all Peugeot images in the set, only little over half were correctly
classified.

When taken as a whole, the Opel and Peugeot validation assays, which seemed initially
promising, were shown to lack the generalisation power needed for the purpose this kind of clas-
sifier was meant to achieve. Due to time constraints, no more models were computed, however it
can be speculated that better results could have been achieved through a combination of hyperpa-
rameter tuning and refinement of the chosen training and test sets.
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Discussion and conclusion

The MMR results presented in Chapter 6 establish the great difficulty inherent to this type of
classification. This work saw the employment of three different methodologies: fingerprinting,
cascade classification and convolutional neural networks. Given the experimental nature of this
work, multiple variations were performed for each method, in order to ascertain the best course of
action should any further development arise from these results.

The first technique to be attempted was the use of fingerprinting. These fingerprinting assays
were performed with recourse to two different types of matchers, brute-force and FLANN, with
only the former yielding any results. Moreover, two match-discarding techniques were attempted,
Lowe’s ratio test (at the ratios of 0.4 and 0.7) and OpenCV’s cross-check. Additionally, three dif-
ferent ordering functions were used in conjunction with the aforementioned ratio test, namely, by
maximum value (MV), minimum absolute difference between ratios (AD) and maximum match-
to-keypoint ratio (MR).

The results for the fingerprinting assays showed the best combination of parameters to be the
use of a brute-force matcher, ratio-testing (r=0.4) and the maximum ratio ordering function, for
both brand and model. However, the overall accuracy for brand recognition was of 16.8%, and
model results did not surpass 11.2% accuracy. Cohen’s kappa correlation metric was likewise
weak in both cases (12.5% agreement for the brand evaluation and 10.2% for the model one).

As a whole, these values cannot be considered satisfactory, and could benefit from a great deal
of fine-tuning and refinement of the process as a whole. The main problem with this approach
was the inadequacy of the samples relatively to what was meant to be achieved. Fingerprinting
is a technique generally used to detect almost exact matches between images, but this work en-
compasses a much broader definition of what "matching" entails - for instance, different vehicles
would have to be considered matches if they belonged to the same brand and model, indepen-
dently of camera pose, visibility conditions or image resolution. The use of the Stanford dataset
for this kind of assay was, therefore, ill-advised to begin with, hindering both make and model
recognition. Another side-effect of the poor choice of dataset was the failure of tried and tested
methods such as Lowe’s ratio test. Theoretically, a ratio of 0.7 would produce interesting results,
lowering the chance of false positives, but in practice these were so abundant that a lower ratio
(0.4) proved better for these assays. This means that a lot of correctly identified positive matches
were disregarded, lowering the overall accuracy.

The next step undertaken aimed to minimise the impact of this dataset choice by focusing only
on the brand, through grille recognition. In theory, the image would be processed in order for the
grille to be extracted, and this grille crop would then be subject to fingerprinting assays in order
to determine the brand. Once the brand was known, a similar technique would then be applied to
determine the model, using more vehicle sections such as mirrors or lights to help the recognition
efforts.

101



Chapter 7. Discussion and conclusion 102

For this purpose, two different families of cascade classifiers were designed, one based on
Haar features and the other on LBP ones. The grille ROI was then determined from the output
using two different metrics, the first being the intersection of potential ROIs and the other the
min-neighbours (neighbours for short) built-in parameter in OpenCV. Two different sizes for the
sets of negative samples were also tested (designed as Nsmall and Nbig).

Considering the conjugation of all these factors, the combination that yielded the best results
was that of a Haar cascade classifier using the neighbours technique and Nsmall as the set of
negative samples while calculating the classifier. This approach resulted in an accuracy of 0.495,
with a precision of 0.391 and a recall of 0.994. With false positives amounting to 50.3% of
the results, this was also the assay that detected fewer extraneous objects instead of the desired
grille. Although the near perfect recall indicates the model identified almost all the images that
possessed a grille, the relatively low precision metric hints at the model’s poor discriminating
power, misclassifying too many negative samples as positive ones.

The remaining results showed a general tendency for the Nsmall cascades to perform better
than the Nbig ones, and for Haar cascades to perform better than LBP ones. This last result was
expectable, given the nature of the features used in each case - LBP features are meant to result
in lighter and faster cascade calculations when compared to the more robust Haar ones, but this
tends to compromise their accuracy as a trade-off. However, given that the available literature
features examples that use a number of negative samples substantially higher than the positive
set, the first results proved more surprising. One possible explanation for this discrepancy was
the difference in the dataset used for calculating the cascade, as opposed to the Stanford dataset,
which was used as a test-set only. The Nsmall samples were the first to be chosen, being mainly
concerned with setting car booths as negative samples, and throwing in some mirrors, wheels and
front panes for further clarification, as well as off-road elements such as people. When the dataset
was expanded, there was an attempt to balance all the negative samples in equal proportions, which
may have contributed to the corresponding cascades’ poorer performance by introducing elements
the Stanford dataset did not focus as much on.

A consequence of these poor grille detection results was the abandonment of the integrated
cascade and fingerprinting approach, which would undoubtedly result in very low accuracies.
In fact, the choice of dataset proved to be a critical issue when dealing with make and model
recognition, with the Stanford dataset possessing too many degrees of freedom and the subjectivity
of image choice for the cascade recognition assays having had a significant impact in the results.
The next step was, therefore, the adoption of a dataset based on images captured in tolling events,
so as to better represent the reality of the intended target business.

A new approach was subsequently attempted through the use of convolutional neural networks
(CNNs), applied to this new, more restricted dataset. Instead of focusing on the detection of every
brand, this new approach also focused on producing binary models which were specific to each
manufacturer, forgoing model recognition entirely at the starting point. To serve as proof of this
concept, the two most prevalent brands in the new dataset, Opel and Peugeot, were chosen.

Each model was firstly calculated and evaluated against a test set that contained some images
that overlapped with the training set, which proved to generate bias in the first results, with the
Opel-specific model presenting an accuracy of 0.889, precision of 0.879 and recall of 0.870, while
the Peugeot-specific model displayed an accuracy of 0.953, precision of 0.969 and recall of 0.925.
In order to test the generalisation power of these models, a cross-test was performed, in which the
images used in the calculation of the Peugeot model were fed to the Opel model for classification
and vice-versa. The aforementioned bias was supported by these tests, since the accuracy dropped
from 0.889 to 0.793 for the Opel model and from 0.953 to 0.849 for the Peugeot one. More
tellingly, although recall stabilised at 0.880 for both models, their precisions dropped significantly,
with the Opel model exhibiting a precision of 0.336 for this test, while the Peugeot model fared
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slightly better, at 0.415. The models were, therefore, shown to misclassify many images not
belonging to each brand as positive samples. Moreover, in order to completely eliminate any
possible overlap between training and test sets, new images, chosen from the same dataset, were
presented to each model. This time, the Opel model presented an accuracy of 0.557, precision of
0.523 and recall of 0.527, while the Peugeot model exhibited an accuracy of 0.574, precision of
0.537 and recall of 0.512. This shows that these models could do with further refinement, with
these new images being potential candidates for network readjustment assays.

Overall, these results cannot be fully compared, since they not only hail from different datasets,
but also have different metrics associated with them and different purposes. Some general conclu-
sions can, nevertheless, be made for this work as a whole.

An important conclusion to be drawn is that, independently of the method used, the choice of
dataset is crucial in determining whether an assay stands a chance of yielding satisfactory results.
This issue was evidenced by the results obtained for the fingerprinting assays, which had their
accuracy peak at 16.8% and produced no results when using a comparatively more refined matcher
such as FLANN. Even though the use of this technique was most probably inadequate for MMR
purposes, these efforts were likely also hindered by the extreme diversity present in the Stanford
cars dataset, which comprises a wide range of angles when compared to those present in a standard
open road tolling image capture, in which the cameras are set in a stationary position on the
tolling gantry. Likewise, the grille detection results obtained through the use of cascade classifiers
were probably subject to the same problem. A case could be made for applying these methods
using a different dataset, such as the one later used when computing the CNN classifiers, which
consisted of actual tolling images which were, therefore, subject to fewer degrees of freedom than
those present in the Stanford dataset. Nevertheless, the existing literature suggests that pattern
recognition methods such as the ones used in these convolutional neural networks would prove
more reliable in make and model recognition efforts even if the exact same knowledge base had
been used.

Although there were no expectations for relevant and definitive results, the work performed
involved many different techniques in pursuit of its goal, which was to provide a proof of con-
cept for conceiving and integrating a vehicle make and model recognition system into an already
fully functioning application, enhancing its functionality. For that purpose, a putative architec-
ture was established, but not implemented, and requisites were defined for this possible future
implementation. Given the results described above, the best course for future development would
be the employment of CNNs, with greater emphasis on hyperparameter tuning to achieve more
consistent results. A possible implementation could reside on the use of different sets of neural
networks, an initial one focusing on grille recognition in order to extract the brand, which would
then forward the image to a neural network trained to discern between models of the most probable
brand. Alternatively, in order to encompass the possibility of the initial brand classification being
wrong, the image could also be forwarded to the set of n most probable brands, with the results
then being merged and rearranged according to their probabilities. This type of solution would
probably be costly, mainly in the development phase, given the amount of fine-tuning required
and the extensive knowledge base that would have to be amassed. Therefore, a distributed system,
with load balancing and inherent redundancy, would be required in order for a large-scale solution
like this to be considered.
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A.1 Stanford dataset

A.1.1 Dataset analysis

Table A.1: Detailed analysis for the Stanford dataset.

