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ABSTRACT

Mohammadi, Shahin Ph.D., Purdue University, December 2016. Cell Type-specific
Analysis of Human Interactome and Transcriptome. Major Professor: Ananth
Grama.

Cells are the fundamental building block of complex tissues in higher-order or-

ganisms. These cells take different forms and shapes to perform a broad range of

functions. What makes a cell uniquely eligible to perform a task, however, is not

well-understood; neither is the defining characteristic that groups similar cells to-

gether to constitute a cell type. Even for known cell types, underlying pathways that

mediate cell type-specific functionality are not readily available. These functions, in

turn, contribute to cell type-specific susceptibility in various disorders.

In this dissertation, I propose a novel measure of similarity between cells and uti-

lize it to identify de novo cell types. I show that my method allows us to uncover

novel cancer subtypes. Furthermore, by constructing underlying pathways that drive

progression of these subtypes, I show that we can pinpoint diagnostic biomarkers and

potential therapeutic targets. Then, I develop a method to dissect the cell type com-

position of complex tissues. Using this snapshot of what tissues/cell types look like,

I create a framework for constructing tissue/cell type-specific interactomes to shed

light on the systems-level understanding of cellular functions. I use these networks

to uncover brain-specific pathways that are involved in Alzheimer’s and Parkinson’s

diseases. Finally, I provide evidence for the conservation of these interactomes across

distant species, even down to unicellular organisms, such as yeast.
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1 INTRODUCTION

Human cells, while inheriting a similar genetic code, exhibit distinct morphological

and functional characteristics and group together uniquely to form complex tissues.

Uncovering biochemical processes that drive the transformation of a totipotent cell

into various cell types and ultimately tissues is essential to our understanding of living

systems. Understanding this complex machinery determines how tissues differ in

terms of their anatomy, physiology, morphology, and, more importantly, how various

cellular control mechanisms contribute to the observed similarities/ differences.

A fundamental challenge in understanding cellular biology is to classify cells ac-

cording to their common functions. This allows us to study cell types as a whole, and

to extend our understanding to the behavior of individual cells. Traditionally, cells

are classified into a few hundred different cell types according to their morphologi-

cal properties and cell cell surface markers. However, emerging knowledge suggests

that seemingly identical cell types may exhibit varying transcriptional characteristics,

leading to vastly different functions. This, in turn, motivates the development of new

approaches for defining refined groupings of cells.

With the availability of single cell transcriptomic data, there is an unprecedented

opportunity to analyze and model cellular processes at a resolution that was not

possible before. These technologies have the potential to radically redefine our view

of cell type identity. However, there are a number of challenges to realize the potential

of these datasets. The first major challenge is to define what makes a pair of cells

similar. This similarity is at the very core of any algorithm that aims to find groups of

similar tissue, and by extension, coherent cell types. To this end, my first attempt was

to develop a method for uncovering true similarity between cells, while accounting for

biological and technical noise. In this framework, I aim to remove the common part of

the identity of cells to boost their distinguishing (informative) signals. To this end, I
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project cellular signatures to a suitably regularized orthogonal subspace, which allows

better identification of cells, as well as their similarities. I show that this reduction

step enhances the signal-to-noise ratio (SNR) for known markers. Moreover, I show

that repeated application of subspace reduction within groups of cell types allows us

to identify highly specific markers.

Armed with a measure of cell-to-cell similarities, the next logical objective is to

group coherent cells to identify de novo cell types. To this end, we need to account

for a few important considerations. First, there are extremely important but very

rare cells, such as circulating tumor cells, the identity of which is of considerable

significance. Traditional clustering algorithms typically fail to capture such trends,

and there is a need to develop specific tools that are robust to the sampling density of

cells. Another key challenge is that even after identifying a cell type, it is unclear what

distinguishes a cell type from other cell types. Transcriptional regulatory networks

(TRNs) are at the heart of this differentiating process. As such, understanding cell

type-specific TRNs has the potential to unlock cell type identity. To address these

issues, I developed a method that uses our measure of cell-to-cell similarity as a

kernel, and constructs a geometric representation of the functional space of cells. This

representation characterizes principal functions that are performed by cells. I then

couple this geometric approach with a new statistical framework to reconstruct the

underlying transcriptional regulatory networks that mediate characteristic behavior

of each cell type.

Once we have characterized a cell-type, the next step is to analyze how various

cell types come together to form complex tissues. A fundamental question then is to

deconvolve complex tissues to identify their constituting cell types and their relative

fractions. This has applications in the removal of contaminants (e.g., surrounding

cells) from tumor biopsies, as well as in monitoring changes in the cell population

in response to treatment or infection. This problem is known as source separation

in the signal processing community and has attracted considerable attention. In this

dissertation, I focused on one specific problem in this area: knowing individual cell
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types profiles, can we identify the composition of these cell types in a given tissue? To

answer this question, I performed a comprehensive study to investigate the effect of

different loss functions, constraints on the solution, preprocessing and data filtering,

feature selection, and regularization on deconvolution quality. I developed prescriptive

recipes that yield the best performance and showed how these recipes could be used

in practice.

The next question I address is how various cell types and tissues come together

at a system level? How do various gene products interact? What are the emergent

properties of these complex interactions? To answer these questions, I developed a

method for constructing accurate tissue/cell type-specific networks. This approach

formulates network inference as a suitably regularized convex optimization problem.

The objective function of the optimization problem has two terms – the first term

corresponds to a diffusion kernel that propagates activity of genes through interac-

tions (network links). The second term is a regularizer that penalizes differences

between transcriptional and functional activity scores. I use these functional activity

scores to compute tissue-specificity of each edge in the global interactome, which I

show, through a number of validation tests, are significantly better than state-of-

the-art methods in the field. Finally, I couple these networks with Prize-Collecting

Steiner Tree (PCST) method to identify novel disease/tissue-specific pathways that

drive neurodegenerative disorders. This method is platform-independent and can be

applied directly to single-channel, double-channel, and RNA-Seq expression datasets.

Finally, I addressed the problem of transferrability of molecular mechanisms across

organisms. Budding yeast, S. cerevisiae, has been used extensively as a model organ-

ism for studying cellular processes in evolutionarily distant species, including humans.

However, The extent to which a unicellular organism, such as yeast, can be used to

model tissue-specific processes has never been assessed. To answer this question, I

developed a novel framework to systematically quantify the suitability of yeast as

a model organism for different human tissues. To this end, I first used network

alignment to map human tissue-specific networks to the yeast interactome. Then, I
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devised a statistical model to assign an empirical p-value to each alignment, assess-

ing the overall suitability of yeast to model the systems biology of each tissue. My

framework not only helps in classifying human tissues/cell types as either compatible

with the yeast model or not, but also provides missing functional elements in yeast

for each tissue. These functional constructs can further be utilized to engineer hu-

manized yeast models that mimic the biology of specific human tissues, and can be

used as high-throughput, tissue-specific model to study different diseases.

In summary, my dissertation extends our understanding of the identity of hu-

man cell types, their functional pathways, their composition in complex tissues, and

their conservation across evolution. In the what follows I will address each of these

questions in sequential order in each chapter of this dissertation.
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2 BIOLOGICAL BACKGROUND

2.1 Genes, RNAs, Proteins – And How We Measure Them in Bulk Tissues

The central dogma of biology describes the flow of genetic information within

cells – the genetic code, represented in DNA molecules, is first transcribed to an

intermediate construct, called messenger RNA (mRNA), which in turn translates

into proteins. These proteins are the functional workhorses of the cell. Genes, defined

as the minimal coding sections of the DNA, contain the recipe for making proteins.

These instructions are utilized dynamically by the cell to adapt to different conditions.

The amounts of various proteins in a cell can be measured at a time point. This

corresponds to the level of protein expression. This process is limited by the availabil-

ity of high-quality antibodies that can specifically target each protein. The amount

of active mRNA in a cell, however, can be measured at the genome scale using high-

throughput technologies such as microarrays and RNASeq. The former is an older

technology that relies on the binding affinity of complementary base pairs (alphabets

used in the DNA/RNA molecules), while the latter is a newer technique, using next

generation sequencing (NGS). This technique estimates gene expression based on the

overlap of mRNA fragments with known genomic features. Since microarrays have

been used for years, extensive databases from different studies are publicly available.

RNASeq datasets, in comparison, are relatively smaller but growing rapidly in scale

and coverage. Both of these technologies provide reliable proxies for the amount of

proteins in cells, with RNASeq being more sensitive, especially for lowly expressed

genes.

The expression level of genes is tightly regulated in different stages of cellular

development, as well as in response to environmental changes. In addition to these

biological variations due to cellular state, intermediate steps in each technology in-
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troduce technical variations in repeated measurement of gene expression in the same

cell-type. To enhance reproducibility of measurements, one normally includes multi-

ple instances of the same cell-type in each experiment, known as technical replicates.

The expression profiles from these experiments provide a snapshot of the cell under

different conditions. In addition to the biological variation of genes within the same

cell type, there is an additional level of variation when we look across different cell

types.

2.2 From Bulk Tissue Measurements to Single Cell RNA-Seq (scRNA-Seq)

Traditionally, biological samples are disaggregated and measured in bulk. How-

ever, different tissues typically consist of a heterogeneous population of cells of dif-

ferent type and at different fractions. An important example is the tumor microen-

vironment. In this case, not only we have immune, stromal, and cancerous cells all

mixed in the tumor biopsy, but also the tumor samples themselves consist of different

subtypes.

Many different groups have focused their energy to develop technologies capable

of measuring RNA quantities at the single cell level. A major challenge to achieve

this goal is the limited RNA quantity at single cell level. The total amount of RNA in

a single cell is in order of picograms, whereas most recent RNA-seq technologies need

at least tens of nanograms to be able to measure RNA levels. To compensate for this

gap, amplification techniques before performing RNA-Seq are mandatory. Another

challenge is to isolate single cells from bulk tissue without perturbing their expression

profile. Furthermore, different techniques may have biases towards different ends of

RNA or according to the specific sequence of it. Finally, the maximum length of RNAs

that each method can measure can vary across methods. Methods such as Smart-

Seq [151], and its successor Smart-Seq2 [144], aim to sequence the whole length of

genes. On the other hand, more recently developed methods, such as InDrop [92] and

DropSeq [114], sacrifice full-length coverage to gain of significantly higher throughput.
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These methods are under constant development, with microfluidics and emulsion-

based techniques being at the leading front of this development.

2.3 Cell Type Specificity – Ubiquitously Expressed Versus Highly Selective Genes

Proteins are basic workhorses of living cells. Their overall quantity is tightly

regulated across different tissues and cell-types to manifest tissue-specific biology and

pathobiology. These regulatory controls orchestrate cellular machinery at different

levels of resolution, including, but not limited to, gene regulation [62,120], epigenetic

modification [24,121], alternative splicing [19,46], and post-translational modifications

[77, 194]. Transcriptional regulation is a fundamental component of this hierarchical

regulation, which has been widely used to study context-specific phenotypes. In the

context of human tissues/ cell types, genes can exhibit varying levels of specificity

in their expression. They can be broadly classified as (i) tissue-specific (unique to

one cell-type); (ii) tissue-selective (shared among coherent groups of cell-types); and

(iii) housekeeping (utilized in all cell-types). Housekeeping genes comprise a subset of

human genes that are universally expressed across all tissues and are responsible for

maintaining core cellular functions needed by all tissues, including translation, RNA

processing, intracellular transport, and energy metabolism [23, 39, 172]. These genes

are under stronger selective pressure, compared to tissue-specific genes, and evolve

more slowly [221]. In contrast, certain genes are specifically or preferentially expressed

in one, or a set of biologically relevant tissue types [22, 23, 181, 206]. These marker

genes are critical for distinguishing various cells. In fact, cell surface markers have

long been used to sort different subsets of immune cells. Tissue-specific/selective genes

have significant applications in drug discovery, as they have been shown to be more

likely drug targets [40]. Tissue-specific transcription factors (tsTFs) are significantly

implicated in human diseases [123,150], including cancers [197].
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2.4 Adding Cell Type-specificity to Biological Networks

The majority of human proteins do not work in isolation but take part in pathways,

complexes, and other functional modules. These complex interactions are typically

represented as a graph. This graph can be undirected, in the case of protein-protein

interaction networks (PINs), or directed, as in transcriptional regulatory networks

(TRNs). In PINs, each node represents a protein and each edge indicates a physical

interaction between a pair of proteins. These interactions are measured in vitro by

technologies such as yeast two-hybrid (Y2H) or affinity purificationmass spectrometry

(AP/MS). The basic premise of these technologies is to assess if two proteins can

interact. That is conditioned on if they are both expressed at high enough levels,

co-localized, and post-translationally modified (if needed). As such, PINs provide a

superset of all possible interactions that can happen in the cell. Of course, this set

also contains a lot of false negatives since not all pairs of proteins are systematically

measured for interactions, and even if they have been, there is a high false positive

rate associated with these technologies as well (especially with AP/MS). In TRNs,

each node can be either a transcription factor (TF) (a protein) or a target gene (TG).

Interactions are regulatory interactions and are directed. If a protein is linked to a

gene if means that it regulates the expression of that genes. This regulation can be

either positive, or activation, or negative, or inhibition.

In context-specific networks, we add a spatial and/or temporal context to these

networks. What this information provides is a realistic snapshot of what is going on

inside a specific cell type at a given moment (that the data was captured). Perturba-

tions that impact interacting interfaces of proteins are significantly enriched among

tissue-specific, disease-causing variants [155, 157, 208]. Additionally, disease-related

protein complexes tend to be over-expressed in tissues in which defects cause pathol-

ogy [103]. In terms of topology, tissue-specific genes typically reside in the periphery

of the interactome, are enriched among signaling and cell surface receptors, and highly

associated with the onset of tissue-specific disorders [216].
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3 A BIOLOGICALLY-INSPIRED KERNEL TO MEASURE SIMILARITY OF

CELLS

3.1 Background

An embryonic stem cell encapsulates all of the genetic information needed to de-

velop an individual; it differentiates into various cell types, which group together to

shape tissues, combine to constitute organs, and assemble into organ systems. Vari-

ous differentiated tissues/ cell types, while inheriting a similar genetic code, exhibit

unique anatomical and physiological features. Traditionally, these cell types/ tis-

sues have been classified using their high-level phenotypic characterizations, such as

location and morphology. However, more recently, single-cell technologies have re-

vealed an unprecedented heterogeneity among what were, until recently, believed to

be identical cell types [162]. This heterogeneity is achieved through systematic control

of cellular machinery at different levels, including transcriptional, translational, and

post-translational regulations, to orchestrate tissue-specific functions and dynamic

responses to environmental stimuli.

Transcriptional regulation is among the best-studied aspects of this control. It

is manifested in the observed differences in expression levels of genes across tissues.

Housekeeping genes constitute the subset of the transcriptome that is universally

expressed in human tissues. These genes are responsible for core cellular functions [23,

39, 172], and their corresponding pathways, are essential to all cells for their normal

activity. However, they are not informative, with respect to the identity of cells, nor

do they provide any power to classify cells into coherent groups of cell types. In

contrast, certain genes are specifically or preferentially expressed in one, or a set of

biologically relevant tissue types [22,23,181,206]. These marker genes are critical for

distinguishing various cells. In fact, cell surface markers have long been used to sort



10

different subsets of immune cells. These genes play a crucial role in the physiology

and the pathophysiology of human tissues. Many of the known disease genes are

tissue-specific and are under/ over-expressed in the specific tissue(s) where the gene

defect causes pathology [60,103].

The use of transcriptomic profile as a genome-scale phenotype to identify unique

cell types has attracted considerable attention [186]. However, identifying transcrip-

tionally related cell types and their key marker genes remains a challenging task. One

of the complicating factors in this paradigm is the hierarchical relationships among

cell types. At the highest level, all cells are highly similar due to the expression of

housekeeping genes. These genes are typically expressed at high levels and strongly

impact the computed cell-cell distances (using any of the existing distance measures).

After peeling this common layer, cell types split into groups with common function-

ality, which can be represented using the community affiliation graph model [215].

Here, we can model common functionalities such as “affiliations”, which are used

to annotate cell types. However, these affiliations are not known a priori. Further-

more, cell types are not uniformly spaced and form a hierarchical structure linking

them together. As we move deeper into this hierarchy, shared functionalities become

more detailed, and distances among cell types reduce – necessitating use of rigorous

statistical models and methods to assess the “proximity” of cell types.

In this chapter, I propose an iterative, multi-step process to simultaneously iden-

tify groups of similar cell types as well as their characteristic marker genes that are

specifically expressed within each group of cell types. The two main operators in

my framework are subspace reduction, in which we identify the unique signature of a

given expression domain, and clustering, in which we group similar tissues/ cell types

in the reduced space to define new expression domains. In this framework, I make an

implicit assumption that genes do not work alone, but rather, as part of functional

pathways. These pathways can be viewed as barcodes that uniquely identify their

corresponding cell types/ tissues.
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Motivated by these considerations, I develop a novel algorithm for de novo iden-

tification of cell types and their corresponding markers. I show that this subspace

reduction step significantly enhances the signal-to-noise ratio (SNR) for markers, and

that repeated application of reduction step within known groups of cells can identify

their markers. Next, I show that, in the absence of known groupings, my method can

automatically identify similar cell types using a clustering algorithm. I use this as a

hierarchical prior for characterizing the expression domain of genes. Finally, I show

that my method is able to reconstruct highly accurate models of tissue-specific tran-

scriptional regulatory networks (tsTRN). my framework is particularly well-suited for

applications in single-cell analysis, in which the true identity of cell types, as well as

their corresponding markers, is critical.

3.2 Materials and Methods

3.2.1 Datasets

Gene Expression Profiles

In my experiments, I used two separate datasets derived from different technolo-

gies. The first dataset, which I will refer to as immune cell types, is the expression

profile of 38 distinct subpopulations of hematopoietic cells measured using Affymetrix

GeneChip microarray [130]. This dataset consists of the gene expression of 12, 074

genes in a total of 211 samples. The second dataset contains a comprehensive com-

pendium of 675 cancer cell lines [93]. The origin of these cell lines can be classified

into 17 different tissues. I will focus on these 17 distinct groups, but collectively refer

to this dataset as the cancer cell lines dataset.

Gold Standard Marker Genes

To evaluate identified markers and the impact of adjustment, I collected marker

genes from two independent studies. For immune cell types, I adopted the LM22



12

dataset from Newman et al. [129]. First, for each cell type in LM22, I identified genes

that are highly expressed. Then, I computed the mean expression of these markers in

each of the immune cell types in my dataset. I constructed a weighted bipartite graph

between cell types in these two datasets and identified matches using a maximum-

weight bipartite matching algorithm [102], followed by manual assessment. Table 3.1a

shows the final results for the immune marker set.

