8,178 research outputs found

    An ontology enhanced parallel SVM for scalable spam filter training

    Get PDF
    This is the post-print version of the final paper published in Neurocomputing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy degradation when distributing the training data among a number of SVM classifiers. Experimental results show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original sequential counterpart

    Towards minimizing the energy of slack variables for binary classification

    Get PDF
    This paper presents a binary classification algorithm that is based on the minimization of the energy of slack variables, called the Mean Squared Slack (MSS). A novel kernel extension is proposed which includes the withholding of just a subset of input patterns that are misclassified during training. The later leads to a time and memory efficient system that converges in a few iterations. Two datasets are exploited for performance evaluation, namely the adult and the vertebral column dataset. Experimental results demonstrate the effectiveness of the proposed algorithm with respect to computation time and scalability. Accuracy is also high. In specific, it equals 84.951% for the adult dataset and 91.935%, for the vertebral column dataset, outperforming state-of-the-art methods. © 2012 EURASIP
    corecore