Train Test Total
Brand 
total

Train Test Total
Brand 

avg
1 AM General Hummer 1 AM General Hummer SUV 2000 45 44 89 89 22078 11769 33847 33847.0

2 Acura RL Sedan 2012 32 32 64 11633 11555 23188
3 Acura TL Sedan 2012 43 43 86 24482 25146 49628
4 Acura TL Type-S 2008 42 42 84 15044 15305 30349
5 Acura TSX Sedan 2012 41 40 81 11831 20853 32684
6 Acura Integra Type R 2001 45 44 89 20067 17798 37865
7 Acura ZDX Hatchback 2012 39 39 78 15448 15964 31412
8 Aston Martin V8 Vantage Convertible 2012 45 45 90 16720 16062 32782
9 Aston Martin V8 Vantage Coupe 2012 41 41 82 13326 16046 29372
10 Aston Martin Virage Convertible 2012 33 33 66 16888 26966 43854
11 Aston Martin Virage Coupe 2012 38 38 76 15239 18444 33683
12 Audi RS 4 Convertible 2008 37 36 73 24275 15711 39986
13 Audi A5 Coupe 2012 41 41 82 17567 14761 32328
14 Audi TTS Coupe 2012 43 42 85 25766 12485 38251
15 Audi R8 Coupe 2012 43 43 86 14765 16092 30857
16 Audi V8 Sedan 1994 44 43 87 9246 10679 19925
17 Audi 100 Sedan 1994 41 40 81 10169 16019 26188
18 Audi 100 Wagon 1994 43 42 85 8730 17124 25854
19 Audi TT Hatchback 2011 41 40 81 14346 10747 25093
20 Audi S6 Sedan 2011 46 46 92 31665 24949 56614
21 Audi S5 Convertible 2012 42 42 84 18558 12006 30564
22 Audi S5 Coupe 2012 43 42 85 14049 22830 36879
23 Audi S4 Sedan 2012 40 39 79 28720 15934 44654
24 Audi S4 Sedan 2007 45 45 90 24999 24871 49870
25 Audi TT RS Coupe 2012 40 39 79 20055 18674 38729
26 BMW ActiveHybrid 5 Sedan 2012 34 34 68 13829 18720 32549
27 BMW 1 Series Convertible 2012 36 35 71 15793 17049 32842
28 BMW 1 Series Coupe 2012 41 41 82 19973 16904 36877
29 BMW 3 Series Sedan 2012 43 42 85 20188 15857 36045
30 BMW 3 Series Wagon 2012 42 41 83 31716 12178 43894
31 BMW 6 Series Convertible 2007 44 44 88 12130 13381 25511
32 BMW X5 SUV 2007 42 41 83 18684 16900 35584
33 BMW X6 SUV 2012 42 42 84 14230 20456 34686
34 BMW M3 Coupe 2012 45 44 89 19697 16697 36394
35 BMW M5 Sedan 2010 41 41 82 19641 14303 33944
36 BMW M6 Convertible 2010 41 41 82 32861 11803 44664
37 BMW X3 SUV 2012 39 38 77 21845 10123 31968
38 BMW Z4 Convertible 2012 41 40 81 12745 16382 29127

39
Bentley Continental Supersports Conv. Convertible 
2012

37 36 73 8261 11498 19759

40 Bentley Arnage Sedan 2009 39 39 78 57125 20958 78083
41 Bentley Mulsanne Sedan 2011 36 35 71 16596 17853 34449
42 Bentley Continental GT Coupe 2012 35 34 69 14112 14610 28722
43 Bentley Continental GT Coupe 2007 46 46 92 22522 21247 43769
44 Bentley Continental Flying Spur Sedan 2007 45 44 89 20170 24015 44185
45 Bugatti Veyron 16.4 Convertible 2009 33 32 65 14318 12235 26553
46 Bugatti Veyron 16.4 Coupe 2009 44 43 87 16598 21273 37871
47 Buick Regal GS 2012 35 35 70 15124 18033 33157
48 Buick Rainier SUV 2007 43 42 85 13518 19151 32669
49 Buick Verano Sedan 2012 38 37 75 13352 12398 25750
50 Buick Enclave SUV 2012 42 42 84 25970 19571 45541
51 Cadillac CTS-V Sedan 2012 43 43 86 9773 13683 23456
52 Cadillac SRX SUV 2012 41 41 82 16313 14613 30926
53 Cadillac Escalade EXT Crew Cab 2007 45 44 89 16419 14542 30961

54 Chevrolet Silverado 1500 Hybrid Crew Cab 2012 40 40 80 9403 25371 34774

55 Chevrolet Corvette Convertible 2012 40 39 79 21227 16034 37261
56 Chevrolet Corvette ZR1 2012 47 46 93 21036 25612 46648

57 Chevrolet Corvette Ron Fellows Edition Z06 2007 38 37 75 33242 18014 51256

58 Chevrolet Traverse SUV 2012 44 44 88 77296 20249 97545
59 Chevrolet Camaro Convertible 2012 45 44 89 15336 20429 35765
60 Chevrolet HHR SS 2010 37 36 73 10903 11353 22256
61 Chevrolet Impala Sedan 2007 43 43 86 31681 20043 51724
62 Chevrolet Tahoe Hybrid SUV 2012 37 37 74 11465 12491 23956
63 Chevrolet Sonic Sedan 2012 44 44 88 54366 18031 72397
64 Chevrolet Express Cargo Van 2007 30 29 59 9990 12952 22942
65 Chevrolet Avalanche Crew Cab 2012 45 45 90 11321 13264 24585

10 Chevrolet 1799 40874.7

8 Buick 314 34279.3

9 Cadillac 257 28447.7

6 Bentley 472 41494.5

7 Bugatti 152 32212.0

4 Audi 1169 35413.7

5 BMW 1055 34929.6

2 Acura 482 34187.7

3 Aston Martin 314 34922.8

Brand Brand name Model Model name
Images Keypoints
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66 Chevrolet Cobalt SS 2010 42 41 83 31334 16091 47425
67 Chevrolet Malibu Hybrid Sedan 2010 39 38 77 12954 25083 38037
68 Chevrolet TrailBlazer SS 2009 40 40 80 15737 24752 40489
69 Chevrolet Silverado 2500HD Regular Cab 2012 38 38 76 10131 11364 21495

70
Chevrolet Silverado 1500 Classic Extended Cab 
2007

43 42 85 20274 13562 33836

71 Chevrolet Express Van 2007 35 35 70 9042 11499 20541
72 Chevrolet Monte Carlo Coupe 2007 45 45 90 16310 19649 35959
73 Chevrolet Malibu Sedan 2007 45 44 89 11229 22779 34008
74 Chevrolet Silverado 1500 Extended Cab 2012 44 43 87 14308 19104 33412
75 Chevrolet Silverado 1500 Regular Cab 2012 44 44 88 35573 37359 72932
76 Chrysler Aspen SUV 2009 44 43 87 14240 13948 28188
77 Chrysler Sebring Convertible 2010 41 40 81 19225 12030 31255
78 Chrysler Town and Country Minivan 2012 38 37 75 18978 22220 41198
79 Chrysler 300 SRT-8 2010 49 48 97 48990 16038 65028
80 Chrysler Crossfire Convertible 2008 43 43 86 9386 18610 27996
81 Chrysler PT Cruiser Convertible 2008 45 45 90 29240 20082 49322

12 Daewoo 82 Daewoo Nubira Wagon 2002 45 45 90 90 10477 11249 21726 21726.0
83 Dodge Caliber Wagon 2012 41 40 81 13023 22381 35404
84 Dodge Caliber Wagon 2007 42 42 84 10688 19697 30385
85 Dodge Caravan Minivan 1997 44 43 87 17408 17264 34672
86 Dodge Ram Pickup 3500 Crew Cab 2010 43 42 85 23164 18278 41442
87 Dodge Ram Pickup 3500 Quad Cab 2009 44 44 88 23490 16061 39551
88 Dodge Sprinter Cargo Van 2009 40 39 79 4377 34822 39199
89 Dodge Journey SUV 2012 44 44 88 36128 17844 53972
90 Dodge Dakota Crew Cab 2010 41 41 82 16250 15761 32011
91 Dodge Dakota Club Cab 2007 39 38 77 14839 12100 26939
92 Dodge Magnum Wagon 2008 40 40 80 8381 22019 30400
93 Dodge Challenger SRT8 2011 39 39 78 19571 13001 32572
94 Dodge Durango SUV 2012 44 43 87 31637 25888 57525
95 Dodge Durango SUV 2007 46 45 91 23260 15461 38721
96 Dodge Charger Sedan 2012 41 41 82 32545 15999 48544
97 Dodge Charger SRT-8 2009 42 42 84 18083 19680 37763