For the cancer cell lines dataset, I downloaded the gold standard tissue-specific

markers from the Human Protein Atlas (HPA) [193]. I manually matched ten differ-

ent tissues of origin to the markers in HPA, and limited my focus on the markers that

have both transcriptomic and proteomic evidence. Among these ten, pancreas mark-

ers were not significantly expressed in the pancreas-originated cell lines, and thus I

removed this from my set. The final set consists of nine tissues, shown in Table 3.1b.

Transcriptional Regulatory Network (TRN)

I collected transcription factor (TF) – target gene (TG) interactions from the

RegNetwork database [110], which aggregates data from 25 different databases. This

dataset contains a total of 151, 214 regulatory interactions between 1, 408 TFs and

20, 230 TGs.

3.2.2 Identifying the Shared Subspace among a Group of Tissues

A given set of tissues/ cell-types typically share a common set of genes/ pathways,

while specializing through preferential genes that control and regulate this core shared

set. I represent the raw transcriptional signature of these tissues using a matrix

T ∈ Rng×nt , in which rows correspond to genes and columns correspond to various

tissues. We are interested in finding the subspace of common genes, and to use it to

adjust the transcriptional signatures. When the given set includes all, or majority

of, human cell-types, the shared subspace represents the signature of housekeeping

genes.



13

Table 3.1: Number of markers for different cell types and tissues used for validating

cell similarity kernel

(a) Immune cell types

LM22 cell type mapped cell type number of markers

B cells naive Naive B-cells 118

B cells memory Mature B-cell class able to switch 106

Plasma cells Mature B-cells 109

T cells CD8 CD8+ Effector Memory 142

T cells CD4 naive Naive CD4+ T-cell 121

T cells CD4 memory activated CD4+ Effector Memory 107

NK cells activated Mature NK cell CD56+ CD16+ CD3- 109

Monocytes Monocyte 104

Dendritic cells activated Myeloid Dendritic Cell 121

Eosinophils Eosinophill 159

Neutrophils Granulocyte (Neutrophilic Metamyelocyte) 140

(b) Cancer cell lines

cell line origin number of markers

brain 336

colo-rectal 72

kidney 158

liver 185

lung 56

ovary 35

stomach 77

urinary bladder 27

skin 133

There are a number of methods for approximating this common signature in T ,

the simplest of which would be to compute the mean of its columns. An alternate
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approach involves decomposing T into sum of rank-one matrices, using methods such

as singular value decomposition (SVD) or non-negative matrix under-approximation

(NMU). The general goal of these methods is to represent T as a sum of outer products

of vectors. More formally, I write T as follows:

T = UrΣrVr =
r∑
i=1

σiuivi
T , (3.1)

where r ≤ min(ng, nt) is the rank of the approximation. In the SVD formulation, ui

and vi vectors are called left and right singular vectors, respectively. These vectors

constitute an orthonormal basis, that is, both uiu
T
j = δij and viv

T
j = δij for all i and

j. Additionally, for any r, an SVD is the optimal rank-r approximation of T . When

all entries of T are positive, Perron-Frobenius theorem ensures that all entries of the

both left and right singular vectors are positive. However, the first residual matrix,

R1 = M − σ1u1v1
T , can, and typically does, contain negative elements to ensure

orthonormality. On the other hand, the NMU formulation does not ensure orthonor-

mality, but, rather enforces an additional constraint on the optimization problem,

which is that Rk should consist of only positive elements. Unfortunately, while SVD

has an optimal solution, the additional non-negativity constraint of NMU makes its

computation non-convex, though heuristics exist to approximate the solution.

Here, I use a rank-one approximation of matrix T , that is r = 1, to identify

a unique signature that closely represents the common signature in T . I use the

first singular vector of matrix T , after z -score normalization, as a proxy for the

housekeeping signature throughout my study.
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3.2.3 Adjusting Transcriptional Signatures to Control for the Effect of Shared Sub-

space

Let us denote the transcriptional profile of the ith tissue by Ti. In order to compute

the raw transcriptional similarity between each given pair of tissues, I compute the

Pearson’s correlation as follows:

rTiTj =

∑n
k=1(tki − t̄i)(tkj − t̄j)√∑n

k=1(tki − t̄i)2
√∑n

k=1(tkj − t̄j)2
(3.2)

where, n represents the total number of genes, tki and tkj are the expression levels

of the kth gene in the ith and jth tissues, respectively. Similarly, t̄i and t̄j represent

the average expression levels of genes in the corresponding tissues. Let Zi denote

the Z -score normalized version of Ti, defined as Ti−µ(Ti)
σ(Ti)

. I refer to Zi as the raw

transcriptional signature of tissue i. Using this formulation, I can simplify the raw

transcriptional similarity as the normalized dot product of raw transcriptional signa-

tures:

rTiTj =
ZiZj

n
(3.3)

The raw transcriptional similarity of tissues is artificially inflated due to the ubiq-

uitous expression of housekeeping genes across all tissues. To control for this effect,

I first define housekeeping transcriptional signature, denoted by vector S, as the left

singular vector of matrix Z. Using this notation, I revise my similarity scores by

computing the partial Pearson’s correlation between Ti and Tj, after controlling for

the effect of S as follows:

rTiTj•S =
rTiTj − rTiSrTjS√
1− r2

TiS

√
1− r2

TjS

(3.4)

As before, we can rewrite this using the Z -score formulation. Let us denote the

adjusted transcriptional profile of tissue i as Yi = Zi − rTiSS. I define the adjusted

transcriptional signature of tissue i as Ẑi = Yi−µ(Yi)
σ(Yi)

. Finally, we can rewrite the

adjusted transcriptional similarity as:

rTiTj•S =
ẐiẐj

n
(3.5)
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I use this approach to remove the shared subspace of a given set of expression profiles,

and to construct the corresponding adjusted transcriptional signatures. Significantly

positive transcriptional similarities in this framework are indicators of shared tissue-

specific pathways. I use these adjusted transcriptional signatures in my study to

identify marker genes. However, when applying methods that rely on the positivity

of the input expression matrix, one can use the sigmoid transform of these scores as

follows:

p̂ki =
1

1 + e−ẑki
(3.6)

Please note that this transformation, when applied to the raw transcriptional signa-

tures, is equivalent to the previously known softmax normalization:

pki =
1

1 + e−zki

=
1

1 + e
−(

tki−µ(Ti)
σ(Ti)

)
(3.7)

This normalization is known to remove the effect of outliers, while preserving a linear

relationship for mid-range values.

3.2.4 Computing Signal-to-Noise Ratio (SNR)

Signal-to-Noise Ratio (SNR) is a commonly used measure for evaluating the qual-

ity of a desired signal by comparing the power of the signal to the power of (undesired)

noise. I define the desired signal as the expression of marker genes in their correspond-

ing tissue/ cell type of origin. Similarly, I define noise as the expression of the rest of

the genes in that cell type. Let us assume there are k replicas of a given tissue/ cell

type, and a total of n genes, represented in a matrix A ∈ Rn×k. We are also given a

subset S of rows that are designated as markers. I compute the power of signal as:

Psignal =
‖A(S,:)‖2F
|S| . The numerator can be also expressed as ‖ vec(A(S, :)) ‖2

2, where

the vec operator vectorizes a matrix by stacking up its columns. Similarly, we can
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compute the power of noise as: Psignal =
‖A(S′,:)‖2F
|S′| , where S ′ = {1..n} \ S. Then, we

can compute SNR as:

SNR = 10log10(
Psignal
Pnoise

), (3.8)

which is in unit of decibels (dB).

3.2.5 Assessing the Significance of Marker Detection Methods

I use the hypergeometric p-value as a statistical measure of the overlap among

sets. A typical use case for this formulation is in over-representation analysis (ORA).

The classical approach to this problem is to select a predefined cutoff l to identify top-

ranked genes, and then to compute the enrichment p-value using the hypergeometric

distribution. Let us denote the total number of gene products by N . Given a set of

known gene annotations (true positives) of size A, I encode these annotations using

a binary vector λ = λ1, λ2, ...λN ∈ {0, 1}N . Let the random variable T denote the

number of positive genes in the target set, if we distribute genes randomly. In this

formulation, the hypergeometric p-value is defined as:

p-value(T = bl(λ)) = Prob(bl(λ) ≤ T )

= HGT (bl(λ)|N,A, l)

=

min(A,l)∑
t=bl(λ)

C(A, t)C(N − A, l − t)
C(N, l)

(3.9)

where HGT is the tail of hypergeometric distribution and bl(λ) =
∑l

i=1 λi counts the

total number of true positives in top-l observations. The drawback of this approach

is that we need a predefined cutoff value, l. To remedy this, Eden et al. [43] propose

a two-step process for computing the exact enrichment p-value, called mHG p-value,

without the need for a predefined cutoff value of l. First, an optimal cutoff value is

chosen among all possible values of 1 ≤ l ≤ N . The computed value for this optimal

cutoff is called the minimum hypergeometric (mHG) score, and is defined as:

mHG(λ) = min1≤l≤NHGT (bl(λ)|N,A, l) (3.10)
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Next, a dynamic programming (DP) method is used to compute the exact p-value of

the observed mHG score, in the state space of all possible λ vectors of size N having

exactly A ones (please refer to Eden et al. [43] for algorithmic details, and Eden [42]

for an efficient implementation).

3.2.6 Combining Individual p-values to Compute a Meta p-value

When we compute individual p-values for each tissue/ cell type, we then need

to combine them in order to define a meta p-value that can be used to assess each

selection. To combine a set of computed p-values, I use the Fisher’s method [49].

This method computes a statistic S = −2
∑k

i=1 ln(pi) for a set of k given p-values pi.

Then, I can use χ2 test with 2k degrees of freedom to assess the significance of the

meta-analysis, assuming that pis are independent.

3.3 Results and Discussion

In this section, I validate the following hypotheses: (i) a single level of adjustment

(reducing the effect of housekeeping genes) enhances the signal-to-noise ratio (SNR);

(ii) repeated application of the reduction process over groups of cell types allows us to

recover cell type-specific markers; (iii) automatic identification of putative cell types

using label propagation based clustering yields reliable grouping of cell types; and (iv)

cluster-specific, adjusted signatures yield highly accurate models of cell type/ tissue-

specific transcriptional regulatory circuits. All of these hypothesis are validated using

known cell type groupings and markers.

3.3.1 Adjusting for the Effect of Housekeeping Genes Enhances Signal-to-Noise Ra-

tio (SNR) for the Known Marker Genes

I hypothesize that the global expression of housekeeping genes, which are univer-

sally expressed genes that perform core cellular functions, masks the true signal from
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tissue-specific markers. Thus, adjusting for this common signature should enhance

the signal-to-noise ratio (SNR) of marker detection methods. To systematically eval-

uate my hypothesis, I compute SNR using Equation 3.8, for immune cells and cancer

cell line markers, respectively. The results of this adjustment are presented in Fig-

ure 3.1. In the two cases shown, we observe a significant improvement over the raw

expressions. However, we note that in the cancer cell line dataset, there are cases in

which the power of non-marker genes is stronger than the power of marker genes, thus

the negative dB values. This effect is remedied in all cases after adjustment, which

suggests that the proposed adjustment process deflates housekeeping gene expression

effectively, but does not negatively influence the expression of marker genes.

3.3.2 Iterative Application of Adjustment Process Identifies Markers That are Com-

parable or Better Than the t-test

In this experiment, I quantify the extent to which highly expressed genes in the

adjusted profile can be used to identify tissue/ cell type-specific markers. I apply

the same adjustment process to each group of cells/tissues, after adjusting for house-

keeping effect. The result is a single shared signature for each group of cell types/

tissues. I rank genes according to their expression level in this signature and assess

the over-representation of known markers among the higher ranked elements in this

list. I use mHG p-values, introduced in Section 3.2.5, to assess the significance of

each case. Similarly, I compute the mHG p-values for results of one-sided and two-

sided t-tests, which correspond to the most commonly used methods for identifying

differentially expressed genes. my final results are presented in Figure 3.2. For the

immune cell dataset, the iterative adjustment process yields superior results in every

single case. However, in the cancer cell line datasets, the results are more varied. In

this case, I removed ovary from my study, since none of the methods had significant

p-values. To systematically evaluate different methods, I use Fisher’s method [49] to

combine individual p-value into a meta p-value, the details of which are presented in
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Figure 3.1.: SNR enhancement for marker genes after the adjustment process for

housekeeping genes

Section 3.2.6. This results in the combined p-values of 2.5 × 10−197, 2 × 10−185, and

8.1× 10−150, for my method, one-sided t-test, and two-sided t-test, respectively.
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In summary, in both cases my method significantly outperforms the standard t-

test but, more importantly, as I show in the next section, it does not depend on a

predefined grouping and can automatically identify relevant expression domains.
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Figure 3.2.: Significance of marker predictions using two-step adjustment process

compared to the standard t-test.
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3.3.3 Adjusted Cell Type Signatures Identify Groups of Similar Tissues/Cell Types

Having established that iterative application of the adjustment process can iden-

tify marker genes within given groups of cells, I now study whether these groups

can be identified from the data directly. Given a compendium of cells, this would

allow us to automatically identify major subgroups corresponding to cell types, as

well as key marker genes associated with each group. In order to evaluate if such

structure exists in the adjusted data, I perform bi-clustering on the similarity matrix

between tissues/ cell types. I compute similarities using Pearson’s correlation, after

adjusting expression profiles for the effect of housekeeping genes. Figure 3.3 shows

the clustered heat-map of samples in each of my datasets. Each coherent group of

samples is marked according to the majority of cell types/ tissues in the group. For

the immune cell dataset, B-cell (mature) and hematopoietic stem cell (HSC) are two

of the largest coherent groups, followed by erythrocyte (ERY), granulocyte/monocyte

progenitor (GMP), and granulocyte (GRAN). In the cancer cell line dataset, lymphoid

tissues comprise the largest coherent group, followed by lung, skin, colo-rectal, and

breast groups. These groups are the major separable clusters at the first level of hi-

erarchy. The size of each group is related to the total number of samples for that

tissue/ cell type, whereas consistency within the group is related to the homogeneity

of cell types. For example, lymphoid tissues exhibit three separate subtypes in the

heat-map, which correspond to bone marrow, lymph node and blood.

I use a recent method proposed by Gaiteri [52] to automatically identify these

separable groups. This algorithm is a modification of the label propagation clustering

that corrects for the global frequency of labels, which in turn allows it to identify

more refined clusters. I compute similarity matrices before and after adjustment, and

remove all negative entries after computing the correlation scores. Next, I match

each identified cluster to known groups in each dataset. I first construct a weighted

bipartite graph between clusters on one side and known groups of cell types on the

other, by assigning a hypergeometric p-value to the size of their overlap. I then use
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(a) Immune cell types (b) Cancer cell lines

Figure 3.3.: Heatmap of tissue/cell type similarities after the adjustment process for

housekeeping genes

a maximum-weight bipartite matching algorithm [102] to compute the best match

for each cluster. I rank each tissue/ cell type according to the best matched cluster,

i.e., how well identified clusters capture each group. Table 3.2 summarizes the set of

tissues/ cell types in each dataset best matched to the identified set of clusters. Inter-

estingly, all major separable groups in the cancer cell line dataset are captured by at

least one cluster. In addition, brain and pancreatic tissues both have a corresponding

cluster, even though in the heat-map, they were not distinguishable from the rest

of tissues. On the other hand, for immune cell types, clusters cover a majority of

separable cell types, with the exception of GMP, which is a heterogeneous group by

itself consisting of a group of progenitor cells in the myeloid branch. Memory T-cells

are also strongly connected in the heat-map, but are split into different groups, with

the groups themselves being fairly homogeneous. We note that, in general, known

tissues in the cancer cell lines dataset are better represented by their clusters than

the immune cell types, in terms of their overlap p-value. I hypothesize that this phe-

nomena is due to higher underlying similarity among immune cell types that is not

separable using only one level of clustering.
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Table 3.2: Significance of matching known functional groups to the clusters identified

using the new cell similarity kernel

(a) Immune cell types

Celltype −log10(p− val)

Hematopoietic stem cell 8.36

Erythroid 7.63

Mature B-cell class able to switch 4.90

CD4+ Central Memory 4.34

Granulocyte (Neutrophil) 3.88

Basophils 3.60

(b) Cancer cell lines

Cellline origin −log10(p− val)

lymphoid 120.02

skin 51.45

breast 38.86

colo-rectal 38.43

brain 13.17

lung 11.85

pancreas 11.75

In order to assess the performance of my method, I applied the same procedure on

each of the clusters, representing major cell types, to identify more refined clusters,

where each cluster represents a sub-cell type. In addition to the cell type hierarchy

identified using adjusted/unadjusted transcriptional signatures, I also identified cell

types using SNN Cliq method [213], which is shown to outperform both k-means and

DBSCAN methods in identifying cell types. Figure 3.4 compares the final clustering

results, using NMI and Purity measures, which are two of the most well-used ex-
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trinsic measures to evaluate clustering results. It can be seen that in all case, label

propagation clustering using adjusted signature outperforms the other two methods.
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Figure 3.4.: Performance of different methods for de novo identification of cell types

using Label Propagation

In summary, label propagation applied to the similarity scores after adjustment

for housekeeping genes can automatically identify groups of cell types/ tissues with

coherent functions/ expression. These groups can be used as a hierarchical prior to

define the expression domain of tissue/ cell type-specific genes and their corresponding

pathways, as I demonstrate in the next section.

3.3.4 Putting the Pieces Together: Automated Identification of Cell Types and Their

Characteristic Markers

I have, thus far, shown that adjusted transcriptional signatures are capable of

identifying highly accurate cell-type markers. Furthermore, being accurate represen-

tations of cell type/ tissue-specific functionality, these signatures are better suited

to quantifying cell type-cell type and tissue-tissue similarities. These similarities, in

turn, can be used to identify coherent groups of cell types/ tissues. Here, I show

that highly expressed genes within identified clusters are enriched with tissue/ cell

type-specific pathways. I select the top three clusters that correspond to top three

best-covered tissues of origin in the cell lines dataset as my test cases. First, I ap-
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ply the adjustment process over each cluster, instead of known groups. I then filter

each cluster signature vector to select anything above z-score threshold of 1.96. I

use these three genesets and performed GO enrichment analysis over each one of

them using the GOsummaries package in R/Bioconductor [95]. This package re-

lies on the g:Profiler [153] package to identify and summarize enriched terms using

their hierarchical relationships, but also generates a word cloud of the final, simpli-

fied results. Figure 3.5 shows the enrichment for the top three clusters in the cancer

cell line dataset, which are lymphoid, skin, and breast, respectively. I note that the

annotations of each cluster are consistent with the matched pair of known groups.

Furthermore, each cluster is highly enriched with respect to related tissue-specific

functions. This validates the fact that the grouping/ marker detection process is able

to automatically identify cell types/ tissues, and to identify highly specific markers.

