123 research outputs found

    Building spanning trees quickly in Maker-Breaker games

    Full text link
    For a tree T on n vertices, we study the Maker-Breaker game, played on the edge set of the complete graph on n vertices, which Maker wins as soon as the graph she builds contains a copy of T. We prove that if T has bounded maximum degree, then Maker can win this game within n+1 moves. Moreover, we prove that Maker can build almost every tree on n vertices in n-1 moves and provide non-trivial examples of families of trees which Maker cannot build in n-1 moves

    Generating random graphs in biased Maker-Breaker games

    Full text link
    We present a general approach connecting biased Maker-Breaker games and problems about local resilience in random graphs. We utilize this approach to prove new results and also to derive some known results about biased Maker-Breaker games. In particular, we show that for b=o(n)b=o\left(\sqrt{n}\right), Maker can build a pancyclic graph (that is, a graph that contains cycles of every possible length) while playing a (1:b)(1:b) game on E(Kn)E(K_n). As another application, we show that for b=Θ(n/lnn)b=\Theta\left(n/\ln n\right), playing a (1:b)(1:b) game on E(Kn)E(K_n), Maker can build a graph which contains copies of all spanning trees having maximum degree Δ=O(1)\Delta=O(1) with a bare path of linear length (a bare path in a tree TT is a path with all interior vertices of degree exactly two in TT)

    Fast Strategies in Waiter-Client Games on KnK_n

    Full text link
    Waiter-Client games are played on some hypergraph (X,F)(X,\mathcal{F}), where F\mathcal{F} denotes the family of winning sets. For some bias bb, during each round of such a game Waiter offers to Client b+1b+1 elements of XX, of which Client claims one for himself while the rest go to Waiter. Proceeding like this Waiter wins the game if she forces Client to claim all the elements of any winning set from F\mathcal{F}. In this paper we study fast strategies for several Waiter-Client games played on the edge set of the complete graph, i.e. X=E(Kn)X=E(K_n), in which the winning sets are perfect matchings, Hamilton cycles, pancyclic graphs, fixed spanning trees or factors of a given graph.Comment: 38 page

    Fast strategies in biased Maker--Breaker games

    Full text link
    We study the biased (1:b)(1:b) Maker--Breaker positional games, played on the edge set of the complete graph on nn vertices, KnK_n. Given Breaker's bias bb, possibly depending on nn, we determine the bounds for the minimal number of moves, depending on bb, in which Maker can win in each of the two standard graph games, the Perfect Matching game and the Hamilton Cycle game

    Pozicione igre na grafovima

    Get PDF
    \section*{Abstract} We study Maker-Breaker games played on the edges of the complete graph on nn vertices, KnK_n, whose family of winning sets \cF consists of all edge sets of subgraphs GKnG\subseteq K_n which possess a predetermined monotone increasing property. Two players, Maker and Breaker, take turns in claiming aa, respectively bb, unclaimed edges per move. We are interested in finding the threshold bias b_{\cF}(a) for all values of aa, so that for every bb, b\leq b_{\cF}(a), Maker wins the game and for all values of bb, such that b>b_{\cF}(a), Breaker wins the game. We are particularly interested in cases where both aa and bb can be greater than 11. We focus on the \textit{Connectivity game}, where the winning sets are the edge sets of all spanning trees of KnK_n and on the  \textit{Hamiltonicity game}, where the winning sets are the edge sets of all Hamilton cycles on KnK_n. Next, we consider biased (1:b)(1:b) Avoider-Enforcer games, also played on the edges of KnK_n. For every constant k3k\geq 3 we analyse the kk-star game, where Avoider tries to avoid claiming kk edges incident to the same vertex. We analyse both versions of Avoider-Enforcer games, the strict and the monotone, and for each provide explicit winning strategies for both players. Consequentially, we establish bounds on the threshold biases f^{mon}_\cF, f^-_\cF and f^+_\cF, where \cF is the hypergraph of the game (the family of target sets). We also study the monotone version of K2,2K_{2,2}-game, where Avoider wants to avoid claiming all the edges of some graph isomorphic to K2,2K_{2,2} in KnK_n.   Finally, we search for the fast winning strategies for Maker in Perfect matching game and Hamiltonicity game, again played on the edge set of KnK_n. Here, we look at the biased (1:b)(1:b) games, where Maker's bias is 1, and Breaker's bias is b,b1b, b\ge 1.\section*{Izvod} Prou\v{c}avamo takozvane Mejker-Brejker (Maker-Breaker) igre koje se igraju na granama kompletnog grafa sa nn \v{c}vorova, KnK_n, \v{c}ija familija pobedni\v{c}kih skupova \cF obuhvata sve skupove grana grafa GKnG\subseteq K_n koji imaju neku monotono rastu\'{c}u osobinu. Dva igra\v{c}a, \textit{Mejker} (\textit{Pravi\v{s}a}) i \textit{Brejker} (\textit{Kva\-ri\-\v{s}a}) se smenjuju u odabiru aa, odnosno bb, slobodnih grana po potezu. Interesuje nas da prona\dj emo grani\v{c}ni bias b_{\cF}(a) za sve vrednosti pa\-ra\-me\-tra aa, tako da za svako bb, b\le b_{\cF}(a), Mejker pobe\dj uje u igri, a za svako bb, takvo da je b>b_{\cF}(a), Brejker pobe\dj uje. Posebno nas interesuju slu\v{c}ajevi u kojima oba parametra aa i bb mogu imati vrednost ve\'cu od 1. Na\v{s}a pa\v{z}nja je posve\'{c}ena igri povezanosti, gde su pobedni\v{c}ki skupovi  grane svih pokrivaju\'cih stabala grafa KnK_n, kao i igri Hamiltonove konture, gde su pobedni\v{c}ki skupovi grane svih Hamiltonovih kontura grafa KnK_n. Zatim posmatramo igre tipa Avojder-Enforser (Avoider-Enforcer), sa biasom (1:b)(1:b), koje se tako\dj e igraju na granama kompletnog grafa sa nn \v{c}vorova, KnK_n. Za svaku konstantu kk, k3k\ge 3 analiziramo igru kk-zvezde (zvezde sa kk krakova), u kojoj \textit{Avojder} poku\v{s}va da izbegne da ima kk svojih grana incidentnih sa istim \v{c}vorom. Posmatramo obe verzije ove igre, striktnu i monotonu, i za svaku dajemo eksplicitnu pobedni\v{c}ku strategiju za oba igra\v{c}a. Kao rezultat, dobijamo gornje i donje ograni\v{c}enje za grani\v{c}ne biase f^{mon}_\cF, f^-_\cF i f^+_\cF, gde \cF predstavlja hipergraf igre (familija ciljnih skupova). %fmonf^{mon}, ff^- and f+f^+. Tako\dj e, posmatramo i monotonu verziju K2,2K_{2,2}-igre, gde Avojder \v{z}eli da izbegne da graf koji \v{c}ine njegove grane sadr\v{z}i graf izomorfan sa K2,2K_{2,2}. Kona\v{c}no, \v{z}elimo da prona\dj emo strategije za brzu pobedu Mejkera u igrama savr\v{s}enog me\v{c}inga i Hamiltonove konture, koje se tako\dj e igraju na granama kompletnog grafa KnK_n. Ovde posmatramo asimetri\v{c}ne igre gde je bias Mejkera 1, a bias Brejkera bb, b1b\ge 1