14 Eagle 98 Eagle Talon Hatchback 1998 46 46 92 92 31698 16773 48471 48471.0
99 FIAT 500 Abarth 2012 28 27 55 22880 10833 33713
100 FIAT 500 Convertible 2012 34 33 67 13818 14235 28053
101 Ferrari FF Coupe 2012 42 42 84 17732 12163 29895
102 Ferrari California Convertible 2012 39 39 78 12231 18472 30703
103 Ferrari 458 Italia Convertible 2012 40 39 79 14230 14822 29052
104 Ferrari 458 Italia Coupe 2012 43 42 85 9900 10572 20472

17 Fisker 105 Fisker Karma Sedan 2012 44 43 87 87 16046 24838 40884 40884.0
106 Ford F-450 Super Duty Crew Cab 2012 42 41 83 19675 14909 34584
107 Ford Mustang Convertible 2007 45 44 89 16158 40068 56226
108 Ford Freestar Minivan 2007 44 44 88 9932 16534 26466
109 Ford Expedition EL SUV 2009 45 44 89 11073 13125 24198
110 Ford Edge SUV 2012 43 43 86 29044 16418 45462
111 Ford Ranger SuperCab 2011 42 42 84 10708 15681 26389
112 Ford GT Coupe 2006 46 45 91 49260 23227 72487
113 Ford F-150 Regular Cab 2012 43 42 85 16458 11425 27883
114 Ford F-150 Regular Cab 2007 45 45 90 17278 14575 31853
115 Ford Focus Sedan 2007 45 45 90 14752 34515 49267
116 Ford E-Series Wagon Van 2012 38 37 75 10183 20399 30582
117 Ford Fiesta Sedan 2012 43 42 85 15395 13904 29299
118 GMC Terrain SUV 2012 42 41 83 13557 20032 33589
119 GMC Savana Van 2012 68 68 136 22072 31554 53626
120 GMC Yukon Hybrid SUV 2012 43 42 85 21916 19090 41006
121 GMC Acadia SUV 2012 45 44 89 13018 27634 40652
122 GMC Canyon Extended Cab 2012 40 40 80 15663 15908 31571

20 Geo 123 Geo Metro Convertible 1993 45 44 89 89 9409 18664 28073 28073.0
124 HUMMER H3T Crew Cab 2010 39 39 78 16632 12330 28962
125 HUMMER H2 SUT Crew Cab 2009 44 43 87 29959 18120 48079
126 Honda Odyssey Minivan 2012 42 42 84 13781 15262 29043
127 Honda Odyssey Minivan 2007 41 41 82 17484 15049 32533
128 Honda Accord Coupe 2012 39 39 78 7516 16978 24494
129 Honda Accord Sedan 2012 39 38 77 8825 13332 22157
130 Hyundai Veloster Hatchback 2012 41 41 82 21644 14675 36319
131 Hyundai Santa Fe SUV 2012 42 42 84 15458 23352 38810
132 Hyundai Tucson SUV 2012 44 43 87 29174 18914 48088
133 Hyundai Veracruz SUV 2012 42 42 84 28868 24137 53005
134 Hyundai Sonata Hybrid Sedan 2012 34 33 67 10620 16925 27545
135 Hyundai Elantra Sedan 2007 42 42 84 14184 18134 32318
136 Hyundai Accent Sedan 2012 24 24 48 3448 28390 31838

22 Honda 321 27056.8

23 Hyundai 871 40263.7

19 GMC 473 40088.8

21 Hummer 165 38520.5

16 Ferrari 326 27530.5

18 Ford 1035 37891.3

13 Dodge 1253 38606.7

15 Fiat 122 30883.0

11 Chrysler 516 40497.8
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137 Hyundai Genesis Sedan 2012 44 43 87 21746 16006 37752
138 Hyundai Sonata Sedan 2012 40 39 79 18104 17113 35217
139 Hyundai Elantra Touring Hatchback 2012 43 42 85 17766 16754 34520
140 Hyundai Azera Sedan 2012 42 42 84 50609 16880 67489
141 Infiniti G Coupe IPL 2012 34 34 68 10036 31503 41539
142 Infiniti QX56 SUV 2011 33 32 65 11102 18993 30095

25 Isuzu 143 Isuzu Ascender SUV 2008 40 40 80 80 9013 21789 30802 30802.0
26 Jaguar 144 Jaguar XK XKR 2012 47 46 93 93 31566 25347 56913 56913.0

145 Jeep Patriot SUV 2012 44 44 88 63057 21892 84949
146 Jeep Wrangler SUV 2012 43 43 86 37065 15261 52326
147 Jeep Liberty SUV 2012 45 44 89 54759 17612 72371
148 Jeep Grand Cherokee SUV 2012 45 45 90 18707 22721 41428
149 Jeep Compass SUV 2012 43 42 85 72441 26163 98604
150 Lamborghini Reventon Coupe 2008 36 36 72 10929 18238 29167
151 Lamborghini Aventador Coupe 2012 44 43 87 10855 20042 30897

152 Lamborghini Gallardo LP 570-4 Superleggera 2012 36 35 71 10866 10389 21255

153 Lamborghini Diablo Coupe 2001 45 44 89 22246 10726 32972
154 Land Rover Range Rover SUV 2012 43 42 85 40560 20077 60637
155 Land Rover LR2 SUV 2012 43 42 85 16321 21148 37469

30 Lincoln 156 Lincoln Town Car Sedan 2011 39 39 78 78 8405 18095 26500 26500.0
31 Mini 157 MINI Cooper Roadster Convertible 2012 37 36 73 73 13887 12524 26411 26411.0
32 Maybach 158 Maybach Landaulet Convertible 2012 29 29 58 58 8644 9022 17666 17666.0
33 Mazda 159 Mazda Tribute SUV 2011 36 36 72 72 13996 14136 28132 28132.0
34 McLaren 160 McLaren MP4-12C Coupe 2012 44 44 88 88 20215 18823 39038 39038.0

161 Mercedes-Benz 300-Class Convertible 1993 48 48 96 14492 21701 36193
162 Mercedes-Benz C-Class Sedan 2012 46 45 91 20676 26431 47107
163 Mercedes-Benz SL-Class Coupe 2009 37 36 73 18091 12359 30450
164 Mercedes-Benz E-Class Sedan 2012 44 43 87 62853 13407 76260
165 Mercedes-Benz S-Class Sedan 2012 45 44 89 20824 16114 36938
166 Mercedes-Benz Sprinter Van 2012 41 41 82 20903 16719 37622

36 Mitsubishi 167 Mitsubishi Lancer Sedan 2012 48 47 95 95 62516 21276 83792 83792.0
168 Nissan Leaf Hatchback 2012 42 42 84 26216 18108 44324
169 Nissan NV Passenger Van 2012 39 38 77 24625 13621 38246
170 Nissan Juke Hatchback 2012 44 44 88 72664 24752 97416
171 Nissan 240SX Coupe 1998 46 46 92 16567 19190 35757

38 Plymouth 172 Plymouth Neon Coupe 1999 44 44 88 88 29991 27061 57052 57052.0
39 Porsche 173 Porsche Panamera Sedan 2012 44 43 87 87 28082 19584 47666 47666.0
40 Ram 174 Ram C/V Cargo Van Minivan 2012 41 41 82 82 7026 14783 21809 21809.0

175
Rolls-Royce Phantom Drophead Coupe Convertible 
2012

31 30 61 6573 7133 13706

176 Rolls-Royce Ghost Sedan 2012 39 38 77 34755 13164 47919
177 Rolls-Royce Phantom Sedan 2012 44 44 88 9884 19622 29506

42 Scion 178 Scion xD Hatchback 2012 42 41 83 83 18152 10392 28544 28544.0
179 Spyker C8 Convertible 2009 45 45 90 28569 27177 55746
180 Spyker C8 Coupe 2009 43 42 85 28271 11305 39576
181 Suzuki Aerio Sedan 2007 38 38 76 12290 10616 22906
182 Suzuki Kizashi Sedan 2012 46 46 92 38835 43195 82030
183 Suzuki SX4 Hatchback 2012 42 42 84 43280 14228 57508
184 Suzuki SX4 Sedan 2012 41 40 81 20157 15852 36009

45 Tesla 185 Tesla Model S Sedan 2012 39 38 77 77 14767 17591 32358 32358.0
186 Toyota Sequoia SUV 2012 39 38 77 13998 21236 35234
187 Toyota Camry Sedan 2012 44 43 87 26250 20875 47125
188 Toyota Corolla Sedan 2012 44 43 87 13499 23635 37134
189 Toyota 4Runner SUV 2012 41 40 81 19120 13301 32421
190 Volkswagen Golf Hatchback 2012 43 43 86 6839 18148 24987
191 Volkswagen Golf Hatchback 1991 46 46 92 47582 20160 67742
192 Volkswagen Beetle Hatchback 2012 43 42 85 27055 20067 47122
193 Volvo C30 Hatchback 2012 42 41 83 21854 20945 42799
194 Volvo 240 Sedan 1993 46 45 91 34864 41096 75960
195 Volvo XC90 SUV 2007 43 43 86 19377 15576 34953

49 Smart 196 smart fortwo Convertible 2012 40 40 80 80 19147 21782 40929 40929.0

47 Volkswagen 263 46617.0

48 Volvo 260 51237.3

44 Suzuki 333 49613.3

46 Toyota 332 37978.5

41 Rolls-Royce 226 30377.0

43 Spyker 175 47661.0

35 Mercedes-Benz 518 44095.0

37 Nissan 341 53935.8

28 Lamborghini 319 28572.8

29 Land Rover 170 49053.0

24 Infiniti 133 35817.0

27 Jeep 438 69935.6
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A.1.2 Fingerprinting

Model sample

Table A.2: Stanford dataset vehicle models used for fingerprinting.