3.3.5 Adjusted Signatures Predict Tissue-specific Transcriptional Regulatory Net-

works

Tissue/ cell type-specific transcription factors (tsTFs) are significantly implicated

in various human disorders [123, 150], including cancers [197]. Having established

that adjusted signatures can be used to identify marker genes from among identified

clusters, I now construct core regulatory networks responsible, in each tissue, for

defining its identity. I focus on the same set of tissues as in Section 3.3.4. For

each tissue, I first identify the set of transcription factors that are highly expressed,

specifically in that tissue. I then assign a p-value to each of these TFs by looking at

their target genes. I identify how many total targets each TF has, how many of them

are expressed (above z-score of 1.96), and how many total genes are expressed in the

adjusted signature. Using these statistics, I compute the p-value of tissue-specificity

for each selected TF using the tail of hypergeometric distribution. A TF is deemed

signficant in a given tissue if it is specifically expressed highly in that tissue, after the

iterative adjustment process, and has a significantly large number of targets that are
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Figure 3.5.: Enrichment of top-ranked genes in the top three clusters in cancer cell

lines dataset using new similarity measure for cells

also highly expressed. I identify a minimal set of 12, 14 and 8 TFs for lymphoid, skin,

and breast tissues, respectively. I then construct the tissue-specific transcriptional

regulatory network (tsTRN) as the bipartite graph consisting of the selected TFs,

together with their highly expressed gene targets. For breast, GRHL1 just has a

self-loop, whereas, in skin network, NDN TF is only connected to NGFR. I exclude

these two TFs from further study. Figure 4.7 shows three networks corresponding to

the tsTRN of these tissues.
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Functional enrichment analysis of identified TFs shows a very significant and very

relevant set of functions. Myb is a known proto-oncogene and its over-expression plays

a key role in development of chronic B-lymphocytic leukemia (B-CLL) [198]. On the

other hand, POU2F2, SPI1, MEF2C, MYB, IRF4, IRF8, IKZF3, and HCLS1 are

all involved in the hematopoiesis (GO:0030097 p-val = 3.6 × 10−9). Among these

genes, SPI1 has the highest connectivity in the constructed lymphoid-specific TRN

(Figure 3.6a). This TF regulates gene expression during myeloid and B-lymphoid cell

development. In skin-specific TRN (Figure 3.5b), TFAP2A has the highest connec-

tivity, but CTNNB1 has a higher centrality. Interestingly, a subset of TFs in this

network, LEF1,CTNNB1, and ALX1, are known to be involved in the positive regula-

tion of epithelial to mesenchymal transition (p-val = 3.2× 10−6). This suggests that

the skin-specific network can be used to identify new targets for trans-differentiation.

Finally, breast-specific TRN is centered around Estrogen Receptor 1 (ESR1), Andro-

gen Receptor (AR), and Forkhead Box A1 (FOXA1) TFs. These TFs, together with

progesterone receptor (PGR), constitute the core of the steroid hormone mediated

signaling pathway (p-val = 9.4 × 10−7), and essential for sexual development and

reproductive function. In summary, these tsTRNs, identified automatically from the

given cell type/ tissue-specific transcriptome, capture highly relevant functionalities

that are fundamental to the core identity of each cell type. I conclude that, my frame-

work can identify hypothesized groups of related cells, identify their common markers,

and construct the underlying circuits that regulate the context-specific machinery.
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Figure 3.4.: Tissue-specific transcriptional regulatory network (tsTRN) of top 3 clus-

ters identified in the cancer cell lines dataset
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4 DE NOVO IDENTIFICATION OF CELL TYPES FROM SINGLE-CELL

TRANSCRIPTOME

4.1 Background

Complex tissues consist of heterogeneous populations of interacting cells that are

specialized to perform different functions. With rapid growth in single cell transcrip-

tomic technologies, the observed diversity of known cell types has greatly expanded.

What were once believed to be homogeneous groups of cells can now viewed as ecosys-

tems of varying cell types [186]. In tumor microenvironments, for example, immune,

stromal, and cancerous cells coexist, cooperate, and compete for resources. The ex-

act composition of these cells, as well as their molecular makeup, have significant

impact on diagnosis, prognosis, and treatment of cancer patients [129]. Single cell

technologies have already been proven useful for dissecting this complex microen-

vironment [156]. Using the rapidly growing datasets of single cell gene expression

profiles, a key challenge is to identify de novo cell types directly from genome-wide

transcriptomic phenotypes [176]. An important problem in cell type identification is

the existence of rare but key cell types, such as circulating tumor cells [145]. Beyond

identifying cell types, it is also import to identify factors that distinguish them from

other cell types.

I propose a new method, called Archetypal-analysis for cell type identificaTION

(ACTION), to identify cell types from single cell expression datasets. My method is

robust to biological noise, identifies a wide range of cell types with varying relative

populations, and provides a novel mechanism for constructing transcriptional regula-

tory networks (TRN) that mediate characteristic behaviors of each cell type. At the

core of my method is a biologically-inspired metric for similarity of cells, as charac-

terized by their transcriptional profiles. This metric accounts for specificity of marker
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genes and defines a signature for each cell that is robust to noise. At the same time,

it is sensitive enough to capture weak cell type-specific signals. This metric helps us

construct a geometric representation for the space of principal functions, which are

groups of distinguishing functions that are uniquely performed by specialized cells.

In this space, assigning cells to their closest principal function accurately identifies

cell types. Finally, I develop a statistical framework to identify key marker genes, as

well as transcription factors that are responsible for mediating the observed expres-

sion of these markers. I use these regulatory elements to construct cell type-specific

transcriptional regulatory networks.

My method provides a flexible approach for directly mapping characteristic tran-

scriptional regulatory networks of cells from the raw transcriptomic data. I apply

my method to the problem of subtyping Melanoma patients and identify a coher-

ent subclass, which closely resembles noninvasive tumors [201]. For this subclass, I

characterized key marker genes, as well as their underlying pathways. This analysis

highlights a MITF-associated regulatory network and suggests a potential mechanism

for distinguishing invasive and proliferative types of melanoma.

Significance. A few methods have been proposed for the problem of cell type iden-

tification [65, 70, 82, 96, 117, 213, 219]. A common theme underlying these methods is

to cluster coherent cells as putative cell types [176]. At the core of these clustering

methods is a similarity measure that defines relationships among cells. A majority

of prior methods rely on classical measures such as correlation or Euclidean distance

to define such relationships. However, this approach is confounded by ubiquitously

and highly expressed levels of housekeeping genes. Cell type-specific markers, on the

other hand, have a weaker signal in comparison. This, in turn, causes a majority

of traditional techniques to be driven by biological noise contributed by housekeep-

ing genes [125]. To overcome this, methods – such as ACTION – that are robust

to biological noise but are sensitive enough to identify cell type-specific signals are

critically needed. Once the identity of a cell has been established, it is unclear what
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Figure 4.1.: Five main components of ACTION

distinguishes it from other cell types. Transcriptional regulatory networks (TRNs)

are important aspects of this differentiation process. Understanding cell type-specific

TRNs has the potential to explain distinguishing mechanisms underlying observed

transcriptional phenotypes. ACTION is among the first set of methods to directly

infer cell type-specific networks from single cell expression datasets.

4.2 Materials and Methods

4.2.1 Datasets

Single cell gene expression datasets For all my studies, I rely on the following

datasets collected from publicly available sources:

Immune (from Supplementary Material) : Comprehensive qPCR based assay

of 1522 immune cells. This dataset spans 30 different types of stem, progenitor,

and fully differentiated cells [67].

Melanoma (GEO: GSE72056) : This dataset measures the expression profile of

4,645 malignant, immune, and stromal cells isolated from 19 freshly procured

human melanoma tumors. These cells are classified into 7 major types [183].
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MouseBrain (GEO: GSE60361) : This dataset contains the expression profile

of 3005 cells from the mouse cortex and hippocampus. These cells classify into

7 major types, including astrocytes-ependymal, endothelial-mural, interneurons,

microglia, oligodendrocytes, pyramidal CA1, and pyramidal SS [219].

Pollen (SRA: SRP041736) : This is a small, but commonly used dataset that

contains different cell types in developing cerebral cortex. It consists of 301

cells that classify into 11 distinct cell types [146].

Immune subtype markers I collected immune cell markers for 22 subclasses from

a recent paper [129]. This dataset contains a total of 547 markers, spanning 7 different

T-cell subtypes, B-cells, NK cells, and myeloid derived subclasses. This dataset is

collected and heavily curated from publicly available databases.

Transcriptional Regulatory Network (TRN) I collect transcription factor (TF)

– target gene (TG) interactions from the RegNetwork database [110], which aggre-

gates data from 25 different databases. This dataset contains a total of 151, 214

regulatory interactions between 1, 408 TFs and 20, 230 TGs.

4.2.2 Overview of Prior Methods for Cell-type Identification

Various methods have been developed to tackle the problem of cell type identi-

fication. SNN-Cliq [213] computes a similarity graph among cells, referred to as

shared nearest neighbor (SNN). It then uses a graph-based clustering algorithm to

identify dense subgraphs. TSCAN [82] starts by grouping genes with similar ex-

pression patterns into “modules” and represents all cells in this reduced space. It

then performs principal component analysis (PCA) over the module space to further

reduce dimensions. Finally, cells are clustered by fitting a mixture of multivariate nor-

mal distributions to the data, with the number of components estimated using the

Bayesian Information Criterion (BIC). SCUBA [117] first uses k-means with gap

statistic to cluster data along an initial binary tree by analyzing bifurcation events
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for time-course data. Then,it refines the tree using a maximum likelihood scheme.

BackSPIN [219] is based on SPIN algorithm, which permutes correlation matrix of

cell types to extract its underlying structure. BackSPIN then couples it with a divi-

sive splitting procedure to identify clusters from the ordered similarity matrix. Two

methods are specifically designed to identify rare cell types. RaceID [65] uses k-means

to first cluster cells, with the number of clusters identified using gap statistic. Then,

it identifies rare cell types as outliers that are not explained by an appropriate noise

model, accounting for both biological and technical variations. GiniClust [83] aims

to identify marker genes that are specific to rare cell types using the concept of Gini

index. Then, it computes distances between cell types in this reduced subspace and

uses DBSCAN clustering algorithm to identify cell types. In addition to these meth-

ods, there are approaches that visualize cell types on a continuous spectrum in a given

space. Haghverdi et al. [68] proposed to use diffusion maps to model the continuous

spectrum of cells. On the other hand, Korem et al. [96], adopted a previously devel-

oped method, called Pareto task inference (ParTI) method [70], and applied it

to single cell datasets.

4.2.3 Overview and Justification for ACTION ’s Components

In the following sections, I describe various components of ACTION, as shown

in Figure 4.1. I first explain exactly how the metric, illustrated in Figure 4.4a, is

computed from a matrix of raw cell expression profile data (Step 1 in the overview).

Next, I explain how ACTION identifies the principal functions of a set of cells,

assuming it knows the number of principal functions (Step 3 in the overview). I

use an elbow method based on the quality of the principal functions to choose the

actual number of principal functions (Step 2 in the overview). Finally, I explain how

to estimate the transcriptional regulatory network for a specific principal function

(Step 5) by orthogonalizing the functional space of cells (Step 4).
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4.2.4 Step 1: A Biologically-inspired Metric for Similarity of Cells

Justification The transcriptome of each cell consists of genes that are expressed at

different levels and have different specificity with respect to the underlying cell types.

Housekeeping genes are the subset of genes responsible for mediating core cellular

functions, such as translation, transcription, and DNA repair. These functions are

needed by all cells to function properly, which result in ubiquitous expression of these

genes across all cell types [45]. While fundamental to cellular function, these genes

are not informative with respect to the identity of cells. That is, the fact that a

housekeeping gene is expressed in a cell does not provide any information regarding

its cell type. On the other hand, cell type-specific genes are preferentially expressed

in one or a few selected group of cell types to perform cell type-specific functions.

Unlike housekeeping genes, cell type-specific genes are highly relevant for grouping

cells according to their common functions. My goal here is to define a similarity

measure between cells that suppresses the noise contributed by housekeeping genes

and enhances the signal contained in cell type-specific genes.

Suppressing housekeeping genes To suppress the ubiquitously high expression

of housekeeping genes, I adopt a method that I developed recently for bulk tissue

measurements and extend it to single cell analysis [125]. The core of this method

is to project a standardized representation of expression profiles of cells onto the

orthogonal subspace of housekeeping genes. Let us denote given expression profiles

of cells using matrix X ∈ Rm×n, where each row corresponds to a gene and each

column represents a cell. I use the shorthand xi to denote the expression profile of

ith cell. In addition, let us denote the signature vector of housekeeping genes by v.

As a first order estimate, housekeeping signature is computed by taking the average

expression over all cells: v = 1
n

∑n
i=1 xi. This choice is optimal in a least-square

sense when the chance of observing a gene is uniform across all cells. Then, I z -score

normalize the profile of each cell: zi = xi−µi
σi

, where µi and σi are the mean and

sample standard deviation of the entries in the ith cell profile. Similarly, I z -score
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normalize the signature vector of housekeeping genes, v, to create a new vector zv.

Finally, I project out the impact of the housekeeping gene expressions on each cell’s

profile as follows:

z⊥i =
(
I− zvz

T
v

‖zv‖2
2

)
zi. (4.1)

This operation projects zi to the orthogonal complement of the space spanned by the

housekeeping genes. I then concatenate the column vectors z⊥i to create a matrix

Z⊥.

Enhancing signal from cell type-specific genes Next, to enhance the signal

contributed by preferentially expressed genes, I propose an information theoretic

approach, which in essence is similar to the one used previously for marker detec-

tion [160]. The idea is to use Shannon’s entropy to measure the informativeness of

gene expressions. If a gene is uniformly expressed across cells, it contains less in-

formation as opposed to the case in which it is selectively expressed in a few cells.

To this end, I first shift all entries of Z⊥ by its minimum value to ensure positivity.

Then, I normalize this shifted matrix to construct a new matrix P, in which every

row has sum one. Let pj be the row vector associated with the jth gene. Then, I

compute the entropy of pj as: H(j) = −
∑

j pji log(pji), where pji is an entry in the

matrix P. Finally, I use these entropy values as a basis to boost contributions from

the most informative genes. To this end, I compute a scaling factor for each gene as

follows. First, I partition genes as either informative or noninformative by finding

the location of the most rapid shift in uniformity values, which resembles a L-shaped

curve. Let us denote the entropy of the gene on the edge of this partition by H∗.

Then for each gene j, I define a scaling factor as sj = H∗/H(j). Finally, I compute

the kernel matrix as follows:

K = (Z⊥)Tdiag(w)Z⊥ (4.2)
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where function diag() creates a diagonal matrix from elements of a given vector,

and each entry wi = s2
j . In this formulation, if I denote Q = diag(c)Z⊥, then

K = QTQ defines a dot-product kernel.

4.2.5 Steps 2 and 3: A Geometric Approach to Identify Principal Functions (Rep-

resenting Pure Cell Types)

Transcriptional profiles of cells that perform multiple functions can be represented

using a limited repertoire of principal functions. The functional space of cells, thus,

can be represented by a low-dimensional geometric construct.

The convex hull of a given set of points is the minimum volume polytope that

encloses all points. This can be envisioned as a rubber band fitting to the outer-

most points. The functional space of cells that perform multiple functions can be

represented using a limited repertoire of principal functions, which has recently been

shown to be embedded within a reduced convex hull [70]. The corners, or archetypes,

of this space represent principal functions, associated with specialized groups of cells.

Identifying the enclosing convex hull in high-dimensional space is computationally

expensive and susceptible to noise and overfitting. As an alternative, I seek a limited

number of points on the convex hull that enclose as many points as possible, while

being resilient to noise and outliers. To this end, I first use the successive projection

algorithm (SPA) to identify k transcriptional profiles as initial corners for the covering

convex hull, each of which corresponds to a pure cell that is specialized to perform a

set of unique principal functions. Then, I use principal convex hull algorithm (PCHA)

combined with my distance kernel to adjust these corners by allowing others cells to

contribute to the identity of each archetype/corner. This is combined with a standard

model selection technique to estimate the number of principal functions.

A quick sketch of my procedure is as follows. I expand on this description in

subsequent sections. For each k = 1, . . . , Kmax, (i) identify potential “pure”

cells : use SPA on the raw expression data X to find k pure cells that are near
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extreme points of the functional space; and (ii) adjust the corners : initialize PCHA

using the profiles of those k cells and iterate using the kernel K. Then let V (k) be

the PCHA objective function with k archetypes. Finally after all models have been

adjusted, (iii) estimate the number of cell types from V (k) such that it balances

the number of cells and the total explained variance.

Estimating “pure” Cells As Extreme Corners of the Functional Subspace of Cells

Given a raw expression matrix X, I aim to identify an “optimal” set S of k “pure

cells.” These cells can be viewed as extreme corners of the convex hull of the functional

space of cells, and all other samples can be written as convex combinations of these

basis vectors. Under a strict assumption, known as separability, I seek to identify k

columns such that X = X(:,S)H, where S is the selected column subspace of matrix

X and H is non-negative. This means that every column of X is a non-negative linear

combination of a subset S of all columns. In terms of cells, this means that every

cell’s expression profile is a combination of a few cells. However, this is a very strong

assumption that rarely holds in real data. A relaxation of this assumption, referred to

as near-separability, seeks to estimate X ≈ X(:,S)H+N, where the noise is bounded:

‖N(:, j)‖2 ≤ ε. This decomposition is known as near-separable Nonnegative Matrix

Factorization (NMF). The Successive Projection Algorithm (SPA) is an efficient al-

gorithm for solving near-separable NMF with provable performance guarantees [57].

If ε satisfies the technical condition ε ≤ O
(
σmin(W)√
kκ2(W)

)
, then:

min
0≤H
‖X−X(:,S)H‖ ≤ O

(
εκ2(W)

)
(4.3)

More recently, other techniques have been developed to enhance the robustness

of SPA to noise [58]. These methods are based on the fact that premultiplying ma-

trix X by an orthogonal matrix Q preserves its separability. Thus, by carefully

choosing matrix Q, I can enhance the conditioning of the problem. Here, I use the

prewhitening technique, which uses SVD decomposition of matrix X to estimate a
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noise-reduced approximation matrix. Algorithm 1 presents the SPA algorithm com-

bined with prewhitening technique that I use to estimate a set of k cells.

Input: X ∈ Rm×n: expression profile of cells

Output: S: selected subset of columns in matrix X

1: [Uk,Σk,Vk] = SVD(X, k)

2: X̃ = Σ−1
k UT

k︸ ︷︷ ︸
Q

X = VT
k {Prewhitening}

3: S = {},R = X̃ ⇒ Initialize

4: for i = {1, · · · , k} do

5: α = argmaxj ‖rj‖2 {rj is the jth column}

6: β = R(:, α)

7: R← (I− ββT

βTβ
)R {Orthogonal Projection}

8: S ← S ∪ {β}

9: end for

Algorithm 1: SPA algorithm with prewhitening

Adjusting Selected Corners to Allow Contributions From All Cells

Archetypal-analysis (AA) [35] can be viewed as a generalization of near-separable

NMF. While in near-separable NMF all columns are represented using k columns in

X, in AA this constraint is relaxed to be a convex combination of all columns in X.