    How Long Can a Graph be Kept Planar?

    Get PDF
    The graph (non-)planarity game is played on the complete graph KnK_n between an Enforcer and an Avoider, each of whom take one edge per round. The game ends when the edges chosen by Avoider form a non-planar subgraph. We show that Avoider can play for 3n263n-26 turns, improving the previous bound of 3n28n3n-28\sqrt n

    Mejker–Brejker igre na grafovima

    Get PDF
    The topic of this thesis are different variants of Maker–Breaker positional game, where two players Maker and Breaker alternatively take turns in claiming unclaimed edges/vertices of a given graph. We consider Walker–Breaker game, played on the edge set of the graph Kn. Walker, playing the role of Maker is restricted to claim her edges according to a walk, while Breaker can claim any unclaimed edge per move. The focus is on two standard games - the Connectivity game, where Walker has the goal to build a spanning tree on Kn, and the Hamilton Cycle game, where Walker has the goal to build a Hamilton cycle on Kn. We show that Walker with bias 2 can win both games even when playing against Breaker whose bias b is of the order of magnitude n= ln n. Next, we consider (1 : 1) WalkerMaker–WalkerBreaker game on E(Kn),where both Maker and Breaker are walkers and we are interested in seeing how fast WalkerMaker can build spanning tree and Hamilton cycle. Finally, we study Maker–Breaker total domination game played on the vertex set of a given graph. Two players, Dominator and Staller, alternately take turns in claiming unclaimed vertices of the graph. Staller is Maker and wins if she can claim an open neighbourhood of a vertex. Dominator is Breaker and wins if he manages to claim a total dominating set of a graph. For certain connected cubic graphs on n ≥ 6 vertices, we give the characterization of those graphs which are Dominator’s win and those which are Staller’s win.Tema istrazivanja ove disertacije su igre tipa Mejker– Brejker u kojima uˇcestvuju dva igraˇca, Mejker i Brejker, koji naizmjeniˇcno uzimaju slobodne grane/ˇcvorove datog grafa. Bavimo se Voker–Brejker igrama koje se igraju na skupu grana grafa Kn. Voker, u ulozi Mejkera, jeograniˇcen da uzima svoje grane kao da se ˇseta kroz graf, dok Brejker moˇze da uzme bilo koju slobodnu granu grafa. Fokus je na dvije standardne igre - igri povezanosti, gdje Voker ima za cilj da napravi pokrivaju´ce stablo grafa Kn i igri Hamiltonove konture, gdje Voker ima za cilj da napravi Hamiltonovu konturu. Brejker pobjeduje ako sprijeˇci Vokera u ostvarenju njegovog cilja. Pokaza´cemo da Voker sa biasom 2 moˇze da pobijedi u obje igre ˇcak i ako igra protiv Brejkera ˇciji je bias b reda n= ln n. Potom razmatramo (1 : 1) VokerMejker–VokerBrejker igre na Kn, gdje oba igraˇca, i Mejker i Brejker, moraju da biraju grane koje su dio ˇsetnje u njihovom grafu s ciljem odredivanja brze pobjedniˇce strategije VokerMejkera u igri povezanosti i igri Hamiltonove konture. Konaˇcno, istraˇzujemo Mejker–Brejker igre totalne dominacije koje se igraju na skupu ˇcvorova datog grafa. Dva igraˇca, Dom inator i Stoler naizmjeniˇcno uzimaju slobodne ˇcvorove datog grafa. Stoler je Mejker i pobjeduje ako uspije da uzme sve susjede nekog ˇcvora. Dominator je Brejker i pobjeduje ako ˇcvorovi koje uzme dok kraja igre formiraju skup totalne dominacije. Za odredene klase povezanih kubnih grafova reda n ≥ 6, dajemo karakterizaciju onih grafova na kojima Dominator pobjeduje i onih na kojima Stoler pobjeduje.
    corecore