Chevrolet

54 Chevrolet Silverado 1500 Hybrid Crew
Cab 2012

55 Chevrolet Corvette Convertible 2012
56 Chevrolet Corvette ZR1 2012
57 Chevrolet Corvette Ron Fellows Edition

Z06 2007
58 Chevrolet Traverse SUV 2012
59 Chevrolet Camaro Convertible 2012
60 Chevrolet HHR SS 2010
61 Chevrolet Impala Sedan 2007
62 Chevrolet Tahoe Hybrid SUV 2012
63 Chevrolet Sonic Sedan 2012
64 Chevrolet Express Cargo Van 2007
65 Chevrolet Avalanche Crew Cab 2012

66 Chevrolet Cobalt SS 2010
67 Chevrolet Malibu Hybrid Sedan 2010
68 Chevrolet TrailBlazer SS 2009
69 Chevrolet Silverado 2500HD Regular Cab

2012
70 Chevrolet Silverado 1500 Classic Extended

Cab 2007
71 Chevrolet Express Van 2007
72 Chevrolet Monte Carlo Coupe 2007
73 Chevrolet Malibu Sedan 2007
74 Chevrolet Silverado 1500 Extended Cab

2012
75 Chevrolet Silverado 1500 Regular Cab

2012

Dodge

83 Dodge Caliber Wagon 2012
84 Dodge Caliber Wagon 2007
85 Dodge Caravan Minivan 1997
86 Dodge Ram Pickup 3500 Crew Cab 2010
87 Dodge Ram Pickup 3500 Quad Cab 2009
88 Dodge Sprinter Cargo Van 2009
89 Dodge Journey SUV 2012
90 Dodge Dakota Crew Cab 2010

91 Dodge Dakota Club Cab 2007
92 Dodge Magnum Wagon 2008
93 Dodge Challenger SRT8 2011
94 Dodge Durango SUV 2012
95 Dodge Durango SUV 2007
96 Dodge Charger Sedan 2012
97 Dodge Charger SRT-8 2009

Ford

106 Ford F-450 Super Duty Crew Cab 2012
107 Ford Mustang Convertible 2007
108 Ford Freestar Minivan 2007
109 Ford Expedition EL SUV 2009
110 Ford Edge SUV 2012
111 Ford Ranger SuperCab 2011

112 Ford GT Coupe 2006
113 Ford F-150 Regular Cab 2012
114 Ford F-150 Regular Cab 2007
115 Ford Focus Sedan 2007
116 Ford E-Series Wagon Van 2012
117 Ford Fiesta Sedan 2012

GMC

118 GMC Terrain SUV 2012
119 GMC Savana Van 2012
120 GMC Yukon Hybrid SUV 2012

121 GMC Acadia SUV 2012
122 GMC Canyon Extended Cab 2012
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Honda

126 Honda Odyssey Minivan 2012
127 Honda Odyssey Minivan 2007

128 Honda Accord Coupe 2012
129 Honda Accord Sedan 2012

Hyundai

130 Hyundai Veloster Hatchback 2012
131 Hyundai Santa Fe SUV 2012
132 Hyundai Tucson SUV 2012
133 Hyundai Veracruz SUV 2012
134 Hyundai Sonata Hybrid Sedan 2012
135 Hyundai Elantra Sedan 2007

136 Hyundai Accent Sedan 2012
137 Hyundai Genesis Sedan 2012
138 Hyundai Sonata Sedan 2012
139 Hyundai Elantra Touring Hatchback 2012
140 Hyundai Azera Sedan 2012

Jeep

145 Jeep Patriot SUV 2012
146 Jeep Wrangler SUV 2012
147 Jeep Liberty SUV 2012

148 Jeep Grand Cherokee SUV 2012
149 Jeep Compass SUV 2012

Land Rover

154 Land Rover Range Rover SUV 2012 155 Land Rover LR2 SUV 2012

Mercedes-Benz

161 Mercedes-Benz 300-Class Convertible
1993

162 Mercedes-Benz C-Class Sedan 2012
163 Mercedes-Benz SL-Class Coupe 2009

164 Mercedes-Benz E-Class Sedan 2012
165 Mercedes-Benz S-Class Sedan 2012
166 Mercedes-Benz Sprinter Van 2012

Nissan

168 Nissan Leaf Hatchback 2012
169 Nissan NV Passenger Van 2012

170 Nissan Juke Hatchback 2012
171 Nissan 240SX Coupe 1998

Ram

174 Ram C/V Cargo Van Minivan 2012

Toyota

186 Toyota Sequoia SUV 2012 186
187 Toyota Camry Sedan 2012 187

188 Toyota Corolla Sedan 2012 188
189 Toyota 4Runner SUV 2012 189
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A.2 Proprietary dataset

Table A.3: Evaluation of the Opel model with the images used to build the Peugeot model.
Prediction at different thresholds

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TP 50 46 45 45 44 44 44 43 43 41 0
TN 0 265 279 290 300 313 323 328 346 358 400
FP 400 135 121 110 100 87 77 72 54 42 0
FN 0 4 5 5 6 6 6 7 7 9 50

Accuracy 0.111 0.691 0.720 0.744 0.764 0.793 0.816 0.824 0.864 0.887 0.889
Precision 0.111 0.254 0.271 0.290 0.306 0.336 0.364 0.374 0.443 0.494 0.000

Recall
(TP rate)

1.000 0.920 0.900 0.900 0.880 0.880 0.880 0.860 0.860 0.820 0.000

Fallout
(FP rate)

1.000 0.338 0.303 0.275 0.250 0.218 0.193 0.180 0.135 0.105 0.000

F1 score 0.200 0.398 0.417 0.439 0.454 0.486 0.515 0.521 0.585 0.617 0.000
MCC 0.000 0.373 0.389 0.413 0.424 0.458 0.487 0.490 0.554 0.539 0.000

Cohen’s
kappa 0.000 0.271 0.297 0.326 0.346 0.388 0.424 0.433 0.514 0.555 0.000

RMSE 0.943 0.556 0.529 0.506 0.485 0.455 0.429 0.419 0.368 0.337 0.333

ROC AUC 0.883
Precision/

recall AUC
ratio

2.290

Table A.4: Evaluation of the Peugeot model with the images used to build the Opel model.
Prediction at different thresholds

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TP 50 47 44 44 44 44 40 38 34 27 0
TN 0 230 281 310 327 338 350 364 376 388 400
FP 400 170 119 90 73 62 50 36 24 12 0
FN 0 3 6 6 6 6 10 12 16 23 50

Accuracy 0.111 0.616 0.722 0.787 0.824 0.849 0.867 0.893 0.911 0.922 0.889
Precision 0.111 0.217 0.270 0.328 0.376 0.415 0.444 0.514 0.586 0.692 0.000

Recall
(TP rate)

1.000 0.940 0.880 0.880 0.880 0.880 0.800 0.760 0.680 0.540 0.000

Fallout
(FP rate)

1.000 0.425 0.298 0.225 0.183 0.155 0.125 0.090 0.060 0.030 0.000

F1 score 0.200 0.352 0.413 0.478 0.527 0.564 0.571 0.613 0.630 0.607 0.000
MCC 0.000 0.324 0.381 0.450 0.500 0.537 0.530 0.568 0.581 0.570 0.000

Cohen’s
kappa 0.000 0.209 0.293 0.378 0.440 0.487 0.500 0.554 0.579 0.564 0.000

RMSE 0.943 0.620 0.527 0.462 0.419 0.389 0.365 0.327 0.298 0.279 0.333

ROC AUC 0.900
Precision/

recall AUC
ratio

3.585
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Table A.5: Evaluation of the Opel model with previously unused images.
Prediction at different thresholds

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TP 131 96 84 80 75 69 65 58 54 47 0
TN 0 62 68 74 80 88 94 96 108 119 151
FP 151 89 83 77 71 63 57 55 43 32 0
FN 0 35 47 51 56 62 66 73 77 84 131

Accuracy 0.465 0.560 0.539 0.546 0.550 0.557 0.564 0.546 0.574 0.589 0.535
Precision 0.465 0.519 0.503 0.510 0.514 0.523 0.533 0.513 0.557 0.595 0.000