Formally, I can formulate AA as follows:

minimize
C,H,α

‖X−XCH‖

subject to ‖C(:, i)‖1 = 1.

‖H(:, i)‖1 = 1.

0 ≤ C, 0 ≤ H

(4.4)

Near-separable NMF is a special case of AA in which C has exactly k nonzeros and

none of the columns have more than one element. The matrix W = XC here stores
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Figure 4.2.: Example of running PCHA algorithm

the archetypes. Joint column stochasticity of C and H indicates that archetypes are

convex combinations of data points, and each data point can be represented as convex

combination of archetypes.

There is an algorithm, called Principal Convex Hull Analysis (PCHA), to solve

the above problem. The intuition behind PCHA is to fit a polytope to the data

points, which approximates the optimal polytope containing as many data points as

possible. Figure 4.2 illustrates this phenomena.

I use a kernelized version of PCHA algorithm that minimizes the objective:

trace(−XTXCH−HTCTXTX + HTCTXTXCH) (4.5)

in which I directly provide the ACTION kernel K as XTX and initialize C based on

the solution to SPA.

4.2.6 Estimating the Total Number of Archetypes Needed to Represent All Cell

Types

A key challenge in all parametric methods is to identify the optimal configuration

for associated parameters. In my formulation, the total number of archetypes (cor-

ner points) must be provided by the user or directly estimated from the data. To

automatically identify this number, one can use various measures of “goodness” to
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assess overall performance as I increase the number of archetypes. A balance between

the number of archetypes and the goodness of solution provides an optimal compro-

mise. I use variance explained by the fit as a measure to find the optimal number of

archetypes. For each archetype count (up to a max value), I fit a convex hull to the

data and compute explained variance.

The explained variance has an elbow-shape, meaning that it starts increasing

rapidly, then it plateaus. The corner of this L-curve is an optimal choice for the

number of archetypes. To find this point automatically, I fit a piecewise linear model

to the data with two split points. This allows us to distinguish both rapid and more

gradual shift patterns in the L-curve. Formally:

f(c) =


m1c+ b1, for 0 ≤ c < ci

m2c+ b2, for ci ≤ c < cj

m3c+ b3, for c < cj ≤ cmax

(4.6)

where c is the archetype count and ci and cj are two free parameters. I evaluate

every pair of (ci, cj); 1 ≤ ci < cj ≤ cmax and fit a minimum least squares fit to each

piece. The configuration with minimum overall error is selected as cbest
i and cbest

j .

For this specific configuration, let m2 and m3 represent the slope of the second and

the third linear fits. Then, if m2

m3
is less that or equal to a user-defined parameter

thresholdmin, then I select the first split point (cbest
i ). Otherwise, I have a rapidly

shifting curve and the slopes of second and third segments are very close. Thus, I

select the second split point as the choice of k. Figure 4.3 illustrates an example

of fitting process. The pink dots represent the explained variance for archetypal fits

with increasing number of archetypes. Green lines show the piecewise linear fit to the

data. The optimal number of archetypes is selected according to bestj in this case,

which is nine.
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Figure 4.3.: Illustration of identification of total number of functions for the Pollen

dataset

4.2.7 Steps 4 and 5: Constructing the Transcriptional Regulatory Network Corre-

sponding to Each Archetype

Each archetype represents a principal function performed by a group of cells.

However, what makes these functions unique and the functional specializations they

represent is not clear from the archetype signatures. To identify marker genes in

each archetype, and to shed light on the underlying network regulating the observed

transcriptional phenotype, I developed a novel approach based on orthogonalizing the

space of principal functions.

Archetype orthogonalization to Identify Cell Type-specific Markers

A key factor in analyzing principal functions represented by each archetype is to

identify what distinguishes one archetype from others. To identify shared and unique

aspects represented by each archetype, I present a new method, called arechetype

orthogonalization. The idea is to remove effects that are shared with any other

archetypes before analyzing a given archetype.
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Recall the result of PCHA is C and H. The result XC represents the archetypes

in the space of gene expression profiles. Let us denote the vector representation of

archetype i by ai and let A be the matrix of all archetypes. Let A−i denote the

matrix of archetypes without the ith column. Then our goal is to project ai into the

subspace orthogonal to the columns spanned by A−i. This can be computed as:

a⊥i =
(
I−A−i(A

T
−iA−i)

−1AT
−i

)
ai (4.7)

For each archetype, I can sort all genes according to their “residual expression” after

orthogonalization.

Identifying Cell Type-specific Transcriptional Regulatory Network (TRN)

Given residual expression vectors for each archetype, I can identify key regulatory

circuits responsible for the observed transcriptional phenotype. I construct induced

subgraphs of the global transcriptional regulatory network (TRN), which drive char-

acteristic behavior of each cell type. First, I order all genes according to their residual

expression for a given archetype. Then, for each transcription factor (TF), I identify

the over-representation of its target genes (TGs) among top-ranked genes with respect

to that archetype. To this end, I use minimum hypergeometric (mHG) p-value. This

method is nonparametric, in the sense that I do not need to predefine a fixed cut. Let

us represent the total number of genes by m. Given a set of target genes, of size T ,

I construct a binary vector of true positives (targets) as λ = [λ1, λ2, ...λm] ∈ {0, 1}m.

Let the random variable Z denote the number of target genes among a fixed number

of l top-ranked genes, if I distribute genes randomly. In this formulation, I can express

the p-value in terms of the hypergeometric distribution:

p-value(Z = bl(λ)) = Prob(bl(λ) ≤ Z)

= HGT(bl(λ)|m,T, l)

=

min(T,l)∑
x=bl(λ)

(
T
x

)(
m−T
l−x

)(
m
l

)
(4.8)
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where HGT is the tail of hypergeometric distribution and bl(λ) =
∑l

i=1 λi counts the

total number of true positives in top-l observations. The drawback of this approach is

that I still need a predefined cutoff value, l. To remedy this, Eden et al. [43] proposed

a two-step process for computing the exact enrichment p-value, called mHG p-value,

without the need for a predefined cutoff value of l. First, an optimal cutoff value is

chosen among all possible values of 1 ≤ l ≤ N . The computed value for this optimal

cutoff is called the minimum hypergeometric (mHG) score, and is defined as:

mHG(λ) = min
1≤l≤m

p-value(Z = bl(λ)) (4.9)

Next, a dynamic programming (DP) method is used to compute the exact p-value of

the observed mHG score, in the state space of all possible λ vectors of size m having

exactly T ones.

I use this formulation to identify significant transcription factors based on the

number of target genes (TGs) with high residual expression. This, in turn, splits

TGs of each TF into top vs bottom-ranked genes. I then select all significant TFs,

together with their top-ranked target genes and construct a node-weighted induced

subgraph of the global TRN, which represents the cell type-specific TRN.

4.3 Results and Discussion

The ACTION framework consists of three major components, shown in Figure 4.1:

(i) A robust measure of cell-to-cell similarity, (ii) A geometric approach for identifica-

tion of principal functions, and (iii) a statistical framework for constructing cell-type

specific transcriptional regulatory networks (TRNs). My cell-to-cell similarity metric

is rooted in the notion that functional roles of a cell form an embedded hierarchy,

with successively refined set of tissue-specific functions. When used with a classic

clustering algorithm such as k-means, ACTION metric surpasses all other measures

of cell similarity in identifying cell types. The next component of my method is a

geometric approach for identifying principal functions of cells, each represented by

an archetype (corner) of the convex hull in the functional space of cells. Finally,
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Figure 4.4.: Evaluation of ACTION Similarity Metric

ACTION uses a novel method that utilizes the geometric view of cell functions to

construct the transcriptional regulatory network (TRN) that mediates characteristic

behavior of each cell type. In what follows, I describe, validate, and discuss each

component in detail.

4.3.1 Component 1: Measuring Cell-to-cell Similarity

An essential component of any method for identifying cell types is the ability to

quantify similarity between individual cells. Most prior methods rely on traditional

measures, such as Euclidean distance, that are not specifically targeted towards tran-

scriptomic profiles. In contrast, I define a similarity metric, or formally a kernel,

specifically designed for measuring similarity between cells [125]. My approach is

based on the observation that housekeeping genes, while not informative of cell type
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identity, significantly impact traditional measures of cell similarity due to their ubiq-

uitous and high expression levels. Suppressing these genes significantly enhances the

signal-to-noise ratio (SNR) in expression profiles, allowing us to extract a stronger

cell type-specific signal.

Novel methodology my method starts by projecting transcriptional signatures to

the orthogonal subspace spanned by housekeeping genes. I then boost the contribu-

tion of cell type-specific genes using an information theoretic approach. Finally, I

combine these two measures to define a robust measure of cell-to-cell similarity. This

approach is illustrated in Figure 4.4. The mathematical models underlying the metric

are described in the Methods section.

Validation To establish the superiority of my metric, I compare it against one mea-

sure specifically designed for single cell analysis, SIMLR, and two general measures:

multidimensional scaling (MDS), and Isomap. SIMLR [205], combines a number of

distance metrics to learn a joint similarity score that maximizes the block diagonal

structure of the resulting matrix. Both MultiDimensional Scaling (MDS) and Isomap

are nonlinear dimension reduction techniques. The former method projects points into

a low-dimensional space, such that distances between samples are preserved to the

extent possible. The latter method first computes the nearest neighborhood graph of

data points. It then uses shortest path between vertices as a measure of distance be-

tween them. Finally it uses MDS to embed these distances in a low-dimensional space.

After projecting the data to a lower dimension space in either MDS or Isomap, one

can use linear correlation in the transformed subspace to measure similarity between

cells. While ACTION is a non-parametric method, other methods need additional

input. For SIMLR, I need to provide the true number of cell types. In order to give

the other methods the best chance at competing with ACTION, I evaluate them using

ten different values for dimension of projected subspace (from 5 to 50 with increments

of 5) and report the best results obtained over all configurations.
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To assess the quality of computed similarities between cells, I use each of the four

measures to cluster cells and identify cell types. Each cluster is assumed to represent

a unique cell type, and the clusters are determined using the commonly used kernel

k-means algorithm. I compare the computed cell types with the true (known) cell

types in terms of Normalized Mutual Information (NMI) and Adjusted Rand Index

(ARI). Normalized Mutual Information is an information theoretic measure that is

zero for random clustering (when the identified clustering contains no information

about true cell types), and one for a clustering that perfectly matches a given gold

standard. The ARI measure is also between zero and one; however, it evaluates the

cases in which a given pair of cells are either co-clustered in both true and identified,

or classified separately in both.

In each case, I perform 100 independent clusterings with random initialization

and report the average of NMI and ARI scores as quality measures (relative ordering

of results is robust with respect to other aggregating functions, such as median or

max). These experiments are independently performed for each dataset. Figures 4.4b-

d present the performance of the cell type identification technique operating with

different similarity measures, both in terms of their clustering quality (NMI and

ARI) and total running time.

Discussion of results on similarity metric To evaluate performance of each

similarity metric, I analyzed four different datasets, which are listed in Section 5.2.1.

These datasets have different number of cells, ranging from hundreds to thousands,

span a wide range of normal and cancerous cells, and are measured using different

single cell technologies.

For both MouseBrain and Pollen datasets, ACTION metric significantly outper-

forms other metrics in terms of both NMI and ARI measures. For the Melanoma

dataset, ACTION has significantly better NMI, but there is a tie between ACTION,

MDS, and SIMLR with respect to the ARI measure. Finally, for the Immune dataset,

there is a tie between ACTION, MDS, and SIMLR for both measures. In all studies,
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Figure 4.5.: Performance of ACTION in identifying cell types

t-test with p-val ≤ 10−2 has been used to assess significance of difference between

observed NMI/ARI values. In summary, my results demonstrate that in all cases AC-

TION metric is either significantly better or at least as good as any other methods.

Thus establishes the ACTION metric as a fast, nonparametric, and accurate method

for computing similarity among single cells. I use this measure throughout the rest

of my study. I note however, that my overall framework is flexible with respect to

choice of other similarity metrics.

4.3.2 Component 2: A Geometric View to Identify Discrete Cell Types

Novel methodology Using the ACTION metric as a measure of similarity between

cells, I develop a new method for identifying de novo cell types in a given experiment.

My method is based on a geometric interpretation of cellular functions. Each cell is

a data-point in a high-dimensional space. My method identifies “extreme” corners

in this space, and each cell is characterized by its distance to every corner. The

corners identified by ACTION represent “pure” cells that are specialized to perform

a principal function. This is in contrast to methods such as unsupervised clustering

(e.g., k-medoids) that identify the most common centers. My focus on identifying the

extreme points (and thus, principal functions), allows us to better identify rare cell

types.
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Validation. Each corner or archetype represents a principal function. I first vali-

date these by considering each archetype as a characteristic cell type. I then iden-

tify the type of each cell by determining the closest archetype and assigning this

type. I compare my method to four recently proposed methods: SCUBA [117],

SNNCliq [213], single-cell ParTI [70, 96], and TSCAN [82]. Details of these methods

are given in the methods section. Clique size and density of quasi cliques of SNN Cliq

are left as default parameters (k = 3 and r = 0.7). Increasing clique size k did not

improve performance, but significantly increased the running time. With these pa-

rameters, SNNCliq did not terminate in 72h for the largest dataset (Melanoma), after

which I stopped the experiment. I present a comprehensive analysis of the results for

all other combinations of datasets/methods.

Discussion of results on cell-type identification. Figure 4.5 shows comparative

performance of different methods in predicting cell types in various datasets. In

all cases, except ARI for the Melanoma dataset, ACTION yields superior results

compared to the state-of-the-art methods for cell-type identification. In general,

NMI measure exhibits lower range of variation across methods, whereas ARI has

a higher range of variability. To further investigate the difference between ParTI and

ACTION on the Melanoma dataset, I manually evaluated each archetype identified

in these methods. My results indicate that the source of difference is that ACTION

identifies more refined subtypes of T-cells and subclasses of tumor cells, whereas

ParTI combines these subtypes/classes. These subgroup details are missing from

the annotations provided for the dataset by authors. Combining cell types that are

classified as different subtypes of T-cells or subclasses of tumor cells significantly

enhances the computed performance measures of ACTION in this dataset. This is

shown using gray boxes in the corresponding figure.

Analysis and validation of the principal functions. While cells can be classi-

fied based on their closest archetype, they can also be viewed on a continuum [70].

To illustrate this continuous view, I use the distance from each archetype as a low-



52

dimensional embedding of the cells. I use the Fielder embedding, followed by ad-

justment using Stochastic Neighbor Embedding (SNE) method to visualize this low-

dimensional embedding in Figure 4.6. Each archetype is marked with a text labeled

(A1, . . . , A11) point and assigned a unique color. Each point corresponds to a cell.

I interpolate its color using its distance to all archetypes to highlight the continuous

nature of the data. The labels for the groups are based on three sources. First, I per-

form enrichment analysis on the cells assigned to each archetype. Then, I use markers

provided in the original datasets to identify the cell type-specific expression in each

archetype. Finally, I use markers from LM22 dataset [129] to classify subtypes of

immune cells.

Figure 4.6 illustrates the ability of my method to identify both isolated cell-types

with specialized principal functions, as well as cells with a combination of functions.

As an example, different subclasses of T-cell constitute a spectrum with the corners

(or archetypes) representing specialized functions that are performed by a pure T-cell

subtype. In addition to given cell types, I also find an additional archetype, A6, which

links between T-cells and B-cells and I hypothesize to be a lymphocyte progenitor.

In terms of tumor cells, many of the patients form their own archetypes. The

two exceptions to this rule, A5 and A10, define a “MITF axis”, which is shown in

the subfigure (MITF is one of the transcription factors known be related to various

types of Melanoma [183,201]). Archetype A5 is enriched in five patients with varying

degrees of expression for MITF from mid to high. I collectively refer to patients

in Archetype A5 as MITF-associated patients. Archetype A10, on the other hand,

contains patients 81 and 82, both of who have low levels of MITF. In what follows, I

construct the transcriptional regulatory network responsible for mediating observed

phenotype of MITF-associated patients in A5.
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Figure 4.6.: A continuous view of cell types in the Melanoma dataset identifies sub-

classes of immune cells and highlights a MITF-related “axis”

4.3.3 Component 3: Constructing Subclass-specific Transcription Regulatory Net-

work of MITF-associated Patients

Novel Methodology I propose a new method to construct regulatory pathways re-

sponsible for mediating phenotypes associated with each archetype. To this end, I first

perform an archetype orthogonalization (details described in Section 4.2.7), to com-

pute residual expression and identify marker genes that are unique to the archetype.

Then, I rank all genes according to their residual expression. Finally, I project these

scores to the transcriptional regulatory network (TRN) to find key transcription fac-
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Figure 4.7.: The transcriptional regulatory network (TRN) for MITF-associated

Melanoma patients highlights a number of genes that have not previously been asso-

ciated with Melanoma – along with some known markers

tors (TFs) responsible for mediating the observed transcriptional phenotype. For each

TF, I assess the over-representation of its targets among top-ranked genes (according

to the residual expression score). I use a dynamic programming algorithm [43] to as-

sign exact p-values to each TF. For each TF, its “top ranked” target genes, according

to the cut that yields the minimum hypergeometric score, are also selected as part of

the regulatory network.

I apply this technique to identify regulatory pathways of MITF-associated sam-

ples. A p-value threshold of 0.05 is used to identify significant TFs. The final con-

structed network is presented in Figure 4.7. This network consists of six key transcrip-

tion factors (in yellow), 85 target genes (in green/purple). Purple nodes are target

genes that are jointly regulated by two TFs. I marked enriched functions of each

group in the figure, accordingly, and highlighted elements that are already known to

be associated with Melanoma.

Validation MITF is one of the best-characterized markers for Melanoma, and is

also used in the original paper to classify patients [183]. It is notable here that my
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method identified MITF directly using data from the activity of its targets. Further-

more, since these transcription factors are identified based on the activity of their

target, they are “related” to the subclasses, however, the mechanism of their control

can be diverse.

Among other factors, BHLHE40 has the highest number of activated targets. This

factor, among other functions, regulates M-MITF, a melanocyte-restricted isoform of

MITF, and potently reduces expression of MITF under hypotoxic conditions [48].

Angiogenesis, or growth of blood vessels, is a hallmark of cancer. MEOX2 plays

multiple roles in this process. At low levels, it activates nuclear factor-κB (NK-κB), a

proangiogenic signaling pathway, whereas in high doses, it has an inhibitory role [27].

Similarly, TSG101 plays different roles depending on the context. In fibroblasts,

it acts as a tumor suppressor gene, whereas it has a tumor-enhancing role in some

epithelial tumors. This bidirectional regulation is postulated to be through expression

of MMP-9 in different cell types [159]. The role of other factors is less-studied.

