3,840 research outputs found

    Aperture Supervision for Monocular Depth Estimation

    Full text link
    We present a novel method to train machine learning algorithms to estimate scene depths from a single image, by using the information provided by a camera's aperture as supervision. Prior works use a depth sensor's outputs or images of the same scene from alternate viewpoints as supervision, while our method instead uses images from the same viewpoint taken with a varying camera aperture. To enable learning algorithms to use aperture effects as supervision, we introduce two differentiable aperture rendering functions that use the input image and predicted depths to simulate the depth-of-field effects caused by real camera apertures. We train a monocular depth estimation network end-to-end to predict the scene depths that best explain these finite aperture images as defocus-blurred renderings of the input all-in-focus image.Comment: To appear at CVPR 2018 (updated to camera ready version

    Focusing on out-of-focus : assessing defocus estimation algorithms for the benefit of automated image masking

    Get PDF
    Acquiring photographs as input for an image-based modelling pipeline is less trivial than often assumed. Photographs should be correctly exposed, cover the subject sufficiently from all possible angles, have the required spatial resolution, be devoid of any motion blur, exhibit accurate focus and feature an adequate depth of field. The last four characteristics all determine the " sharpness " of an image and the photogrammetric, computer vision and hybrid photogrammetric computer vision communities all assume that the object to be modelled is depicted " acceptably " sharp throughout the whole image collection. Although none of these three fields has ever properly quantified " acceptably sharp " , it is more or less standard practice to mask those image portions that appear to be unsharp due to the limited depth of field around the plane of focus (whether this means blurry object parts or completely out-of-focus backgrounds). This paper will assess how well-or ill-suited defocus estimating algorithms are for automatically masking a series of photographs, since this could speed up modelling pipelines with many hundreds or thousands of photographs. To that end, the paper uses five different real-world datasets and compares the output of three state-of-the-art edge-based defocus estimators. Afterwards, critical comments and plans for the future finalise this paper

    The Application of Preconditioned Alternating Direction Method of Multipliers in Depth from Focal Stack

    Get PDF
    Post capture refocusing effect in smartphone cameras is achievable by using focal stacks. However, the accuracy of this effect is totally dependent on the combination of the depth layers in the stack. The accuracy of the extended depth of field effect in this application can be improved significantly by computing an accurate depth map which has been an open issue for decades. To tackle this issue, in this paper, a framework is proposed based on Preconditioned Alternating Direction Method of Multipliers (PADMM) for depth from the focal stack and synthetic defocus application. In addition to its ability to provide high structural accuracy and occlusion handling, the optimization function of the proposed method can, in fact, converge faster and better than state of the art methods. The evaluation has been done on 21 sets of focal stacks and the optimization function has been compared against 5 other methods. Preliminary results indicate that the proposed method has a better performance in terms of structural accuracy and optimization in comparison to the current state of the art methods.Comment: 15 pages, 8 figure

    Learning Wavefront Coding for Extended Depth of Field Imaging

    Get PDF
    Depth of field is an important factor of imaging systems that highly affects the quality of the acquired spatial information. Extended depth of field (EDoF) imaging is a challenging ill-posed problem and has been extensively addressed in the literature. We propose a computational imaging approach for EDoF, where we employ wavefront coding via a diffractive optical element (DOE) and we achieve deblurring through a convolutional neural network. Thanks to the end-to-end differentiable modeling of optical image formation and computational post-processing, we jointly optimize the optical design, i.e., DOE, and the deblurring through standard gradient descent methods. Based on the properties of the underlying refractive lens and the desired EDoF range, we provide an analytical expression for the search space of the DOE, which is instrumental in the convergence of the end-to-end network. We achieve superior EDoF imaging performance compared to the state of the art, where we demonstrate results with minimal artifacts in various scenarios, including deep 3D scenes and broadband imaging

    Rational-operator-based depth-from-defocus approach to scene reconstruction

    Get PDF
    This paper presents a rational-operator-based approach to depth from defocus (DfD) for the reconstruction of three-dimensional scenes from two-dimensional images, which enables fast DfD computation that is independent of scene textures. Two variants of the approach, one using the Gaussian rational operators (ROs) that are based on the Gaussian point spread function (PSF) and the second based on the generalized Gaussian PSF, are considered. A novel DfD correction method is also presented to further improve the performance of the approach. Experimental results are considered for real scenes and show that both approaches outperform existing RO-based methods
    corecore