Recall
(TP rate)

1.000 0.733 0.641 0.611 0.573 0.527 0.496 0.443 0.412 0.359 0.000

Fallout
(FP rate)

1.000 0.589 0.550 0.510 0.470 0.417 0.377 0.364 0.285 0.212 0.000

F1 score 0.634 0.608 0.564 0.556 0.542 0.525 0.514 0.475 0.474 0.448 0.000
MCC 0.000 0.151 0.093 0.101 0.102 0.109 0.119 0.080 0.134 0.163 0.000

Cohen’s
kappa 0.000 0.140 0.090 0.099 0.102 0.109 0.119 0.079 0.130 0.151 0.000

RMSE 0.732 0.663 0.679 0.674 0.671 0.666 0.660 0.674 0.652 0.641 0.682

ROC AUC 0.587
Precision/

recall AUC
ratio

0.936

Table A.6: Evaluation of the Peugeot model with previously unused images.
Prediction at different thresholds

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TP 127 110 102 90 74 65 57 41 24 8 0
TN 0 53 67 80 89 94 103 115 127 138 150
FP 150 97 83 70 61 56 47 35 23 12 0
FN 0 17 25 37 53 62 70 86 103 119 127

Accuracy 0.458 0.588 0.610 0.614 0.588 0.574 0.578 0.563 0.545 0.527 0.542
Precision 0.458 0.531 0.551 0.563 0.548 0.537 0.548 0.539 0.511 0.400 0.000

Recall
(TP rate)

1.000 0.866 0.803 0.709 0.583 0.512 0.449 0.323 0.189 0.063 0.000

Fallout
(FP rate)

1.000 0.647 0.553 0.467 0.407 0.373 0.313 0.233 0.153 0.080 0.000

F1 score 0.629 0.659 0.654 0.627 0.565 0.524 0.494 0.404 0.276 0.109 0.000

MCC 0.000 0.252 0.264 0.244 0.175 0.139 0.139 0.100 0.047
-

0.033
0.000

Cohen’s
kappa 0.000 0.209 0.241 0.237 0.175 0.139 0.137 0.092 0.037

-
0.018

0.000

RMSE 0.736 0.642 0.624 0.622 0.642 0.653 0.650 0.661 0.674 0.688 0.677

ROC AUC 0.622
Precision/

recall AUC
ratio

1.100
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Access audit:
Quality criterion (McCall). Those attributes of the software that provide for an audit of the access
of software and data. [183]

Access control:
Quality criterion (McCall). Ability of the system to determine what resources each user should
be able to access. [184]

Accessibility:
Primitive construct (Boehm). Code possesses accessibility in the sense that it facilitates selective
use of its parts. [185]

Accountability:
Primitive construct (Boehm). Code possesses the characteristic accountability to the extent that
its usage can be measured. [185]

Accuracy:
Quality criterion (McCall), primitive construct (Boehm), quality sub-characteristic (FURPS).
Attributes of the software that provide the required precision in calculations and outputs.
[129, 183, 185]

Adaptability:
Quality sub-characteristic (FURPS). Degree to which an application can accommodate changes
to its external environment. [186]

As-is utility:
High-level quality characteristic (Boehm). Addresses how well, easily, reliably and efficiently the
software product can be used as-is. [130] Intermediate-level quality characteristics associated
(Boehm): reliability, efficiency, human engineering. [130]

Augmentability:
Primitive construct (Boehm). Code possesses augmentability to the extent that it can easily
accommodate expansion in component computational functions or data storage requirements.
[185]

Central Limit Theorem:
Statistics Theorem. The properly normalised sum of a large enough number of independent
random variables tends toward a normal distribution even if the variables themselves are not
normally distributed. [187, 188]

Communication commonality:
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Quality factor (McCall). Software attribute that provides the use of standard protocols and
interface routines. [183]

Communicativeness:
Quality factor (McCall), primitive construct (Boehm). Code possesses communicativeness to the
extent that it facilitates the specification of inputs and provides outputs whose form and content
are easy to assimilate and useful. [183, 185]

Compatibility:
Quality sub-characteristic (FURPS). Degree to which an application can be integrated into or
used with other applications, products or systems. [186]

Completeness:
Quality criterion (McCall), primitive construct (Boehm). Complete information is defined by: (1)
No information is left unstated or to be determined, (2) The information does not contain any
undefined objects or entities and (3) No information is missing. [185, 189]

Conciseness:
Quality criterion (McCall), primitive construct (Boehm). Software attribute that allows for the
implementation of a function using a minimal amount of code and with no excess of information.
[183, 185]

Configurability:
Quality sub-characteristic (FURPS) Degree to which an application can be easily set up or
configured for a particular application or intended use. [186]

Consistency:
Quality criterion (McCall), primitive construct (Boehm), quality sub-characteristic (FURPS).
Refers to situations where a specification contains no internal contradictions. [129, 189]
Comprises internal consistency, to the extent in which it contains uniform notation, terminology
and symbology within itself, and external consistency, in that its content is traceable to its
requirements. [185]

Contextual:
High-level product property (Dromey). Deals with the external influences on the use of a
component. [132] Quality attributes associated (Dromey): maintainability, reusability, portability,
reliability. [132]

Correctness:
Quality factor (McCall), high-level product property (Dromey). Extent to which the software
conforms to its specifications and to its declared objectives, with no violation of basic principles.
[132, 190] Quality criteria associated (McCall): traceability, completeness, consistency.
[129, 130] Quality attributes associated (Dromey): functionality, reliability. [132]

Data commonality:
Quality factor (McCall). Software attribute that provides the use of standard data representations.
[183]

Descriptive:
High-level product property (Dromey). Measures the descriptiveness of a component. [132]
Quality attributes associated (Dromey): maintainability, reusability, portability, usability. [132]
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Device efficiency:
Primitive construct (Boehm). Efficiency applied at the device level. Fulfilling the stipulated
purpose without wasting a device’s resources. [185]

Documentation:
Quality sub-characteristic (FURPS) Documentation quality is the degree to which an application
external documentation (e.g. user manuals, reference guides, online help) possesses a desired set
of characteristics. [186]

Efficiency:
Quality factor (McCall), quality attribute (Dromey), quality sub-characteristic (FURPS). Extent
to which the software is able to do more with less system resources (e.g. hardware, operating
system, communications). [129, 190] Quality criteria associated (McCall): execution efficiency,
storage efficiency. [129, 130] Primitive constructs associated (Boehm): accountability, device
efficiency and accessibility. [130]

Error tolerance:
Quality criterion (McCall). Attributes of the software that provide continuity of operation under
nonnominal conditions. [183]

Execution efficiency:
Quality criterion (McCall). Efficiency pertaining to the execution of a system or part of it, which
is measured by the time it takes a system, or part of a system, to perform a computation. [191]

Expandability:
Quality criterion (McCall). Relative effort required to expand software capabilities and/or
performance by enhancing current functions or by adding new functionality. [190]

Extensibility:
Quality sub-characteristic (FURPS) The degree to which an application’s capabilities can be
extended by modifying current features or adding new features. [186]

Flexibility:
Quality factor (McCall). Ease of effort for changing the software’s mission, functions or data to
meet changing needs and requirements. [190] Quality criteria associated (McCall):
self-descriptiveness, expandability, generality. [129, 130]

Functionality:
Quality attribute (Dromey). Includes the system’s feature sets, capabilities and security. [132]

Generality:
Quality criterion (McCall). Degree to which a system or part of it can be used for a wide range of
intended uses. [186]

Human engineering:
Intermediate-level quality characteristic (Boehm). A code possesses human engineering to the
extent in which it fulfills its purpose without wasting the user’s time and energy or degrading
their morale. [185] Primitive constructs associated (Boehm): robustness/integrity, accessibility,
communicativeness. [129, 130, 132]

Installability:
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Quality sub-characteristic (FURPS) The degree to which an application can easily be prepared
for use. [186]

Instrumentation:
Quality factor (McCall). Software attributes that allow for the measurement of usage or
identification of errors. [183]

Integrity:
Quality factor (McCall), primitive construct, grouped with robustness (Boehm). Extent to which
the software is able to withstand intrusion by unauthorised users or software within a specified
time period. [190] Quality criteria associated (McCall): access control, access audit. [129, 130]

Internal:
High-level product property (Dromey). Measures how well a component has been deployed
according to its intended use. [132] Quality attributes associated (Dromey): maintainability,
efficiency, reliability. [132]

Interoperability:
Quality factor (McCall). Relative effort needed to couple the software on one platform to another
software and/or another platform. [190] Quality criteria associated (McCall): modularity,
communication commonality, data commonality. [129]

Legibility:
Primitive construct (Boehm). Code possesses legibility to the extent that its function is easily
discerned by reading the code. [185]

Localisability:
Quality sub-characteristic (FURPS) The degree to which an application can easily be adopted,
preferably via preferences or options, to satisfy the needs of languages other than English and to
local standards such as decimal separator, currency symbol, time zone, calendar, etc. [186]