Experimental evidence To further validate my results, I use the transcriptome

of 10 patients with invasive and proliferative melanoma subtypes from Verfaillie et

al. [201]. Proliferative subtype is characterized by high levels of MITF, as well as

SOX10 and PAX3. In contract, invasive subtype is known to have low levels of

MITF and high levels of epithelial-to-mesenchymal (EMT) transcription factor ZEB1,

and is associated with metastatic dissemination. Nodes in my MITF -associatied

TRN resemble the proliferative subtype. Thus, I use marker genes for this class to

validate my results. There are a total of 770 marker genes for the proliferative subtype

and among 91 total genes in my network, 8 genes coincide with them (p-value =

0.01). These genes include DCT, MITF, PAX3, PPFIBP2, PRKCZ, TP53, TYR,

and TYRP1, all of which have high residual expression compared to all other nodes.

Beside the MITF subnetwork, TP53, PRKCZ, and PPFIBP2 are also enriched in

this set. Interestingly, a key factor involved in the invasive subtype, MEOX2, is also

identified as a node in my network. As mentioned earlier, depending on the level
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of its expression, this gene can play different roles for proliferative versus invasive

subclasses.

Collectively, these results illustrate the effectiveness of the ACTION in identifying

novel cancer subtypes, their underlying regulatory network, and characteristic mark-

ers. This, in turn, presents new avenues for diagnosis and prognosis of melanoma

patients, as well as new therapeutic targets for further investigation.
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5 SEPARATING CELL TYPES AND THEIR RELATIVE PERCENTAGES

FROM COMPLEX TISSUES

5.1 Background

Source separation, or deconvolution, is the problem of estimating individual sig-

nal components from their mixtures. This problem arises when source signals are

transmitted through a mixing channel and the mixed sensor readings are observed.

Source separation has applications in a variety of fields. One of its early applications

is in processing audio signals [136, 173, 204, 218]. Here, mixtures of different sound

sources, such as speech or music, are recorded simultaneously using several micro-

phones. Various frequencies are convolved by the impulse response of the room and

the goal is to separate one or several sources from this mixture. This has direct ap-

plications in speech enhancement, voice removal, and noise cancellation in recordings

from populated areas. In hyperspectral imaging, the spectral signature of each pixel

is observed. This signal is the combination of pure spectral signatures of constitutive

elements mixed according to their relative abundance. In satellite imaging, each pixel

represents sensor readings for different patches of land at multiple wavelengths. In-

dividual sources correspond to reflectances of materials at different wavelengths that

are mixed according to the material composition of each pixel [57,113,131,134,203].

Beyond these domains, deconvolution has applications in removing noise from

biomedical sensors. Tracing electrical current in the brain is widely used as a proxy

for spatiotemporal patterns of brain activity. These patterns have significant clinical

applications in diagnosis and prediction of epileptic seizures, as well as characteriz-

ing different stages of sleep in patients with sleep disorders. Electroencephalography

(EEG) and magnetoencephalography (MEG) are two of the most commonly used

techniques for cerebral imaging. These techniques measure voltage fluctuations and
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changes in the electromagnetic fields, respectively. Superconducting QUantum Inter-

ference Device (SQUID) sensors used in the latter technology are susceptible to mag-

netic coupling due to geometry and must be shielded carefully against magnetic noise.

Deconvolution techniques are used to separate different noise sources and to amelio-

rate the effect of electrical and magnetic coupling in these devices [72,179,199,220].

At a high level, mixing channels can be classified as: (i) linear or nonlinear,

(ii) instantaneous, delayed, or convolutive, and (iii) over/under determined. When

neither the sources nor the mixing process is available, the problem is known as

blind source separation (BSS). This problem is highly under-determined in general,

and additional constraints; such as independence among sources, sparsity, or non-

negativity; are typically enforced on the sources in practical applications. A new

class of methods has been developed recently, known as semi or guided BSS [72,

136, 173, 204]. In these methods, additional information is available a priori on the

approximate behavior of either sources or the mixing process. In this chapter, I focus

on the class of over-determined, linear instantaneous (LI) mixing processes, for which

a deformed prior on sources is available. In this case, the parameters of the linear

mixer, as well as the true identity of the original sources are to be determined.

In the context of molecular biology, deconvolution methods have been used to

identify constituent cell-types in a tissue, along with their relative proportions. The

inherent heterogeneity of tissue samples makes it difficult to identify separated, cell-

type specific signatures, i.e., the precise gene expression levels for each cell-type. Rel-

ative changes in cell proportions, combined with variations attributed to the changes

in the biological conditions, such as disease state, complicate identification of true bio-

logical signals from mere technical variations. Changes in tissue composition are often

indicative of disease progression or drug response. For example, coupled depletion

of specific neuronal cells with the gradual increase in the glial cell population is in-

dicative of neurodegenerative disorders. An increasing proportion of malignant cells,

as well as a growing fraction of tumor infiltrating lymphocytes (TIL) compared to

surrounding cells, directly influence tumor growth, metastasis, and clinical outcomes
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for patients [100,129]. Deconvolving tissue biopsies allows further investigation of the

interaction between tumor and micro-environmental cells, along with its role in the

progression of cancer.

The expression level of genes, which is a proxy for the number of present copies

of each gene product, is one of the most common source factors used for separating

cell-types and tissues. In the linear mixing model, the expression of each gene in a

complex mixture is estimated as a linear combination of the expression of the same

gene in the constitutive cell-types. In silico deconvolution methods for separating

complex tissues can be coarsely classified as either full deconvolution, in which both

cell-type specific expressions and the percentages of each cell-type are estimated, or

partial deconvolution methods, where one of these data sources is used to compute

the other [164]. These two classes loosely relate to BSS and guided-BSS problems.

Note that in cases where relative abundances are used to estimate cell-type-specific

expressions, the problem is highly under-determined. In the complementary case of

computing percentages from noisy expressions of purified cells, the problem is highly

over-determined. In the former case, I typically have only a handful of known cell

types with known percentages, and I need to estimate unknown expression values for

thousands of genes. In the latter case, I use known expression values of all genes

(or a selected subset that is typically much larger than the number of cell types) to

compute percentages of a small population of constituting cells. Thus, in the case

of an over-determined system, the key is to select the most reliable features that

satisfy the linearity assumption. I provide an in-depth review of recent deconvolution

methods in Section 5.2.3.

In contrast to computational methods, a variety of experimental cell separation

techniques have been proposed to enrich samples for cell-types of interest. However,

these experimental methods not only involve significant time, effort, and expense,

but may also result in insufficient RNA abundance for further quantification of gene

expression. In this case, amplification steps may introduce technical artifacts into

the gene expression data. Furthermore, sorting of cell-types must be embedded in
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the experiment design for the desired subset of cells, and any subsequent separation

is infeasible. Computational methods, on the other hand, are capable of sorting

mixtures at different levels of resolution and for arbitrary cell-type subsets of interest.

The organization of the remainder of the chapter is as follows: The formal defini-

tion of the deconvolution problem and its relationship to linear regression is defined

in Section 5.2.2. Sections 5.2.2 and 5.2.2 review different choices and examples of

the objective function used in regression. An overview of computational methods for

biological deconvolution is provided in Section 5.2.3. Datasets and evaluation mea-

sures used in this study are described in Sections 5.2.1 and 5.2.4, respectively. The

effect of the loss function, constraint enforcement, range filtering, and feature selec-

tion choices on the performance of deconvolution methods is evaluated systematically

in Sections 5.3.1-5.3.5.

5.2 Materials and Methods

5.2.1 Datasets

In Vivo Mixtures With Known Percentages

I use a total of five datasets with known mixtures. I use CellMix to download and

normalize these datasets [54], which uses the soft format data available from Gene

Expression Omnibus (GEO).

• BreatBlood [61] (GEO ID: GSE29830 ): Breast and blood from human speci-

mens are mixed in three different proportions and each of the mixtures is mea-

sured three times, with a total of nine samples.

• CellLines [2] (GEO ID: GSE11058 ): Mixture of human cell lines Jurkat (T

cell leukemia), THP-1 (acute monocytic leukemia), IM-9 (B lymphoblastoid

multiple myeloma) and Raji (Burkitt B-cell lymphoma) in four different con-

centrations, each of which is repeated three times, resulting in a total of 12

samples.
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• LiverBrainLung [165] (GEO ID: GSE19830 ): This dataset contains three

different rat tissues, namely brain, liver, and lung tissues, which are mixed in

11 different concentrations with each mixture having three technical replicates,

for a total of 33 samples.

• RatBrain [101] (GEO ID: GSE19380 ): This contains four different cell-types,

namely rat’s neuronal, astrocytic, oligodendrocytic and microglial cultures, and

two replicates of five different mixing proportions, for a total of 10 samples.

• Retina [166] (GEO ID: GSE33076 ): This dataset pools together retinas from

two different mouse lines and mixed them in eight different combinations and

three replicates for each mixture, resulting in a total of 24 samples.

Mixtures With Available Cell-sorting Data Through Flow-cytometry

For this experiment, I use two datasets available from Qiao et al. [148]. I di-

rectly download these datasets from the supplementary material of the paper. These

datasets are post-processed by the supervised normalization of microarrays (SNM)

method to correct for batch effects. Raw expression profiles are also available for

download under GEO ID GSE40830. This dataset contains two sub-datasets:

• PERT Uncultured: This dataset contains uncultured human cord blood mono

nucleated and lineage depleted (Lin-) cells on the first day.

• PERT Cultured: This dataset contains culture-derived lineage-depleted hu-

man blood cells after four days of cultivation.

Table 5.1 summarizes overall statistics related to each of these datasets.

5.2.2 Deconvolution: Formal Definition

I introduce formalisms and notation used in discussing different aspects of in silico

deconvolution of biological signals. I focus on models that assume linearity, that is,
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Table 5.1: Summary statistics of each dataset for deconvolution

Dataset # features # samples # references

BreastBlood 54675 9 2

CellLines 54675 12 4

LiverBrainLung 31099 33 3

PERT Cultured 22215 2 11

PERT Uncultured 22215 4 11

RatBrain 31099 10 4

Retina 22347 24 2

the expression signature of the mixture is a weighted sum of the expression profile for

its constitutive cell-types. In this case, sources are cell-type specific references and

the mixing process is determined by the relative fraction of cell-types in the mixture.

I first introduce the mathematical constructs used:

• M ∈ Rn×p: Mixture matrix, where each entry M(i, j) represents the raw ex-

pression of gene i, 1 ≤ i ≤ n, in heterogeneous sample j, 1 ≤ j ≤ p. Each

sample, represented by m, is a column of the matrix M, and is a combination

of gene expression profiles from constituting cell types in the mixture.

• H ∈ Rn×r: Reference signature matrix for the expression of primary cell types,

with multiple biological/technical replicates for each cell-type. In this matrix,

rows correspond to the same set of genes as in M, columns represent repli-

cates and there is an underlying grouping among columns that collects profiles

corresponding to the same cell-type.

• G ∈ Rn×q: Reference expression profile, where the expression of similar cell-

types in matrix H is represented by the average value.
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• C ∈ Rq×p: Relative proportions of each cell-type in the mixture sample. Here,

rows correspond to cell-types and columns represent samples in mixture matrix

M.

Using this notation, I can formally define deconvolution as an optimization prob-

lem that seeks to identify “optimal” estimates for matrices G and C, denoted by Ĝ

and Ĉ, respectively. Since G and/or C are not known a priori, I use an approxi-

mation that is based on the linearity assumption. In this case, I aim to find Ĝ and

Ĉ such that their product is close to the mixture matrix, M. Specifically, given a

function δ that measures the distance between the true and approximated solutions,

also referred to as the loss function, I aim to solve:

min
0≤Ĝ,Ĉ

δ(ĜĈ,M) (5.1)

In partial deconvolution, either C or G, or their noisy representation, is known a

priori and the goal is to find the other unknown matrix. When matrix G, referred

to as the reference profile, is known, the problem is over-determined and I seek to

distinguish features (genes) that closely conform to the linearity assumption, from the

rest of the (variable) genes. In this case, I can solve the problem individually for each

mixture sample. Let us denote by m and ĉ the expression profile and estimated cell-

type proportion of a mixture sample, respectively. Then, I can rewrite Equation 5.1

as:

min
0≤ĉ

δ(Gĉ,m) (5.2)

This formulation is essentially a linear regression problem, with an arbitrary loss func-

tion. On the other hand, in the case of full deconvolution, I can still estimate C in a

column-by-column fashion. However, estimating G is highly under-determined and I

must use additional sources to restrict the search space. One such source of informa-

tion is the variation across samples in M, depending on the cell-type concentrations

in the latest estimated value of C. In general, most regression-based methods for full

deconvolution use an iterative scheme that starts from either noisy estimates of G

and C, or a random sample that satisfies given constraints on these matrices, and
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successively improves over this initial approximation. This iterative process can be

formalized as follows:

Ĉ ← argmin
0≤Ĉ

(δ(ĜĈ−M)) (5.3)

Ĝ ← (argmin
0≤Ĝ

(δ(ĈT ĜT −M)T ))T

Please note that the updating Ĝ is typically row-wise (for each gene), whereas updat-

ing Ĉ is column-wise (for each sample). Non-negative matrix factorization (NMF) is

a dimension reduction technique that aims to factor each column of the given input

matrix as a nonnegative weighted sum of non-negative basis vectors, with the num-

ber of basis vectors being equal or less than the number of columns in the original

matrix. The alternating non-negative least squares formulation (ANLS) for solving

NMF can be formulated using the framework introduced in Equation 5.3. There are

additional techniques for solving NMF, including the multiplicative updating rule and

the hierarchical alternating least squares (HALS) methods, all of which are special

cases of block-coordinate descent [91]. Two of the most common loss functions used

in NMF are the Frobenius and Kullback-Leibler (KL) divergence [91].

In addition to non-negativity (NN), an additional sum-to-one (STO) constraint is

typically applied over columns of the matrix Ĉ, or the sample-specific vector ĉ. This

constraint restricts the search space, which can potentially enhance the accuracy of

the results. It also simplifies the interpretation of values in ĉ as relative percentages.

Finally, another fundamental assumption that is mostly neglected in prior work is the

similar cell quantity (SCQ) constraint. The similar cell quantity assumption states

that all reference profiles and corresponding mixtures must be normalized to ensure

that they represent the expression level of the “same number of cells.” If this constraint

is not satisfied, differences in the cell-type counts directly affect concentrations by

rescaling the estimated coefficients to adjust for the difference.
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In this chapter, I focus on different loss functions (δ functions), as well as the

role of constraint enforcement strategies, in estimating ĉ. These constitute the key

building blocks of both partial and full deconvolution methods.

Choice of Objective Function

In linear regression, often a slightly different notation is used, which I describe

here. I subsequently relate it to the deconvolution problem. Given a set of samples,

{(xi, yi)}mi=1, where xi ∈ Rk and yi ∈ R, the regression problem seeks to find a

function f(x) that minimizes the aggregate error over all samples. Let us denote

the fitting error by ri = yi − f(xi). Using this notation, I can write the regression

problem as:

argmin
f∈F

m∑
i=1

L(ri) (5.4)

where the loss function L measures the cost of estimation error. I focus on the class

of linear functions, that is fw(x) = wTx, for which I have ri = yi − wTxi. In this

formulation, yi corresponds to the expression level of a gene in the mixture, vector

xi is the expression level of the same gene in the reference cell types, and w is the

fraction of each cell-type in the mixture. I can represent {xi}mi=1 in a compact form

by matrix X, in which row i corresponds to xi.

In cases where the number of parameters is greater than the number of samples,

minimizing Equation 5.4 directly can result in over-fitting. Furthermore, when fea-

tures (columns of X) are highly correlated, the solution may change drastically in

response to small changes in the samples, particularly among the correlated features.

This condition, known as multicollinearity, can result in inaccurate estimates, in which

coefficients of similar features are vastly different. To remedy these problems, I can

add a regularization term that incorporates additional constraints (such as sparsity
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or flatness) to enhance the stability of results. I re-write the problem with the added

regularizer as:

argmin
w∈Rk

{
m∑
i=1

L(yi −wTxi)︸ ︷︷ ︸
Overall loss

+ λR(w)︸ ︷︷ ︸
Regularizer

} (5.5)

where the λ parameter controls the relative importance of estimation error versus

regularization. There are different choices and combinations for the loss function L

and regularizer function R, which I describe in the following sections.

Choice of Loss Functions

There are a variety of options for suitable loss functions. Some of these functions

are known to be asymptotically optimal for a given noise density, whereas others may

yield better performance in practice when assumptions underlying the noise model

are violated. I summarize the most commonly used set of loss functions:

• If I assume that the underlying model is perturbed by Gaussian white noise,

the squared or quadratic loss, denoted by L2, is known to be asymptotically

optimal. This loss function is used in classical least squares regression and is

defined as:

L2(ri) = r2
i = (yi −wTxi)

2

• Absolute deviation loss, denoted by L1, is the optimal choice if noise follows a

Laplacian distribution. Formally, it is defined as:

L1(ri) = |ri| = |yi −wTxi|

Compared to L2, the choice of L1 is preferred in the presence of outliers, as it

is less sensitive to extreme values

• Huber’s loss function, denoted by L(M)
huber, is a parametrized combination of L1

and L2. The main idea is that L2 loss is more susceptible to outliers, while

it is more sensitive to small estimation errors. To combine the best of these
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two functions, I can define a half-length parameter M , which I use to transition

from L2 to L1. More formally:

L(M)
Huber(ri) =

r
2
i , if |ri| ≤M

M(2|ri| −M), otherwise

• The loss function used in support vector regression (SVR) is the ε-insensitive

loss, denoted by L(ε)
ε . Similar to Huber loss, there is a transition phase between

small and large estimation errors. However, ε-insensitive loss does not penalize

the errors that are smaller than a threshold. Formally, I define ε-insensitive loss

as:

L(ε)
ε (ri) = max(0, |ri| − ε)

=

0, if |ri| ≤ ε

|ri| − ε, otherwise

Figure 5.1 provides a visual representation of these loss functions, in which I use

M = 1 and ε = 1
2

for the Huber and ε-insensitive loss functions, respectively. Note

that for small residual values, |ri| ≤ M = 1, Huber and square loss are equivalent.

However, outside this region Huber loss becomes linear.

