490 research outputs found

    Cell Type-specific Analysis of Human Interactome and Transcriptome

    Get PDF
    Cells are the fundamental building block of complex tissues in higher-order organisms. These cells take different forms and shapes to perform a broad range of functions. What makes a cell uniquely eligible to perform a task, however, is not well-understood; neither is the defining characteristic that groups similar cells together to constitute a cell type. Even for known cell types, underlying pathways that mediate cell type-specific functionality are not readily available. These functions, in turn, contribute to cell type-specific susceptibility in various disorders

    Analysis & Synthesis of Distributed Control Systems with Sparse Interconnection Topologies

    Get PDF
    This dissertation is about control, identification, and analysis of systems with sparse interconnection topologies. We address two main research objectives relating to sparsity in control systems and networks. The first problem is optimal sparse controller synthesis, and the second one is the identification of sparse network. The first part of this dissertation starts with the chapter focusing on developing theoretical frameworks for the synthesis of optimal sparse output feedback controllers under pre-specified structural constraints. This is achieved by establishing a balance between the stability of the controller and the systems quadratic performance. Our approach is mainly based on converting the problem into rank constrained optimizations.We then propose a new approach in the syntheses of sparse controllers by em- ploying the concept of Hp approximations. Considering the trade-off between the controller sparsity and the performance deterioration due to the sparsification pro- cess, we propose solving methodologies in order to obtain robust sparse controllers when the system is subject to parametric uncertainties.Next, we pivot our attention to a less-studied notion of sparsity, namely row sparsity, in our optimal controller design. Combining the concepts from the majorization theory and our proposed rank constrained formulation, we propose an exact reformulation of the optimal state feedback controllers with strict row sparsity constraint, which can be sub-optimally solved by our proposed iterative optimization techniques. The second part of this dissertation focuses on developing a theoretical framework and algorithms to derive linear ordinary differential equation models of gene regulatory networks using literature curated data and micro-array data. We propose several algorithms to derive stable sparse network matrices. A thorough comparison of our algorithms with the existing methods are also presented by applying them to both synthetic and experimental data-sets

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio

    Pacific Symposium on Biocomputing 2023

    Get PDF
    The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Bayesian regression for network data

    Full text link
    The research contained in this dissertation extends modeling methods for network data. Networks are widely used, across a number of disciplines, to represent objects and their interconnectedness. The prevalence of this data structure outlines just one of our motivations for developing novel modeling methods and computational tools that improve our understanding of network-indexed data. We first consider the problem of statistical inference and prediction for processes defined on networks. We assume that the network of interest is known, and we would like to learn more about an attribute associated with its vertices. Drawing on ideas from functional data analysis, our proposed model consists of node indexed predictors and a basis expansion of their coefficients, allowing the coefficients to vary over the network. We employ a regularization procedure, cast as a prior distribution on the regression coefficients in a Bayesian setup, so that predicted responses vary smoothly according to the topology of the network. We present a novel variable selection technique, introduce efficient expectation-maximization fitting algorithms and Markov Chain Monte Carlo sampling schemes, and provide computationally-friendly methods for eliciting hyper-prior parameters. Turning to an application, we study occurrences of residential burglary in Boston, Massachusetts. Noting that crime rates are not spatially homogeneous, and that rates appear to vary sharply across regions or hot zones in the city, we construct a hierarchical model that addresses these issues and gives insight into the spatial patterns and dynamics of residential burglary in Boston. Finally, we address the computational challenges of performing inference on network structure. With the goal of understanding the processes behind edge formulation within a network of given size, we present algorithms and data representations that allow for more efficient inference on large-scale networks. Through a regression framework, the tools allow for investigating a variety of effects that may shape a network's structure, such as degree heterogeneity and clustering. We illustrate and evaluate the benefits of our work on both simulated and real-world networks. Finally, with the goal of exploring the relationship between a set of predictor variables and a vertex-pair indexed response, we introduce a flexible approach to modeling network ties. Through a generalized linear model framework, we are able to model weighted and binary edges while investigating a variety of effects or features commonly found in networks. We present algorithms and data representations that allow for efficient inference, and we illustrate and evaluate the benefits of our work on both simulated and real-world networks

    Dagstuhl News January - December 2011

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications
    • …
    corecore