Machine independence:
Quality criterion (McCall), primitive construct, referred to as device independence (Boehm).
Attributes of the software that provide as much independence of the hardware environment and
configurations as possible (e.g. physical machine the system operates in). [183, 185]

Maintainability:
Quality factor (McCall), high-level quality characteristic (Boehm), quality attribute (Dromey),
quality sub-characteristic (FURPS). Ease of effort for locating and fixing a software failure
within a specified time period. How easy it is to understand, modify and retest the software
product. [130, 190] Quality criteria associated (McCall): simplicity, conciseness,
self-descriptiveness, modularity. [129, 130] Intermediate-level quality characteristics associated
(Boehm): testability, understandability, modifiability. [130, 132]

Modifiability:
Intermediate-level quality characteristic (Boehm). Code possesses the characteristic modifiability
to the extent that it facilitates the incorporation of changes, once the nature of the desired change
has been determined. [185] Primitive constructs associated (Boehm): structuredness,
augmentability. [130]

Modularity:
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Quality criterion (McCall). Attributes of the software that provide a structure of highly
independent modules. Concept based on each function of the system being implemented in a
unique module. [183]

Operability:
Quality factor (McCall). Software attributes that determine operation and procedures concerned
with the operation of the software. [183]

Portability:
Quality factor (McCall), high-level quality characteristic (Boehm), quality attribute (Dromey).
Ease of effort to transport software to another environment or platform. [132,190] Quality criteria
associated (McCall): self-descriptiveness, software system independence, machine independence.
[129] Primitive constructs associated (Boehm): device independence, self-containedness. [130]

Predictability:
Quality sub-characteristic (FURPS) Degree to which each execution will potentially yield the
same results. [192]

Recoverability:
Quality sub-characteristic (FURPS) An application is recoverable if it has the capability to
reestablish required performance levels and recover affected data after an application or system
failure [193]

Reliability:
Quality factor (McCall), intermediate-level quality characteristic (Boehm), quality attribute
(Dromey). Extent to which the software will perform according to its stated objectives within a
specified time period. The system’s ability not to fail. [130, 190] Quality criteria associated
(McCall): consistency, accuracy, error tolerance. [129, 130] Primitive constructs associated
(Boehm): self-containedness, accuracy, completeness, robustness/integrity, consistency [130]

Reusability:
Quality factor (McCall), quality attribute (Dromey). Ease of effort to use the software (or its
components) in other software systems and applications. [190] Quality criteria associated
(McCall): self-descriptiveness, generality, modularity, software system independence, machine
independence. [129]

Robustness:
Primitive construct, grouped with integrity (Boehm). Code possesses robustness to the extent that
it can continue to perform despite some violation of the assumptions in its specification. [185]

Security:
Quality sub-characteristic (FURPS). The ability of the system to protect itself against accidental
or deliberate intrusion. [194]

Self-containedness:
Primitive construct (Boehm). Code possesses self-containedness to the extent that it performs all
its explicit and implicit (e.g. initialization, input checking, diagnostics, etc.) functions within
itself. [185]

Self-descriptiveness:
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Quality criterion (McCall), primitive construct (Boehm). A software product possesses
self-descriptiveness to the extent that it contains enough information for a reader to determine or
verify its objectives, assumptions, constraints, inputs, outputs, components, and revision status.
[185]

Serviceability:
Quality sub-characteristic (FURPS). Aspects of a system design contributing to ease of
diagnostics and repair. [195]

Simplicity:
Quality criterion (McCall). Implementation of functions in the most understandable manner,
avoiding practices that increase complexity. [183]

Software as a service:
Software paradigm. The delivery of software as an internet-based service via a web browser,
rather than as a product that must be purchased, installed, and maintained. Process in which a
third party (usually a vendor) assumes all risk for providing the software application to the
enterprise or organisation. [196, 197]

Software system independence:
Quality criterion (McCall). Attributes of the software that provide as much independence of the
software environment as possible (e.g. operating systems, utilities, input and output routines,
etc.). [183]

Storage efficiency:
Quality criterion (McCall). Efficiency pertaining to the storage of data, which is measured by the
number of bytes needed to store data. [191]

Structuredness:
Primitive construct (Boehm). Code possesses structuredness to the extent it possesses a definite
pattern of organization of its interdependent parts. [185]

Testability:
Quality factor (McCall), intermediate-level quality characteristic (Boehm), quality
sub-characteristic (FURPS). Ease of testing the program to verify that it performs a specified
function. [190] Quality criteria associated (McCall): simplicity, instrumentation,
self-descriptiveness, modularity. [129, 130] Primitive constructs associated (Boehm):
accountability, communicativeness, self-descriptiveness, structuredness. [129, 130, 132]

Traceability:
Quality criterion (McCall). Software engineering term that refers to documented links between
software engineering work products (e.g., requirements and test cases). [128]

Training:
Quality factor (McCall). Attributes of the software that provide transition from current operation
or initial familiarization. [183]

Understandability:
Intermediate-level quality characteristic (Boehm). A code possesses the characteristic
understandability to the extent that its purpose is clear to the inspector. [185] Primitive constructs
associated (Boehm): consistency, structuredness, conciseness, legibility. [129, 130, 132]
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Usability:
Quality factor (McCall), quality attribute (Dromey), quality characteristic (FURPS). Relative
ease of learning the operation of the software. [190] Quality criteria associated (McCall):
operability, training, communicativeness. [129, 130] Sub-characteristics associated (FURPS):
consistency, documentation.
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[78] M. Trajković and M. Hedley, “Fast corner detection,” Image and Vision Computing,
vol. 16, no. 2, pp. 75–87, 1998.

[79] E. Rosten and T. Drummond, “Machine Learning for High Speed Corner Detection,”
Computer Vision – ECCV 2006, vol. 1, pp. 430–443, 2006.

[80] H. Wang and M. Brady, “Real-time corner detection algorithm for motion estimation,”
Image and Vision Computing, vol. 13, no. 9, pp. 695–703, 1995.

[81] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point detectors,”
International Journal of Computer Vision, vol. 37, no. 2, pp. 151–172, 2000.

[82] P.-L. Shui and W.-C. Zhang, “Corner detection and classification using anisotropic
directional derivative representations,” IEEE Transactions of Image Processing, vol. 22,
no. 8, pp. 3204–3218, 2013.

[83] H. P. Moravec, “Obstacle Avoidance and Navigation in the Real World by a Seeing Robot
Rover,” Stanford Artificial Intelligence Laboratory, Computer Science Department,
Stanford University, Tech. Rep., 1980.

[84] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” in Procedings of the
Alvey Vision Conference 1988. Alvey Vision Club, 1988, pp. 147–152.

[85] J. Corso, “Local Image Features,” University of Michigan, College of Engineering,
Electrical Engineering and Computer Science, EECS 598-08, Foundations of Computer
Vision, 2014.

[86] K. Jeong and H. Moon, “Object detection using FAST corner detector based on
smartphone platforms,” in Proceedings of the First ACIS/JNU International Conference on
Computers, Networks, Systems, and Industrial Engineering, CNSI 2011, 2011, pp.
111–115.

[87] S. Seth, P. Upadhyay, R. Shroff, and R. Komatwar, “Review of Content Based Image
Retrieval Systems,” International Journal of Engineering Trends and Technology (IJETT),
vol. 19, no. 4, pp. 178–181, 2015.

[88] F. P. Yang and M. L. Hao, “Effective image retrieval using texture elements and color
fuzzy correlogram,” Information (Switzerland), vol. 8, no. 1, 2017.

[89] J. E. C. Cruz, E. H. Shiguemori, and L. N. F. Guimarães, “A comparison of Haar-like, LBP
and HOG approaches to concrete and asphalt runway detection in high resolution
imagery,” Journal of Computational Interdisciplinary Sciences, vol. 6, pp. 121–136, 2015.

[90] T. Sikora, “The MPEG-7 visual standard for content description - An overview,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 11, no. 6, pp. 696–702,
2001.



Bibliography 129

[91] S. Belongie, J. Malik, and J. Puzicha, “Shape context: A new descriptor for shape
matching and object recognition,” Advances in Neural Information Processing Systems,
vol. 546, pp. 831–837, 2000.

[92] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple
features,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, 2001.

[93] R. Lienhart and J. Maydt, “An Extended Set of Haar-like Features for Rapid Object
Detection,” in Proceedings of the 2002 Iternational Conference on Image Processing,
2002.

[94] B. Vidakovic and P. Mueller, “Wavelets for kids: a tutorial introduction,” Institute of
Statistics and Decision Sciences, Duke University, 1991.

[95] D. S. Khadtare, M. M. Jadhav, and M. Khadtare, “A robust watermarking approach for raw
video and its DSP implementation,” International Journal of Advanced Engineering
Research and Studies, vol. 1, no. 1, pp. 198–208, 2011.

[96] C. P. Papageorgiou, M. Oren, and T. Poggio, “A general framework for object detection,”
in IEEE International Conference on Computer Vision, 1998, pp. 555–562.