Choice of Regularizers

When the reference profile contains many cell-types that may not exist in mix-

tures, or in cases where constitutive cell-types are highly correlated, regularizing the

objective function can sparsify the solution or enhance the conditioning of the prob-

lem. I describe two commonly used regularizers here:

• The norm-2 regularizer is used to shrink the regression coefficient vector w to

ensure that it is as flat as possible. A common use of this regularizer is in



68

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

Residual

L
o

s
s

Comparisson of different loss functions (ε = 0.75, M = 1.00)

 

 

L1

L2

Huber

ε−insensitive

Figure 5.1.: Comparison of different loss functions



69

conjunction with L2 loss to remedy the multicollinearity problem in classical

least squares regression. This regularizer is formally defined as:

R2(w) =‖ w ‖2
2=

k∑
i=1

w2
i . (5.6)

• Another common regularizer is the norm-1 regularizer, which is used to enforce

sparsity over w. Formally, it can be defined as:

R1(w) =‖ w ‖1=
k∑
i=1

|wi|. (5.7)

In addition to these two regularizers, their combinations have also been introduced

in the literature. One such example is elastic net, which uses a convex combination

of the two, that is Relastic(w) = αR1(w) + (1−α)R2(w). Another example is group

Lasso, which, given a grouping G among cell-types, enforces flatness among members

of the group, while enhancing the sparsity pattern across groups. This regularizer

function can be written as Rgroup =
∑

Gi
L2(w(Gi)), where w(Gi) is the weight of

cell-types in the ith group.

Examples of Objective Functions Used In Practice

Ordinary Least Squares (OLS) The formulation of OLS is based on squared loss,

L2. Formally, I have:

minw{
m∑
i=1

L2(ri)} = minw{
m∑
i=1

(yi −wTxi)
2}

= minw ‖ y −Xw ‖2
2

where row i of the matrix X, also known as the design matrix, corresponds to

xi. This formulation has a closed form solution given by:

ŵ = (XTX)−1XTy

In this formulation, I can observe that norm-2 regularization is especially use-

ful in cases where the matrix X is ill-conditioned and near-singular, that is,
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columns are dependent on each other. By shifting XTX towards the identity

matrix, I ensure that the eigenvalues are farther from zero, which enhances the

conditioning of the resulting combination.

Ridge Regression One of the main issues with the OLS formulation is that the

design matrix, X, should have full column rank k. Otherwise, if I have highly

correlated variables, the solution suffers from the multicollinearity problem.

This condition can be remedied by incorporating a norm-2 regularizer. The

resulting formulation, known as ridge regression, is as follows:

minw{
m∑
i=1

L2(ri) + λR2(w)}

= minw ‖ y −Xw ‖2
2 +λ ‖ w ‖2

2

Similar to OLS, I can differentiate w.r.t. w to find the close form solution for

Ridge regression given by:

ŵ = (XTX + λI)−1XTy

Least Absolute Selection and Shrinkage Operator (LASSO) Combining the

OLS with a norm 1 regularizer, we have the LASSO formulation:

minw{
m∑
i=1

L2(ri) + λR1(w)}

= minw ‖ y −Xw ‖2
2 +λ ‖ w ‖1

This formulation is especially useful for producing sparse solutions by introduc-

ing zero elements in vector w. However, while being convex, it does not have a

closed form solution.

Robust Regression It is known that L2(r) is dominated by the largest elements

of the residual vector r, which makes it sensitive to outliers. To remedy this

problem, different robust regression formulations have been proposed that use
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alternative loss functions. Two of the best-known formulations are based on the

L1 and Lhuber loss functions. The L1 formulation can be written as:

minw{
m∑
i=1

L1(ri)} = minw{
m∑
i=1

|yi −wTxi|}

= minw ‖ y −Xw ‖1

However, for the Huber loss function, while it can be defined similarly, it is

usually formulated as an alternative convex Quadratic Program (QP):

minx,z,t{
1

2
‖ z ‖2

2 +M1T t}

Subject to:− t ≤ Xw − y − z ≤ t (5.8)

which can be solved more efficiently using the following equivalent QP variant

[116]:

minx,z,r,s{
1

2
‖ z ‖2

2 +M1T (r + s)}

Subject to:

Xw − y − z = r − s

0 ≤ r, s
(5.9)

In both of these formulations, the scalarM corresponds to half-length parameter

of the Huber’s loss function.

Support Vector Regression In machine learning, Support Vector Regression (SVR)

is a commonly used technique that aims to find a regression by maximizing the

margins around the estimated separator hyperplane from the closest data points

on each side of it. This margin provides the region in which estimation errors are

ignored. SVR has been recently used to deconvolve biological mixtures, where

it has been shown to outperform other methods [129]. One of the variants of
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SVR is ε-SVR, in which parameter ε defines the margin, or the ε-tube. The

primal formulation of ε-SVR with linear kernel can be written as [196]:

minw,ξ+i ,ξ
−
i
{1

2
‖ w ‖2

2 +C
m∑
i=1

(ξ+
i + ξ−i )}

Subject to:


yi −w · xi ≤ ε+ ξ+

i

−(ε+ ξ−i ) ≤ yi −w · xi

0 ≤ ξ+
i , ξ

−
i

(5.10)

in which, given the unit norm assumption introduced in Section 5.2.2, I assume

that b = 0. The dual problem for the primal in Equation 5.10 can be written

in matrix form as:

maxα+,α−

{
1T
(
(α+ −α−)� y

)
−ε1T (α+ +α−)

−(α+ −α−)TK(α+ −α−)
}

Subject to:

1T (α+ −α−) = 0

0 ≤ α+,α− ≤ C

(5.11)

In this formulation, 1 is a vector of all ones, � is the element-wise product, and

K is the kernel matrix defined as K = XXT . The dual formulation is often

used to solve ε-SVR, because it can be easily extended to use different kernel

functions to map xi to a d-dimensional non-linear feature space. Additionally,

when m� k, such as the case of high-dimensional feature spaces, it provides a

better way to solve the SVR problem. However, the primal problem provides a

more straightforward interpretation. In addition, in the case where k � m, it

provides superior performance. To show the similarity with Equation 5.5, I can

rewrite Equation 5.10 using the ε-insensitive loss function as follows:

minw{
m∑
i=1

Lε(yi −wTxi) + λR2(w)} (5.12)

where λ = 1
2C

[170].
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5.2.3 Overview of Prior In Silico Deconvolution Methods

A majority of existing deconvolution methods fall into two groups – they either

use a regression-based framework to compute G, C, or both; or perform statisti-

cal inference over a probabilistic model. Abbas et al. [2] present one of the early

regression-based methods for estimating C. This method is designed to identify cell-

type concentrations from a known reference profile of immune cells. Their method

is based on Ordinary Least Squares (OLS) regression and does not consider either

non-negativity or sum-to-one constraints explicitly, but rather it enforces these con-

straints implicitly after the optimization procedure. An extension of this approach is

proposed by Qiao et al. [148], which uses non-negative least squares (NNLS) to ex-

plicitly enforce non-negativity as part of the optimization. Gong et al. [61] present a

quadratic programming (QP) framework to explicitly encode both constraints in the

optimization problem formulation. They also propose an extension to this method,

called DeconRNASeq, which applies the same QP framework to RNASeq datasets.

More recently Newman et al. [129] propose robust linear regression (RLR) and ν-

SVR regression instead of L2 based regression, which is highly susceptible to noise.

Digital cell quantification (DCQ) [5] is another approach designed for monitoring the

immune system during infection. Compared to prior methods, DCQ forces sparsity

by combining R2 and R1 regularization into an elastic net. This regularization is

essential for successfully identifying the subset of active cells at each stage, given the

larger number of cell-types included in their panel (213 immune cell sub-populations).

In contrast to these techniques, Shen-Orr et al. [165] propose a method, call csSAM,

which is specifically designed to identify genes that are differentially expressed among

purified cell-types. The core of this method is regression over matrix C to estimate

matrix G.

Full regression-based methods correspond to unsupervised approaches in the sense

that they do not rely on either G or C. They are either fully ab initio, or they use

variations of block-coordinate descent to successively identify better estimates for
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both C and G [91]. Venet et al. [200] present one of the early methods in this class,

which uses an NMF-like method coupled with a heuristic to decorrelate columns of G

in each iteration. Repsilber et al. [154] propose an algorithm called deconf, which uses

alternating non-negative least squares (ANLS) for solving NMF, without the decor-

relation step of Vennet et al., while implicitly applying constraints on C and G at

each iteration. Inspired by the work of Pauca et al. on hyperspectral image deconvo-

lution [134], Zuckerman et al. [225] propose an NMF method based on the Frobenius

norm for gene expression deconvolution. They use gradient descent to solve for C

and G at each step, which converges to a local optimum of the objective function.

Given that the expression domain of cell-type specific markers is restricted to unique

cells in the reference profile, Gaujoux et al. [53] present a semi-supervised NMF (ss-

NMF) method that explicitly enforces an orthogonality constraint at each iteration

over the subset of markers in the reference profile. This constraint both enhances the

convergence of the NMF algorithm, and simplifies the matching of columns in the

estimated cell-type expression to the columns of the reference panel, G. The Digital

Sorting Algorithm (DSA) [222] works as follows: if concentration matrix C is known

a priori, it directly uses quadratic programming (QP) with added constraints on the

lower/upper bound of gene expressions to estimate matrix G. Otherwise, if fractions

are also unknown, it uses the average expression of given marker genes that are only

expressed in one cell-type, combined with the STO constraint, to estimate concentra-

tions matrix C first. Population-specific expression analysis (PSEA) [101] performs a

linear least squares regression to estimate quantitative measures of cell-type-specific

expression levels, in a similar fashion as the update equation for estimating Ĝ in

Equation 5.3. In cases where the matrix C is not known a priori, PSEA exploits the

average expression of marker genes that are exclusively expressed in one of the ref-

erence profiles as reference signals to track the variation of cell-type fractions across

multiple mixture samples.

More recently, a new class of methods, collectively referred to as convex analysis

of mixtures (CAM), have been proposed to directly infer marker genes from mixture
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profiles [25,187,207]. The CAM family of methods aim to use a geometric approach

to identify corners of the scatter simplex for mixed expression profiles. The key to the

success of these methods is a recently proven bijection between the scatter simplex of

mixed profiles and a transformed (rotated and compressed) version of the scatter sim-

plex for constituent cell types [207]. Following this, “marker genes” are concentrated

around the corners of this simplex. After identifying these semi-orthogonal markers,

one can recover cell type percentages using any of the marker-based methods men-

tioned above, such as PSEA [101] or DSA [222]. Similar techniques have been also

proposed earlier to infer tumor phylogeny using microarray measurements of tumor

populations [161].

In addition to regression-based methods, a large class of methods is based on prob-

abilistic modeling of gene expression. Erikkila et al. [47] introduce a method, called

DSection, which formulates the deconvolution problem using a Bayesian model. It

incorporates a Bayesian prior over the noisy observation of given concentration pa-

rameters to account for their uncertainty, and employs a MCMC sampling scheme

to estimate the posterior distribution of the parameters/latent variables, including G

and a refined version of C. The in-silico NanoDissection method [85] uses a classifi-

cation algorithm based on linear SVM coupled with an iterative adjustment process

to refine a set of provided, positive and negative, marker genes and infer a ranked list

of genome-scale predictions for cell-type-specific markers. Quon et al. [149] propose

a probabilistic deconvolution method, called PERT, which estimates a global, multi-

plicative perturbation vector to correct for the differences between provided reference

profiles and the true cell-types in the mixture. PERT formulates the deconvolution

problem in a similar framework as Latent Dirichlet Allocation (LDA), and uses the

conjugate gradient descent method to cyclically optimize the joint likelihood function

with respect to each latent variable/parameter. Finally, microarray microdissection

with analysis of differences (MMAD) [107] incorporates the concept of the effective

RNA fraction to account for source and sample-specific bias in the cell-type frac-

tions for each gene. They propose different strategies depending on the availability of
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Table 5.2: Best combination of choices for feature selection/regularization for different

datasets

Reference Name Method Loss Non-negativity Sum-to-one Regularizer

Abbas et al. (2009) LS Ordinary Least Squares (OLS) L2 Imp Imp -

Gong et al. (2011) QP Quadratic Programming L2 Exp Exp -

Qiao et al. (2012) NNLS Non-negative Least Squares (NNLS) L2 Exp Imp -

Altboum et al. (2014) DCQ Elastic Net L2 Imp Imp L1/L2

Newman et al. (2015) RLR Robust Linear Regression (RLR) Huber Imp Imp -

Newman et al. (2015) CIBERSORT ν-SVR ε-insensitive Imp Imp L2

x

additional data sources. In cases where no additional information is available, they

identify genes with the highest variation in mixtures as markers and assign them

to different reference cell-types using k-means clustering, and finally use these de

novo markers to compute cell-type fractions. MMAD uses a MLE approach over the

residual sum of squares to estimate unknown parameters in their formulation.

In this chapter I focus on partial deconvolution methods for recovering matrix C

using given reference profiles for constituent tissues/cell types. Table 5.2 summarizes

different combinations proposed in literature thus far. I cover all these configurations

here, as well as missing combinations that have not been studied in current literature.

5.2.4 Evaluation Measures

Let us denote the actual and estimated coefficient matrices by C and Ĉ , respec-

tively. I first normalize these measures to ensure each column sums to one. Then,

I define the corresponding percentages as P = 100 × Cnorm and P̂ = 100 × Ĉnorm.

Finally, let rjk = pjk − p̂jk be the residual estimation error of cell-type k in sample j.

Using this notation, I can define three commonly used measures of estimation error

as follows:
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1. Mean absolute difference (mAD): This is among the easiest measures to

interpret. It is defined as the average of all differences for different cell-type

percentages in different mixture samples. More specifically:

mAD =
1

p× q

p∑
j=1

q∑
k=1

|rjk|

2. Root mean squared distance (RMSD): This measure is one of the most

commonly used distance functions in the literature. It is formally defined as:

mAD =

√√√√ 1

p× q

p∑
j=1

q∑
k=1

r2
jk

3. Pearson’s correlation distance: Pearson’s correlation measures the linear

dependence between estimated and actual percentages. Let us vectorize per-

centage matrices as p = vec(P) and p̂ = vec(P̂). Using this notation, the

correlation between these two vectors is defined as:

ρp,p̂ =
cov(p, p̂)

σ(p)σ(p̂)
(5.13)

where cov and σ correspond to covariance and standard variation of vectors,

respectively. Finally, I define the correlation distance measure asR2D = 1−ρp,p̂.

5.2.5 Implementation

All codes and experiments have been implemented in Matlab. To implement differ-

ent formulations of the deconvolution problem, I used CVX, a package for specifying

and solving convex programs [1,63]. I used Mosek together with CVX, which is a high-

performance solver for large-scale linear and quadratic programs [126]. All codes and

datasets are freely available at github.com/shmohammadi86/DeconvolutionReview.
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5.3 Results and Discussion

I now present a comprehensive evaluation of various formulations for solving de-

convolution problems. Some of these algorithimic combinations have been proposed

in literature, while others represent new algorithmic choices. I systematically assess

the impact of these algorithmic choices on the performance of in-silico deconvolution.

5.3.1 Effect of Loss Function and Constraint Enforcement on Deconvolution Perfor-

mance

I perform a systematic evaluation of the four different loss functions introduced

in Section 5.2.2, as well as implicit and explicit enforcement of non-negativity (NN)

and sum-to-one (STO) constraints over the concentration matrix (Ĉ), on the overall

performance of deconvolution methods for each dataset. There are 16 configurations

of loss functions/constraints for each test case. Additionally, for Huber and Hinge

loss functions, where M and ε are unknown, I perform a grid search with 15 values in

multiples of 10 spanning the range {10−7, · · · , 107} to find the best values for these

parameters. In order to evaluate an upper bound on the “potential” performance of

these two loss functions, I use the true concentrations in each sample, c, to evaluate

each parameter choice. In practical applications, the RMSD of residual error between

m and Gĉ is often used to select the optimal parameter. This is not always in

agreement with the choice made based on known c.

For each test dataset, I compute the three evaluation measures defined in Sec-

tion 5.2.4. Additionally, for each of these measures, I compute an empirical p-value

by sampling random concentrations from a Uniform distribution and enforcing NN

and STO constraints on the resulting random sample. In my study, I sampled 10, 000

concentrations for each dataset/measure, which results in a lower bound of 10−4 on

the estimated p-values. Figure 5.2 presents the time each loss function takes to com-

pute per sample, averaged over all constraint combinations. The actual times taken

for Huber and Hinge losses are roughly 15 times those reported here, which is the
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Figure 5.2.: Average computational time for each loss function in different datasets

number of experiments performed to find the optimal parameters for these loss func-

tions. From these results, L2 can be observed to have the fastest computation time,

whereas LHuber is the slowest. Measures L1 and LHinge fit in between these two

extremes, with L1 being faster the majority of times. I can directly compare these

computation times, because I formulate all methods within the same framework; thus,

differences in implementations do not impact direct comparisons.

Computation time, while important, is not the critical measure in my evaluation.

The true performance of a configuration (selection of loss function and constraints)

is measured by its estimation error. In order to rank different configurations, I first

assess the agreement among different measures. To this end, I evaluate each dataset

as follows: for each experiment, I compute mAD,RMSD, and R2D independently.

Then, I use Kendall rank correlation, a non-parametric hypothesis test for statisti-

cal dependence between two random variables, between each pair of measures and

compute a log-transformed p-value for each correlation. Figure 5.3 shows the agree-

ment among these measures across different datasets. Overall, RMSD and mAD

measures show higher consistency, compared to R2D measure. However, the mAD
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Figure 5.3.: Agreement among different evaluation measures across different datasets

measure is easier to interpret as a measure of percentage loss for each configuration.

Consequently, I choose this measure for my evaluation in this study.

Using mAD as the measure of performance, I evaluate each configuration over

each dataset and sort the results. Figure 5.4 shows various combinations for each

dataset. The RatBrain, LiverBrainLung, BreastBlood, and CellLines datasets

achieve high performance. Among these datasets, RatBrain, LiverBrainLung, and

BreastBlood had the L2 loss function as the best configuration, with the CellLines

dataset being less sensitive to the choice of the loss function. Another surprising obser-

vation is that for the majority of configurations, enforcing the sum-to-one constraint

worsens the results. I investigate this issue in greater depth in Section 5.3.2.

For Retina, as well as both PERT datasets, the overall performance is worse

than the other datasets. In the case of PERT, this is expected, since the flow-sorted

proportions are used as an estimate of cell-type proportions. Furthermore, the refer-

ence profiles come from a different study and therefore have greater difference with

the true cell-types in the mixture. However, the Retina dataset exhibits unusually

low performance, which may be attributed to multiple factors. As an initial investi-

gation, I performed a quality control (QC) over different samples to see if errors are

similarly distributed across samples. Figure 5.6 presents per-sample error, measured
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Figure 5.5.: Overall performance of different loss function/constraints combinations

over all datasets (lower the better)

by mAD, with median and median absolute deviation (MAD) marked accordingly.

Interestingly, for the 4th, 6th, and 8th mixtures, the third replicate has much higher

error than the rest. In the expression matrix, I observed a lower correlation be-

tween these replicates and the other two replicates in the batch. Additionally, for the

7th mixture, all three replicates show high error rates. I expand on these results in
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Figure 5.6.: Sample-based error of the Retina dataset, based on L2 with explicit NN

and STO

later sections to identify additional reasons that contribute to the low deconvolution

performance of the Retina dataset.