[97] S.-K. Pavani, D. Delgado, and A. F. Frangi, “Haar-like features with optimally weighted
rectangles for rapid object detection,” Pattern Recognition, vol. 43, no. 1, pp. 160–172,
2010. [Online]. Available: http://dx.doi.org/10.1016/j.patcog.2009.05.011

[98] S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 11, no. 7, pp. 674–693, 1989.

[99] S. Sivaraman and M. M. Trivedi, “A Review of Recent Developments in Vision-Based
Vehicle Detection,” in IEEE Intelligent Vehicles Symposium, no. IV, Gold Coast, Australia,
2013.

[100] G. Bradski and A. Kaehler, Learning OpenCV. O’Reilly, 2008.

[101] T. Ojala, M. Pietikäinen, and D. Harwood, “Performance evaluation of texture measures
with classification based on Kullback discrimination of distributions,” Proceedings of 12th
International Conference on Pattern Recognition, vol. 1, pp. 582–585, 1994.

[102] ——, “A comparative study of texture measures with classification based on featured
distributions,” Pattern Recognition, vol. 29, no. 1, pp. 51–59, 1996.

[103] L. Wang and D.-C. He, “Texture classification using texture spectrum,” Pattern
Recognition, vol. 23, no. 8, pp. 905–910, 1990.

[104] S. L. Happy, A. George, and A. Routray, “A real time facial expression classification
system using Local Binary Patterns,” 4th International Conference on Intelligent Human
Computer Interaction (IHCI), pp. 1–5, 2012.

[105] A. Mordvintsev and A. Rahman, “Face Detection using Haar Cascades,” OpenCV -
Python Tutorials, 2013. [Online]. Available: https://opencv-python-tutroals.readthedocs.
io/en/latest/py_tutorials/py_objdetect/py_face_detection/py_face_detection.html

http://dx.doi.org/10.1016/j.patcog.2009.05.011
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_objdetect/py_face_detection/py_face_detection.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_objdetect/py_face_detection/py_face_detection.html


Bibliography 130

[106] D. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the
Seventh IEEE International Conference on Computer Vision, 1999, pp. 1150–1157 vol.2.

[107] D. G. Lowe, “US Patent No. US006711293B1: Method and apparatus for identifying scale
invariant features in an image and use of same for locating an object in an image,” The
University of British Columbia, Vancouver (CA), pp. 1–12, 2004.

[108] J. Li and N. M. Allinson, “A comprehensive review of current local features for computer
vision,” Neurocomputing, vol. 71, pp. 1771–1787, 2008.

[109] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International
Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[110] Y. Ke and R. Sukthankar, “PCA-SIFT: A More Distinctive Representation for Local Image
Descriptors,” Computer Vision and Pattern Recognition, vol. 2, pp. 506–513, 2004.

[111] E. N. Mortensen, H. Deng, and L. Shapiro, “A SIFT Descriptor with Global Context,” in
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR
2005), 2005, pp. 184–190.

[112] T. Lindeberg, “Scale Invariant Feature Transform,” Scholarpedia, vol. 7, no. 5, p. 10491,
2012, revision #153939.

[113] J. Wu, Z. Cui, V. S. Sheng, P. Zhao, D. Su, and S. Gong, “A comparative study of SIFT
and its variants,” Measurement Science Review, vol. 13, no. 3, pp. 122–131, 2013.

[114] W. Cheung and G. Hamarneh, “n-SIFT: n-Dimensional scale invariant feature transform,”
IEEE Transactions on Image Processing, vol. 18, no. 9, pp. 2012–2021, 2009.

[115] L. Juan and O. Gwun, “A comparison of SIFT, PCA-SIFT and SURF,” International
Journal of Image Processing (IJIP), vol. 3, no. 4, pp. 143–152, 2009.

[116] A. E. Abdel-Hakim and A. A. Farag, “CSIFT: A SIFT Descriptor with Color Invariant
Characteristics,” in Proceedings of the 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), 2006, pp. 1978–1983.

[117] J.-M. Geusebroek, R. van den Boomgaard, A. W. M. Smeulders, and H. Geerts, “Color
Invariance,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23,
no. 12, pp. 1338–1350, 2001.

[118] J.-M. Morel and G. Yu, “ASIFT : A New Framework for Fully Affine Invariant Image
Comparison,” SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 438–469, 2009.

[119] R. Funayama, H. Yanagihara, L. Van Gool, T. Tuytelaars, and H. Bay, “US Patent No.
US008165401B2: Robust Interest Point Detector and Descriptor,” Toyota Motor Europe
NV, Brussels (BE); K.U. Leuven Research & Development, Leuven (BE); Eidgenoessiche
Technische Hochschule Zurich, Zurich (CH), pp. 1–13, 2012.

[120] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF : Speeded Up Robust Features,” in
European Conference on Computer Vision, 2006, pp. 404–417.

[121] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary Robust Independent
Elementary Features,” in European Conference on Computer Vision, 2010, pp. 778–792.



Bibliography 131

[122] J. Liu and X. Liang, “I-BRIEF: A fast feature point descriptor with more robust features,”
Proceedings - 7th International Conference on Signal Image Technology and
Internet-Based Systems, SITIS 2011, pp. 322–328, 2011.

[123] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to
SIFT or SURF,” Proceedings of the IEEE International Conference on Computer Vision,
pp. 2564–2571, 2011.

[124] H. J. Chien, C. C. Chuang, C. Y. Chen, and R. Klette, “When to use what feature? SIFT,
SURF, ORB, or A-KAZE features for monocular visual odometry,” International
Conference Image and Vision Computing New Zealand, no. 1, pp. 0–5, 2017.

[125] P. Fernández Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE Features,” in ECCV 2012,
Part VI, LNCS 7577, 2012, pp. 214–227.

[126] Z. Saleem, “A Comparative Analysis of SIFT, SURF, KAZE, AKAZE, ORB, and
BRISK,” in International Conference on Computing, Mathematics and Engineering
Technologies (iCoMET), 2018.

[127] D. Galin, Software Quality Assurance - From theory to implementation, 1st ed.
Addison-Wesley, 2004.

[128] R. S. Pressman and B. R. Maxim, Software Engineering: A Practicioner’s Approach,
8th ed. McGraw Hill Education, 2015.

[129] D. Samadhiya, S.-H. Wang, and D. Chen, “Quality models: Role and value in software
engineering,” International Conference on Software Technology and Engineering (ICSTE),
vol. 1, pp. 320–324, 2010.

[130] R. E. Al-Qutaish, “Quality models in software engineering literature: an analytical and
comparative study,” Journal of American Science, vol. 6, no. 3, pp. 166–175, 2010.

[131] A. B. Al-Badareen, M. H. Selamat, M. A. Jabar, J. Din, and S. Turaev, “Software Quality
Models: A Comparative Study,” in ICSECS (1), no. June, 2011, pp. 46–55.

[132] D. Jamwal, “Analysis of Software Quality Models for Organizations,” International
Journal of Latest Trends in Computing (E-ISSN: 2045-5364), vol. 1, no. 2, pp. 19–23,
2010.

[133] D. Firesmith, “Journal of Object Technology - Prioritizing Requirements,” Journal of
Object Technology, vol. 3, no. 8, pp. 35–47, 2004. [Online]. Available:
http://www.jot.fm/issues/issue_2004_09/column4

[134] E. Miranda, “Time boxing planning: Buffered Moscow rules,” ACM SIGSOFT Software
Engineering Notes, vol. 36, no. 6, pp. 1–5, 2011.

[135] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. Naz, “A systematic literature review of
software requirements prioritization research,” Information and Software Technology,
vol. 56, no. 6, pp. 568–585, 2014.

[136] J. Karlsson, C. Wohlin, and B. Regnell, “An evaluation of methods for prioritizing
software requirements,” Information and Software Technology, vol. 39, pp. 939–947, 1998.

[137] R. Baran, A. Glowacz, and A. Matiolanski, “The efficient real- and non-real-time make
and model recognition of cars,” Multimedia Tools and Applications, vol. 74, no. 12, pp.
4269–4288, 2015.

http://www.jot.fm/issues/issue_2004_09/column4


Bibliography 132

[138] A. Minich and C. Li, “Vehicle Logo Recognition and Classification: Feature Descriptors
vs. Shape Descriptors,” Spring, pp. 1–6, 2011. [Online]. Available:
http://www.stanford.edu/class/ee368/Project_11/Reports/Burkhard_Li_Minich_
Automated_Vehicle_Identification.pdf

[139] Y. Wang, Z. Liu, and F. Xiao, “A fast coarse-to-fine vehicle logo detection and recognition
method,” in 2007 IEEE International Conference on Robotics and Biomimetics, ROBIO,
no. 1, 2007, pp. 691–696.

[140] K.-T. Sam and X.-L. Tian, “Vehicle Logo Recognition Using Modest AdaBoost and Radial
Tchebichef Moments,” in Proceedings of 2012 4th International Conference on Machine
Learning and Computing IPCSIT, vol. 25, 2012, pp. 91–95.

[141] Y. Huang, R. Wu, Y. Sun, W. Wang, and X. Ding, “Vehicle logo recognition system based
on convolutional neural networks with a pretraining strategy,” IEEE Transactions on
Intelligent Transportation Systems, vol. 16, no. 4, pp. 1951–1960, 2015.

[142] A. Psyllos, C. N. Anagnostopoulos, and E. Kayafas, “Vehicle model recognition from
frontal view image measurements,” Computer Standards and Interfaces, vol. 33, no. 2, pp.
142–151, 2011.

[143] C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, V. Loumos, and E. Kayafas, “A License
Plate-Recognition Algorithm for Intelligent Transportation System Applications,” IEEE
Transactions on Intelligent Transportation Systems, vol. 7, no. 3, pp. 377–392, 2006.

[144] J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,” Pattern
Recognition, vol. 33, pp. 225–236, 2000.

[145] G. Lazzara and T. Géraud, “Efficient Multiscale Sauvola’s Binarization,” International
Journal on Document Analysis and Recognition (IJDAR), vol. 17, no. 2, pp. 105–123,
2014.

[146] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-component labeling based on
sequential local operations,” Computer Vision and Image Understanding, vol. 89, pp.
1–23, 2003.

[147] C. N. Anagnostopoulos, “Artificial vision and computational intelligence techniques for
industrial applications and quality control,” Ph.D. dissertation, Electrical and Computer
Engineering Department., National Technical University of Athens, 2002.

[148] G. Pearce and N. Pears, “Automatic Make and Model Recognition from Frontal Images of
Cars,” in 8th IEEE International Conference on Advanced Video and Signal-Based
Surveillance, 2011, pp. 373–378.

[149] D. T. Munroe and M. G. Madden, “Multi-class and single-class classification approaches
to vehicle model recognition from images,” Proceedings of IEEE AICS, 2005.
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[170] Z. Antolić, “An Example of Using Key Performance Indicators for Software Development
Process Efficiency Evaluation,” R&D Center Ericsson Nikola Tesla, 6, 2008.

[171] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3D object representations for fine-grained
categorization,” Proceedings of the IEEE International Conference on Computer Vision,
pp. 554–561, 2013. [Online]. Available:
https://ai.stanford.edu/~jkrause/cars/car_dataset.html

[172] W. Clarke, “Top 10 Best-Selling Vehicles of 2006,” Edmunds Inc. (retrieved via Wayback
Machine), 2008. [Online]. Available: https://web.archive.org/web/20080417180145/http:
//www.edmunds.com/reviews/list/top10/120637/article.html

[173] B. Zhang, “The 20 best-selling cars and trucks in America,” Business Insider, 2017.
[Online]. Available:
http://www.businessinsider.com/best-selling-cars-trucks-vehicle-america-2016-2017-1/

[174] P. F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast Explicit Diffusion for Accelerated
Features in Nonlinear Scale Spaces,” in British Machine Vision Conference (BMVC), 2013.

[175] OpenCV Dev Team, “Common Interfaces of Descriptor Matchers,” OpenCV API
Reference, 2018. [Online]. Available: https://docs.opencv.org/2.4/modules/features2d/doc/
common_interfaces_of_descriptor_matchers.html

[176] E. Bostanci, “Is Hamming distance the only way for matching binary image feature
descriptors?” Electronics Letters, vol. 50, no. 11, pp. 806–808, 2014.

[177] A. Mordvintsev and A. Rahman, “Feature Matching,” OpenCV – Python Tutorials, 2013.
[Online]. Available: http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/
py_feature2d/py_matcher/py_matcher.html

[178] T. Ball and R. Mehner, “Train your own OpenCV Haar classifier,” Coding Robin, 2013.
[Online]. Available:
https://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html

[179] T. Ball, “Train your own OpenCV Haar classifier: Instructions,” GitHub, 2017. [Online].
Available: https://github.com/mrnugget/opencv-haar-classifier-training

[180] OpenCV Dev Team, “Cascade Classifier Training,” 2018. [Online]. Available:
https://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html

[181] N. Seo, “Tutorial: OpenCV haartraining (Rapid Object Detection With A Cascade of
Boosted Classifiers Based on Haar-like Features),” 2012. [Online]. Available:
http://note.sonots.com/SciSoftware/haartraining.html

[182] K. Kadir, M. K. Kamaruddin, H. Nasir, S. I. Safie, and Z. A. K. Bakti, “A comparative
study between LBP and Haar-like features for Face Detection using OpenCV,” 2014 4th
International Conference on Engineering Technology and Technopreneuship, ICE2T 2014,
vol. 2014-Augus, no. August, pp. 335–339, 2014.

[183] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in Software Quality - Volume 1 -
Concept and Definitions of Software Quality,” Defense Technical Information Center,
vol. 1, 1977.

[184] G. McGraw and J. Viega, “Building secure software: How to avoid security problems the
right way,” in RTO/NATO Real-Time Intrusion Detection Symposium, 2002.

https://ai.stanford.edu/~jkrause/cars/car_dataset.html
https://web.archive.org/web/20080417180145/http://www.edmunds.com/reviews/list/top10/120637/article.html
https://web.archive.org/web/20080417180145/http://www.edmunds.com/reviews/list/top10/120637/article.html
http://www.businessinsider.com/best-selling-cars-trucks-vehicle-america-2016-2017-1/
https://docs.opencv.org/2.4/modules/features2d/doc/common_interfaces_of_descriptor_matchers.html
https://docs.opencv.org/2.4/modules/features2d/doc/common_interfaces_of_descriptor_matchers.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html
https://github.com/mrnugget/opencv-haar-classifier-training
https://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html
http://note.sonots.com/SciSoftware/haartraining.html


Bibliography 135

[185] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of software quality,”
Proceedings of the 2nd international conference on Software engineering, pp. 592–605,
1976.

[186] O. Balci, “Quality assessment, verification, and validation of modeling and simulation
applications,” Proceedings of the 36th Winter Simulation Conference, 2004, pp. 122–129,
2004.

[187] A. Ghasemi and S. Zahediasl, “Normality Tests for Statistical Analysis: A Guide for
Non-Statisticians,” International Journal of Endocrinology and Metabolism, vol. 10, no. 2,
pp. 486–489, 2012.

[188] A. C. Bovik, The Essential Guide to Image Processing, 1st ed. Academic Press, Elsevier,
2009.

[189] D. Zowghi and V. Gervasi, “The Three Cs of Requirements: Consistency, Completeness,
and Correctness,” Proceedings of 8th International Workshop on Requirements
Engineering: Foundation for Software Quality, no. March, pp. 155–164, 2002.

[190] N. Ashrafi, “The impact of software process improvement on quality: in theory and
practice,” Information & Management, vol. 40, no. 7, pp. 677–690, 2003.

[191] W. Frakes, “Introduction to information storage and retrieval systems,” Space, vol. 14,
no. 10, 1992.

[192] M. Harman, “The current state and future of search based software engineering,” in FoSE
2007: Future of Software Engineering, 2007, pp. 342–357.

[193] I. Gorton, “Software Quality Attributes,” in Essential Software Architecture, 2006, pp.
1–283.

[194] L. Chung, “Non-Functional Requirements,” University of Texas at Dallas, Department of
Computer Science, CS6361/501, (Advanced) Requirements Engineering, 2006.

[195] A. M. Johnson Jr. and M. Malek, “Survey of Software and Serviceability Tools for
Evaluating Reliability, Availability, and Serviceability,” ACM Computing Surveys, vol. 20,
no. 4, 1988.

[196] G. St. Clair, “Software-as-a-Service (SaaS): Put the Focus on the KM/Knowledge Services
Core Function,” SaaS White Paper, EOS International, Tech. Rep., 2008.

[197] C. Spence, J. Devoys, and S. Chahal, “Architecting Software as a Service for the
Enterprise,” IT@Intel White Paper, Cloud Computing, Intel Information Technology, Intel
Corporation, Tech. Rep., 2009.


	List of Figures
	List of Tables
	List of Equations
	Abbreviations
	Introduction
	Motivation
	Host institution
	Summary and contributions
	Structure of the document

	Contextualisation and methodologies
	The tolling industry
	Machine Learning
	Supervised learning
	Unsupervised learning
	Deep learning
	Performance indicators for machine learning

	Computer Vision
	Image fingerprinting
	Edge detection
	Corner detection
	Image feature descriptors

	Goals
	Project life-cycle
	Quality models and requirement prioritisation
	Project planning


	Related work
	Recognising a vehicle's manufacturer
	Recognising manufacturer and model
	Overview

	Analysis
	System requirements
	Stakeholders
	Quality models
	Functional requirements
	Non-functional requirements
	Requirement prioritisation

	Variability in MMR
	RSE properties
	Capture event properties
	Vehicle properties
	Analysis and summary


	Design
	System architecture
	Parent system overview
	Architecture

	Implementation considerations
	Code quality and performance indicators
	Code quality
	Performance indicators


	Implementation and results
	Stanford dataset
	Fingerprinting
	Cascade classifiers

	Proprietary dataset
	Convolutional neural networks


	Discussion and conclusion
	Supplementary information
	Stanford dataset
	Dataset analysis
	Fingerprinting

	Proprietary dataset

	Glossary
	Bibliography