Finally, I note that in all test cases the performance of L1,LHuber, and LHinge are

comparable, while LHuber and LHinge needed an additional step of parameter tuning.

Consequently, I only consider L1 as a representative of this “robust” group of loss

functions in the rest of my study.

5.3.2 Agreement of Gene Expressions With Sum-to-One (STO) Constraint

Considering the lower performance of configurations that explicitly enforce STO

constraints, I aim to investigate whether features (genes) in each dataset respect

this constraint. Under the STO and NN constraints, I use simple bounds for iden-

tifying violating features, for which there is no combination of concentration val-

ues that can satisfy both STO and NN. Let m(i) be the expression value of the

ith gene in the given mixture, and G(i, 1), · · · ,G(i, q) be the corresponding expres-

sions in different reference cell-types. Let Gmin(i) = min{G(i, 1), · · · ,G(i, q)} and

Gmax(i) = max{G(i, 1), · · · ,G(i, q)}. Given that all concentrations are bound be-
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tween 0 ≤ c(k) ≤ 1;∀1 ≤ k ≤ k, the minimum and maximum values that an

estimated mixture value for the ith gene can attain are Gmin(i) and Gmax(i), respec-

tively (by setting c(k) = 1 for min/max value, and 0 everywhere else). Using this

notation, I can identify features that violate STO as follows:

m(i) ≤ Gmin(i) ∀1 ≤ i ≤ n {Violating reference}

Gmax(i) ≤m(i) ∀1 ≤ i ≤ n {Violating mixture}

The first condition holds because expression values in reference profiles are so large

that I need the sum of concentrations to be lower than one to be able to match

the corresponding gene expression in the mixture. The second condition holds in

cases where the expression of a gene in the mixture is so high that I need the sum

of concentrations to be greater than one to be able to match it. In other words, for

feature i, these constraints identify extreme expression values in reference profiles and

mixture samples, respectively. Using these conditions, I compute the total number of

features violating STO condition in each dataset.

Figure 5.7 presents violating features in mixtures and reference profiles, averaged

over all mixture samples in each dataset. I normalize and report the percent of

features to account for differences in the total number of features in each dataset.

We first observe that for the majority of datasets, except Retina and BreastBlood,

the percent of violating features is much smaller than violating features in reference

profiles. These two datasets also have the highest number of violating features in

their reference profiles, summing to a total of approximately 60% of all features.

This observation is likely due to the normalization used in preprocessing microarray

profiles. Specifically, one must not only normalize M and G independently, but

also with respect to each other. I suggest using control genes that are expressed

in all cell-types with low variation to normalize expression profiles. A recent study

aimed to identify subsets of housekeeping genes in human tissues that respect these

conditions [45]. Another choice is using ribosomal proteins, the basic building blocks
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Figure 5.7.: Percent of features in each dataset that violate the STO constraint

of the cellular translation machinery, which are expressed in a wide range of species.

The Remove Unwanted Variation (RUV) [51] method is developed to remove batch

effects from microarray and RNASeq expression profiles, but also to normalize them

using control genes. A simple extension of this method can be adopted to solve the

normalization difference between mixtures and references.

Next, I evaluate how filtering these features affects deconvolution performance of

each dataset. For each case, I run deconvolution using all configurations and report

the change (delta mAD) independently. Figure 5.8 presents changes in the mAD es-

timation error after removing violating features in both m and G before performing

deconvolution. Similar to previous experiments, the Retina dataset exhibits widely

different behavior than the rest of the datasets. Removing this dataset from further

consideration, I find that the overall performance over all datasets improves, with the

exception of the RatBrain dataset. In the case of the RatBrain dataset, I hypoth-

esize that the initially superior performance can be attributed to highly expressed

features. These outliers, that happens to agree with the true solution, result in over-

fitting. Finally, I note a correlation between observed enhancements and the level of
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Figure 5.8.: Performance of deconvolution methods after removing violating features

violation of features in m. Consistent with this observation, I obtain similar results

when I only filter violating features from mixtures, but not reference profiles.

5.3.3 Range Filtering – Finding an Optimal Threshold

Different upper/lower bounds have been proposed in the literature to prefilter

expression values prior to deconvolution. For example, Gong et al. [61] suggest an ef-

fective range of [0.5, 5000], whereas Ahn et al. [4] observe an optimal range of [24−214].

To facilitate the choice of expression bounds, I seek a systematic way to identify an

optimal range for different datasets. Kawaji et al. [88] recently report on an exper-

iment to assess whether gene expression is quantified linearly in mixtures. To this

end, they mix two cell-types (THP-1 and HeLa cell-lines) and see if experimentally

measured expressions match with the computationally simulated datasets. They ob-

serve that expression values for microarray measurements are skewed for the lowly

expressed genes (approximately < 10). This allows us to choose the lower bound
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based on experimental evidence. In my study, I search for the optimal bounds over

a log2-linear space; thus, I set a threshold of 23 on the minimum expression values,

which is closest to the bound proposed by Kawaji et al. [88].

Choosing an upper bound on the expression values is a harder problem, since it

relates to enhancing the performance of deconvolution methods by removing outliers.

Additionally, there is a known relationship between the mean expression value and its

variance [188], which makes these outliers noisier than the rest of the features. This

becomes even more important when dealing with purified cell-types that come from

different labs, since highly expressed time/micro-environment dependent genes would

be significantly different than the ones in the mixture [148]. A simple argument is to

filter genes that the range of expression values in Affymetrix microarray technology is

bounded by 216 (due to initial normalization and image processing steps). Measure-

ments close to this bound are not reliable as they might be saturated and inaccurate.

However, practical bounds used in previous studies are far from these extreme values.

In order to examine the overall distribution of expression values, I analyze different

datasets independently. For each dataset, I separately analyze mixture samples and

reference profiles, encoded by matrices M and G, respectively. For each of these

matrices, I vectorize the expression values and perform kernel smoothing using the

Gaussian kernel to estimate the probability density function.

Figure 5.9a and Figure 5.9b show the distribution of log-transformed expression

values for mixtures and reference profiles, respectively. These expression values are

greater than my lower bound of 23. In agreement with my previous results, I observe

an unusually skewed distribution for the Retina dataset, which in turn contributes

to its lower performance compared to other ideal mixtures. Additionally, I observe

that approximately 80% of the features in this dataset are smaller than 23, which

are filtered and not shown in the distribution plot. For the rest of the datasets, in

both mixtures and references, I observe a bell-shaped distribution with most of the

features captured up to an upper bound of 28−210. Another exception to this pattern
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Figure 5.9.: Distribution of gene expression values for mixtures and references

is the CellLines dataset, which has a heavier tail than other datasets, especially in

its reference profile.

Next, I systematically evaluate the effect of range filtering by analyzing upper

bounds increasing in factors of 10 in the range {25, · · · , 216}. In each case, I remove

all features that at least one of the reference profiles or mixture samples has a value

exceeding this upper bound. Figure 5.10 illustrates the percent of features that are
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Figure 5.10.: Percent of covered features during range filtering

retained, as I increase the upper bound. As mentioned earlier, approximately 80%

of the features in the Retina dataset are lower than 23, which is evident from the

maximum percent of features left to be bounded by 20% in this figure. Additionally,

consistent with my previous observation over expression densities, more that 80% of

the features are covered between 28 − 210, except for the CellLine dataset.

Finally, I perform deconvolution using the remaining features given each upper

bound. The results are mixed, but a common trend is that removing highly expressed

genes decreases performance of ideal mixtures with known concentrations, while en-

hancing the performance of PERT datasets. Figure 5.11a and Figure 5.11b show the

changes in mAD error, compared to unfiltered deconvolution, for the PERT dataset.

In each case, I observe improvements up to 7 and 8 percent, respectively. The red

and green points on the diagram show the significance of deconvolution. Interestingly,

while both methods show similar improvements, all data points for cultured PERT

seem to be insignificant, whereas uncultured PERT shows significance for the majority

of data-points. This is due to the weakness of my random model, which is dependent

on the number of samples and is not comparable across datasets. Uncultured PERT

has twice as many samples as cultured PERT, which makes it less likely to have any
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Figure 5.11.: Performance of PERT datasets during range filtering

random samples achieving as good an mAD as the observed estimation error. This

dependency on the number of samples can be addressed by defining sample-based

p-values. Another observation is that for the uncultured dataset, all measures have

been improved, except L1 with explicit NN and STO constraints. On the other hand,

for the cultured dataset, both L1 and L2 with the explicit NN constraint perform

well, whereas implicitly enforcing NN deteriorates their performance. Cultured and

uncultured datasets have their peak at 210 and 212, respectively.

For the rest of the datasets, range filtering decreased performance in a majority

of cases, except the Retina dataset, which had an improved performance at 26 with

the best result achieved with L1 with both explicit NN and STO enforcement. This

changed the best observed performance of this datasest, measured as mAD, to be

close to 7. These mixed results make it harder to choose a threshold for the upper

bound, so I average results over all datasets to find a balance between improvements in

PERT and overall deterioration in other datasets. Figure 5.12 presents the averaged

mAD difference across all datasets. This suggests a “general” upper bound filter of

212 to be optimal across all datasets.

I use this threshold to filter all datasets and perform deconvolution on them. Fig-

ure 5.13 presents the dataset-specific performance of range filtering with fixed bounds,

measured by changes in the mAD value compared to the original deconvolution. As
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Figure 5.12.: Average performance of range filtering over all datasets

observed from individual performance plots, range filtering is most effective in cases

where the reference profiles differ significantly from the true cell-types in the mix-

ture, such as the case with the PERT datasets. In ideal mixtures, since cell-types

are measured and mixed at the same time/laboratory, this distinction is negligible.

In these cases, highly expressed genes in mixtures and references coincide with each

other and provide additional clues for the regression. Consequently, removing these

highly expressed genes often degrades the performance of deconvolution methods.

This generalization of the upper bound threshold, however, should be adopted with

care, since each dataset exhibits different behavior in response to range filtering. Ide-

ally, one must filter each dataset individually based on the distribution of expression

values. Furthermore, in practical applications, gold standards are not available to aid

in the choice of cutoff threshold.

I now introduce a new method that adaptively identifies an effective range for each

dataset. Figure 5.14 illustrates the log2 normalized value of maximal expression for

each gene in matrices M and G, sorted in ascending order. In all cases, intermediate

values exhibit a gradual increase, whereas the top and bottom elements in the sorted

list show a steep change in their expression. I aim to identify the critical points
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Figure 5.13.: Dataset-specific changes in the performance of deconvolution methods

after filtering expression ranges to fit within [23 − 212]

corresponding to these sudden changes in the expression values for each dataset. To

this end, I select the middle point as a point of reference and analyze the upper

and lower half, independently. For each half, I find the point on the curve that has

the longest distance from the line connecting the first (last) element to the middle

element. Application of this process over the CellTypes dataset is visualized in

Figure 5.15. Green points in this figure correspond to the critical points, which are

used to define the lower and upper bound for the expression values of this dataset.

I use this technique to identify adaptive ranges for each dataset prior to deconvolu-

tion. Table 5.3 summarizes the identified critical points for each dataset. Figure 5.16

presents the dataset-specific performance of each method after adaptive range filter-

ing. While in most cases the results for fixed and adaptive range filtering are com-

patible, and in some cases adaptive filtering gives better results, the most notable

difference is the degraded performance of LiverBrainLung, and, to some extent,

RatBrain datasets. To further investigate this observation, I examine individual

experiments for these datasets for fixed thresholds. Figure 5.17 illustrates individual

plots for each dataset. The common trend here is that in both cases range filtering,
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Figure 5.14.: Sorted log2-transformed gene expressions in different datasets
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Figure 5.15.: Example of adaptive filtering over the CellLines dataset

in general, degrades the performance of deconvolution methods for all configurations.

In other words, extreme values in these datasets are actually helpful in guiding the re-

gression, and any filtering negatively impacts performance. This suggests that range

filtering, in general, is not always helpful in enhancing the deconvolution performance,
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Table 5.3: Summary of adaptive ranges for each dataset for deconvolution

LowerBound UpperBound

BreastBlood 4.2842 9.4314

CellLines 5.2814 11.6942

LiverBrainLung 3.3245 9.9324

PERT Cultured 4.9416 10.9224

PERT Uncultured 5.1674 11.5042

RatBrain 3.3726 9.9698

Retina 2.4063 6.7499
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Figure 5.16.: Dataset-specific changes in the performance of deconvolution methods

after adaptive range filtering

and in fact in some cases; for example the ideal datasets such as LiverBrainLung,

RatBrain, and BreastBlood; it can be counterproductive.
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Figure 5.17.: Individual performance plots for range filtering in datasets which range

filtering exhibits negative effect on the deconvolution

5.3.4 Selection of Marker Genes – The Good, Bad, and Ugly

Selecting marker genes that uniquely identify a certain tissue or cell-type, prior to

deconvolution, can help in improving the conditioning of matrix G, thus improving

its discriminating power and stability of results, as well as decreasing the overall com-

putation time. A key challenge in identifying “marker” genes is the choice of method

that is used to assess selectivity of genes. Various parametric and nonparametric

methods have been proposed in literature to identify differentially expressed genes

between two groups [32,80] or between a group and other groups [195]. Furthermore,

different methods have been developed in parallel to identify tissue-specific and tissue-

selective genes that are unique markers with high specificity to their host tissue/cell

type [14, 22, 86, 124]. While choosing/developing accurate methods for identifying

reliable markers is an important challenge, an in-depth discussion of the matter is

beyond the scope of this article. Instead, I adopt two methods used in the literature.

Abbas et al. [2] present a framework for choosing genes based on their overall dif-

ferential expression. For each gene, they use a t-test to compare the cell-type with

the highest expression with the second and third highest expressing cell-type. Then,

they sort all genes and construct a sequence of basis matrices with increasing sizes.

Finally, they use condition number to identify an “optimal” cut among top-ranked
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genes that minimizes the condition number. Newman et al. [129] propose a modifi-

cation to the method of Abbas et al., in which genes are not sorted based on their

overall differential expression, but according to their tissue-specific expression when

compared to all other cell-types. After prefiltering differentially expressed genes, they

sort genes based on their expression fold ratio and use a similar cutoff that optimizes

the condition number. Note that the former method increases the size of the basis

matrix by one at each step, while the latter method increases it by q (number of

cell-types). The method of Newman et al. has the benefit that it chooses a similar

number of markers per cell-type, which is useful in cases where one of the references

has a significantly higher number of markers.

I implement both methods and assess their performance over the datasets. I ob-

serve slightly better performance with the second method and use it for the rest of

my experiments. Due to unexpected behavior of the Retina dataset, as well as a low

number of significant markers in all my trials, I eliminate this dataset from further

study. In identifying differentially expressed genes, a key parameter is the q-value

cutoff to report significant features. The distribution of corrected p-values exhibits

high similarity among ideal mixtures, while differing significantly in CellLines mix-

tures and both PERT datasets. I find the range of 10−3 − 10−5 to be an optimal

balance between these two cases and perform experiments to test different cutoff val-

ues. Figure 5.18 shows changes in the mAD measure after applying marker detection,

using a q-value cutoff of 10−3, which resulted in the best overall performance in my

study. I observe that the PERT Uncultured and LiverBrainLung datasets have

the highest gain across the majority of configurations, while BreastBlood and Rat-

Brain exhibit an improvement in experiments with L1 while their L2 performance

is greatly decreased. Finally, for the PERT Cultured and CellLines datasets, I

observe an overall decrease in performance in almost all configurations.

Next, I note that the internal sorting based on fold-ratio intrinsically prioritizes

highly expressed genes and is susceptible to noisy outliers. To test this hypothesis,

I perform a range selection using a global upper bound of 1012 prior to the marker
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Figure 5.18.: Effect of marker selection on the performance of deconvolution methods

selection method and examine if this combination can enhance my previous results.

I find the q-value threshold of 10−5 to be the better choice in this case. Figure 5.19

shows changes in performance of different methods when I prefilter expression ranges

prior to marker selection. The most notable change is that both the PERT Cultured

and the CellLines, which were among the datasets with the lowest performance in

the previous experiment, are now among the best-performing datasets, in terms of

overall mAD enhancement. I still observe a higher negative impact on L2 in this case,

but the overall amplitude of the effect has been dampened in both BreastBlood and

RatBrain datasets.

I note that there is no prior knowledge as to the “proper” choice of the marker

selection method in the literature and that their effect on the deconvolution perfor-

mance is unclear. An in-depth comparison of marker detection methods can benefit

future developments in this field. An ideal marker should serve two purpose: (i) be

highly informative of the cell-type in which it is expressed, (ii) shows low variance due

to spatiotemporal changes in the environment (changes in time or microenvironment).

Figure 5.20 shows a high-level classification of genes. An ideal marker is an invari-
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Figure 5.19.: Effect of marker selection, after range filtering, on the performance of

deconvolution methods

ant, cell-type specific gene, marked with green in the diagram. On the other hand,

variant genes, both universally expressed and tissue-specific, are not good candidates,

especially in cases where references are adopted from a different study. These genes,

however, comprise ideal subsets of genes that should be updated in full deconvolution

while updating matrix G, since their expression in the reference profile may differ

significantly from the true cell-types in the mixture. It is worth mentioning that

the proper ordering to identify best markers is to first identify tissue-specific genes

and then prune them based on their variability. Otherwise, when selecting invariant

genes, I may select many housekeeping genes, since their expression is known to be

more uniform compared to tissue-specific genes.

Another observation relates to the case in which groups of profiles of cell-types

have high similarity within the group, but are significantly distant from the rest. This

makes identifying marker genes more challenging for these groups of cell-types. An

instance of this problem is when I consider markers in the PERT datasets. In this

case, erythrocytes have a much larger number of distinguishing markers compared to



99

Figure 5.20.: High-level functional classification of genes

other references. This phenomenon is primarily attributed to the underlying similarity

between undifferentiated cell-types in the PERT datasets, and their distance from

the fully differentiated red blood cells. In these cases, it is beneficial to summarize

each group of similar tissues using a “representative profile” for the whole group, and

to use a hierarchical structure to recursively identify markers at different levels of

resolution [124].

Finally, I examine the common choice of condition number as the optimal choice

to select the number of markers. First, unlike the “U” shape plot reported in previous

studies, in which condition number initially decreases to an optimal point and then

starts increasing, I observe variable behavior in the condition number plot, both for

Newman et al. and Abbas et al. methods. This makes the generalization of condition

number as a measure applicable to all datasets infeasible. Additionally, I note that

the lowest condition number is achieved if G is fully orthogonal, that is GTG = κI for

any constant κ. By selecting tissue-selective markers, I can ensure that the product of

columns in the resulting matrix is close to zero. However, the norm-2 of each column

can still be different. I developed a method that specifically grows the basis matrix

by accounting for the norm equality across columns. I find that in all cases my basis

matrix has a lower condition number than both the Newman et al. and Abbas et

al. methods, but it did not always improve the overall performance of deconvolution
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methods using different loss functions. Further study on the optimal choice of the

number of markers is another key question that needs further investigation

5.3.5 To Regularize or Not to Regularize

I now evaluate the impact of regularization on the performance of different decon-

volution methods. To isolate the effect of the regularizer from prior filtering/feature

selection steps, I apply regularization on the original datasets. The R1 regularizer is

typically applied in cases where the solution space is large, that is, the total number of

available reference cell-types is a superset of the true cell-types in the mixture. This

type of regularization acts as a “selector” to choose the most relevant cell-types and

zero-out the coefficients for the rest of the cell-types. This has the effect of enforcing a

sparsity pattern. Datasets used in this study are all controlled benchmarks in which

references are hand-picked to match the ones in the mixture; thus, sparsifying the

solution does not add value to the deconvolution process. On the other hand, an R2

regularizer, also known as Tikhonov regularization, is most commonly used when the

problem is ill-posed. This is the case, for example, when the underlying cell-types

are highly correlated with each other, which introduces dependency among columns

of the basis matrix. In order to quantify the impact of this type of regularization

on the performance of deconvolution methods, I perform an experiment similar to

the one in Section 5.3.1 with an added R2 regularizer. In this experiment, I use L1

and L2 loss functions, as I previously showed that the performance of the other two

loss functions is similar to L1. Instead of using Ridge regression, I implement an

equivalent formulation, ‖ m − Gc ‖2 +λ ‖ c ‖1, which traces the same path but

has higher numerical accuracy. To identify the optimal value of the λ parameter that

balances the relative importance of solution fit versus regularization, I search over the

range of {10−7, · · · , 107}. It is notable here that when λ is close to zero, the solution

is identical to the one without regularization, whereas when λ → ∞ the deconvolu-
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tion process is only guided by the solution size. Similar to the range filtering step in

Section 5.3.3, I use the minimum mAD error to choose the optimal value of λ.

Figure 5.21 presents changes in mAD error, compared to original errors, after

regularizing loss functions with the R2 regularizer. From these observations, it ap-

pears that PERT Cultured has the most gain due to regularization, whereas for

PERT Uncultured, the changes are smaller. A detailed investigation, however,

suggests that in the majority of cases for PERT Cultured, the performance gain

is due to over shrinkage of vector c to the case of being almost uniform. Interest-

ingly, the choice of uniform c has lower mAD error for this dataset compared to most

other results. Overall, both of the PERT datasets show significant improvements

compared to the original solution, which can be attributed to the underlying simi-

larity among hematopoietic cells. On the other hand, an unexpected observation is

the performance gain over L1 configurations for the BreastBlood dataset. This is

primarily explained by the limited number of cell-types (only two), combined with

the similar concentrations used in all samples (only combinations of 67% and 33%).

To gain additional insight into the parameters used in each case during deconvo-

lution, I plot the optimal λ values for each configuration in each dataset. Figure 5.22

summarizes the optimal values of the λ parameter. Large values indicate a beneficial

effect for regularization, whereas small values are suggestive of negative impact. In

all cases where the overall mAD score has been improved, their corresponding λ pa-

rameter was large. However, large values of λ do not necessarily indicate a significant

impact on the final solution, as is evident in the CellLines and LiverBrainLung

datasets. Finally, we observe that cases where the value of λ is close to zero are

primarily associated with the L2 loss function.

5.3.6 Putting it All Together

Having analyzed each individual aspect that impacts the performance of the decon-

volution process, in this section I put all of the pieces together and evaluate the overall



102

−1

0

1

2

3

4

5

6

7

8

9

 

 

B
re

as
tB

lo
od

C
el

lL
in

es

Liv
er

B
ra

in
Lung

PER
T_C

ultu
re

d

PER
T_U

ncu
ltu

re
d

R
at

B
ra

in

L2 (NN = Imp, STO = Imp)

L2 (NN = Imp, STO = Exp)

L2 (NN = Exp, STO = Imp)

L2 (NN = Exp, STO = Exp)

L1 (NN = Imp, STO = Imp)

L1 (NN = Imp, STO = Exp)

L1 (NN = Exp, STO = Imp)

L1 (NN = Exp, STO = Exp)

Figure 5.21.: Effect of L2 regularization on the performance of deconvolution methods
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performance over each dataset. I remove the Retina dataset from this study due to

the observed discrepancies. For the remaining six datasets, I assess performance of

both L1 and L2 objectives with different combinations of NN/STO enforcement, for

a total of eight configurations. For each configuration, I use my previous results to

determine proper feature selection, i.e. whether or not to remove violating features

and/ or to select marker genes. Finally, I note that my results in Section 5.3.5, while

instructive, are not directly applicable here due to differences in the selected subset

of genes. Thus, for each configuration, I rerun the experiment without regularization,

as well as with regularization with λ ∈ {10−7, . . . , 107}.

Table 5.4 summarizes the settings used to solve each instance. There are some

general patterns to note here. First, for the RatBrain dataset, I are at the lowest

attainable mAD error, and neither removing violating features, nor selecting markers

can boost this. For this dataset, mAD is significantly lower than the rest of datasets.

This is likely due to the existence of highly expressed genes that just happen to align,

with low variation, between reference profiles and mixtures. This, however, has the

potential downfall of overfitting, in which case, the best configurations identified in

this dataset are not generalizable to other datasets.

Next, I observe that in a majority of cases, filtering violating features, on average,

either decreases mAD error or at least it does not increase it, with the previously

mentioned exception of RatBrain. Similarly, selecting marker genes, combined with

range filtering, in most cases improves deconvolution results, except in RatBrain and

BreastBlood. For the BreastBlood dataset, I argue that the quality of selected

markers might be affected because I only have two cell-types, but this needs further

validation. Finally, I note either marker selection or range filtering alone performs

much worse than combining them together.

The final results of my experiments, before and after feature selection/ regulariza-

tion, are shown in Figure 5.23. Shaded bars correspond to the original performance

for each configuration, and colored bars are the final mAD errors computed. Interest-

ingly, after suitable feature selection, the results for most of the datasets are within
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similar error ranges, approximately within the range of [5 − 7] mAD. Furthermore,

L2 seems to perform equally as good as L1, given the proper subspace of genes to

perform deconvolution in, if not better. This is consistent with my understanding,

since L2 has higher sensitivity compared to L1. Even in both PERT datasets, I ob-

served only minor differences between these two objectives. Furthermore, Loss2 has

much more efficient solvers compared to L1. Thus, in general I recommend using L2,

and to only resort to L1 if L2 does not perform well. However, I can not generalize

this claim to all datasets. In cases with high level of noise and/ or imperfect marker

selection, Loss1 still makes a better choice. Finally, contrary to traditional wisdom,

I observe a dataset-dependency for the effect of constraint enforcement. That is, ex-

plicitly encoding all constraints in the objective function does not always enhance the

quality of final results. A deeper understanding of this observation can guide one to

choosing the right formulation for the problem at hand.

5.3.7 Summary

Based on my observations, I propose the following guidelines for the deconvolution

of expression datasets:

1. Preprocess reference profiles and mixtures using invariant, universally expressed

(housekeeping) genes to ensure that the similar cell quantity (SCQ) constraint

is satisfied.

2. Filter violating features that cannot satisfy the sum-to-one (STO) constraint.

3. Filter lower and upper bounds of gene expressions using adaptive range filtering.

4. Select invariant (among references and between references and samples) cell-

type-specific markers to enhance the discriminating power of the basis matrix.

5. Solve the regression using the L2 loss function, together with an R2 regularizer,

or group LASSO if sparsity is desired among groups of tissues/cell-types.
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Table 5.4: Best combination of choices for feature selection/regularization for different

datasets

Loss Function L2 L1

Non-negativity + - + -

Sum-to-One - + - + - + - +

BreastBlood Remove violating features Yes Yes Yes Yes Yes Yes Yes Yes

Filter markers/range No No No No No Yes No Yes

Best lambda 0 0.001 1E-06 1 10000000 100000 10000000 100000

CellLines Remove violating features No Yes No Yes No No No No

Filter markers/range Yes Yes Yes Yes Yes Yes Yes Yes

Best lambda 0.0001 10 100 10 10 10000 0.001 10000

LiverBrainLung Remove violating features Yes Yes Yes Yes Yes No Yes No

Filter markers/range No Yes No Yes Yes Yes Yes Yes

Best lambda 10000 10000 10000 10000 1000 1000 1000 0.0001

PERT Cultured Remove violating features No No Yes Yes Yes Yes Yes Yes

Filter markers/range Yes Yes Yes Yes Yes Yes Yes Yes

Best lambda 10000 10000 1000 1000 10000 100000 10000 10000

PERT Uncultured Remove violating features No Yes Yes Yes Yes Yes Yes No

Filter markers/range Yes Yes Yes Yes Yes Yes Yes No

Best lambda 1000 1000 1000 1000 10000 10000 1000 100000

RatBrain Remove violating features No No No No No No No No

Filter markers/range No No No No Yes Yes No No

Best lambda 0.1 100 1000 1000 1E-06 0.001 100000 100000

6. Use the L-curve method to identify the optimal balance between the regression

fit and the regularization penalty.
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6 CONSTRUCTING CELL TYPE SPECIFIC INTERACTOMES

6.1 Background

Proteins are basic workhorses of living cells. Their overall quantity is tightly reg-

ulated across different tissues and cell-types to manifest tissue-specific biology and

pathobiology. These regulatory controls orchestrate cellular machinery at different

levels of resolution, including, but not limited to, gene regulation [62,120], epigenetic

modification [24, 121], alternative splicing [19, 46], and post-translational modifica-

tions [77, 194]. Transcriptional regulation is a key component of this hierarchical

regulation, which has been widely used to study context-specific phenotypes. In the

context of human tissues/ cell-types, genes can exhibit varying levels of specificity

in their expression. They can be broadly classified as: (i) tissue-specific (unique to

one cell-type); (ii) tissue-selective (shared among coherent groups of cell-types); and

(iii) housekeeping (utilized in all cell-types). Tissue-specific/selective genes have sig-

nificant applications in drug discovery, since they have been shown to be more likely

drug targets [40]. Tissue-specific transcription factors (tsTFs) are significantly im-

plicated in human diseases [123, 150], including cancers [197]. Finally, disease genes

and protein complexes tend to be over-expressed in tissues in which defects cause

pathology [103].

The majority of human proteins do not work in isolation but take part in path-

ways, complexes, and other functional modules. Tissue-specific proteins are known

to follow a similar trend. Perturbations that impact interacting interfaces of proteins

are significantly enriched among tissue-specific, disease-causing variants [155,157,208].

This emphasizes the importance of constructing tissue-specific interactomes and their

constitutive pathways for understanding mechanisms that differentiate cell-types and

make them uniquely susceptible to tissue-specific disorders. Prior attempts at re-
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constructing human tissue-specific interactomes rely on a set of “expressed genes” in

each tissue, and use this set as the baseline of transcriptional activity. The node

removal (NR) method [16] constructs tissue-specific interactomes by identifying the

induced subgraph of the expressed genes. Magger et al. [115] propose a method called

“Edge ReWeighting (ERW)”, which extends the NR method to weighted graphs. This

method penalizes an edge once, if one of its end-points is not expressed, and twice, if

both end-points are missing from the expressed gene-set.

While these methods have been used to study tissue-specific interactions, their

underlying construction relies only on the immediate end-points of each interaction

to infer tissue-specificity. Furthermore, they threshold expression values, often using

ad-hoc choices of thresholds to classify genes as either expressed or not. Finally, it is

hard to integrate expression datasets from multiple platforms, or from multiple labs,

into a single framework. These constraints are primarily dictated by limitations of

high-throughput technologies for assaying gene expression. In these technologies, one

can easily compare expression of the same gene across different samples to perform

differential analysis; however, expression of different genes in the same sample are

not directly comparable due to technical biases, differences in baseline expression,

and GC content of genes. A recently proposed method, Universal exPression Code

(UPC) [143], addresses many of these issues by removing platform-specific biases and

converting raw expressions to a unified transcriptional activity score. These scores

are properly normalized and can be compared across different genes and platforms.

Leveraging the UPC method, I propose a novel approach that uses the topological

context of an interaction to infer its specificity score. my approach formulates the

inference problem as a suitably regularized convex optimization problem. The objec-

tive function of the optimization problem has two terms – the first term corresponds

to a diffusion kernel that propagates activity of genes through interactions (network

links). The second term is a regularizer that penalizes differences between transcrip-

tional and functional activity scores. I use these functional activity scores to compute

tissue-specificity for each edge in the global interactome, which I show, through a
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number of validation tests, are significantly better than prior methods. my method is

widely applicable and can be applied directly to single-channel, double-channel, and

RNA-Seq expression datasets processed using UPC/SCAN. Furthermore, it can be

easily adapted to cases where expression profiles are only available in preprocessed

form.

The rest of this chapter is organized as follows: In Section 6.2.1 I provide details

of the datasets used in my study. Next, I introduce a new method method, called

Activity Propagation (ActPro), and provide a consistent notation to formalize previ-

ous methods. I evaluate the effectiveness of UPC transcriptional activity scores to

predict tissue-specific genes in Section 6.3.1. Details of procedure for constructing

tissue-specific networks and their parameter choices are discussed in Section 6.3.2.

Section 6.3.3 provides qualitative assessment of my tissue-specific networks, whereas

Sections 6.3.4-6.3.6 present validation studies for tissue-specific interactions using

known pathway edges, co-annotation of proteins, and GWAS disease genes. Finally,

in Section 6.3.7, I use the brain-specific interactome constructed using my method

to identify novel disease-related pathways and use them to identify candidate targets

for neurodegenerative disorders.

6.2 Materials and Methods

6.2.1 Datasets

I downloaded the RNASeq dataset version 4.0 (dbGaP accession phs000424.v4.p1 )

from the The Genotype-Tissue Expression (GTEx) project [6, 120]. This dataset

contains 2,916 samples from 30 different tissues/cell types, the summary of which

is presented in Figure 6.1. I processed each sample using the UPC method [143],

a novel platform-independent normalization technique that corrects for platform-

specific technical variations and estimates the probability of transcriptional activ-

ity for each gene in a given sample. The benefit of this method is that activation

probability scores are highly consistent across different technologies, and more im-
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Figure 6.1.: Summary of GTEx sample numbers per tissue
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portantly, they are comparable across different genes in a given sample. For each

gene, I recorded the transcript with the highest activation probability in the sample.

Finally, I averaged replicate samples within each group to construct a unique tran-

scription signature vector for each tissue/ cell type. The final dataset contains the

expression value of 23,243 genes across 30 different tissues/ cell types.

In addition, I extracted human protein-protein interactions from the iRefIndex

database [152], which consolidates protein interactions from different databases. Edges

in this dataset are weighted using an MI (MINT-Inspired) score, which measures the

confidence of each interaction based on three different evidence types, namely (i)

the interaction types (binary/complex) and experimental method used for detection,

(ii) the total number of unique PubMed publications reporting the interaction, and

(iii) the cumulative evidence of interlogous interactions from other species. Finally,

I map transcription data to the human interactome by converting all gene IDs to

Entrez Gene IDs and only retaining genes that both have a corresponding node in

the interactome and have been profiled by the GTEx project. This yields a global in-
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teractome with 147,444 edges, corresponding to protein-protein interactions, between

14,658 nodes, representing gene products.

6.2.2 Constructing Human Tissue-specific Interactome

The global human interactome is a superset of all possible physical interactions

that can take place in the cell. It does not provide any information as to which

interactions actually occur in a given context. There are a variety of factors, including

co-expression of genes corresponding to a pair of proteins, their co-localization, and

post-translational modification, that mediate protein interactions at the right time

and place. Quantifiable expression of both proteins involved in an interaction is one of

the most important factors that determine the existence of an interaction. Different

methods have been proposed in literature to utilize this source of information to

construct human tissue-specific interactomes. Here, I briefly review existing methods,

their drawbacks, and propose a new method, called Activity Propagation (ActPro),

which addresses noted shortcomings.

Previous Methods

Let us denote the adjacency matrix of the global interatome by A, where element

aij is the weight (confidence) of the edge connecting vertices vi and vj. Let z encode

expression of genes in a tissue and z be the binarized version of z for a fixed threshold.

Finally, let diag operator applied to a given vector be the diagonal matrix with the

vector on the main diagonal. my aim is to compute a matrix Â, which is the adjacency

matrix of the tissue-specific interactome for a given expression profile. Using this

notation, I can summarize prior methods for constructing tissue-specific interactomes

as follows.
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• Node Removal (NR) This method computes the induced subgraph of the

“expressed” gene products [16].

Â = diag(z) ∗A ∗ diag(z) (6.1)

• Edge Re-Weighting (ERW) This method penalizes edges according to the

expression state (active/ inactive) of its end points [115]. Given a penalty

parameter 0 ≤ rw ≤ 1, ERW penalizes each edge by rw once, if only one of its

end-points is active, and twice, if both incident vertices are inactive. Formally:

Â = diag(rw(e−z)) ∗A ∗ diag(rw(e−z)) (6.2)

where e is the vector of all ones.

Proposed Method

The main assumption of ERW and NR methods is that transcriptional activity

of a gene is a reliable proxy for its functional activity. While this holds in a majority

of cases, there are situations in which these scores differ significantly. First, the basis

for transcriptional activity estimation is that genes with higher expression levels have

higher chance of being functionally active in a given context. While this is generally

true, there are genes that only need a low expression level to perform their function;

i.e., their functionally active concentration is much lower than the rest of genes.

Second, there is noise associated with measurement of gene expression, and converting

measured expression values to UPC scores can over/ under-estimate transcriptional

activity. Finally, we note that there are genes whose down-regulation corresponds to

their functional activity (as opposed to the other way around).

Based on these observations, I propose a novel framework, called Activity Prop-

agation (ActPro) to identify the most functionally active subnetwork of a given in-

teractome. my method incorporates global network topology to propagate activity

scores, while simultaneously minimizing the number of changes to the gene activity
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scores. To this end, I first define a smoothed functional activity score defined by the

following optimization problem:

x∗ = argmin
x

{
α

|E|
xLx+

(1− α)

|V |
‖ x− z ‖1

}

Subject to:

1Tx = 1

0 ≤ x
(6.3)

In this problem, L is the Laplacian matrix, defined as A−∆, where element δii of ∆

is the weighted degree of ith vertex in the global interactome. The Laplacian operator

L acts on a given function defined over vertices of a graph, such as x, and computes

the smoothness of x over adjacent vertices. More specifically, we can expand the

first term in Equation 6.3 as
∑

i,j wi,j(xi − xj)2, which is the accumulated difference

of values between adjacent nodes scaled by the weight of the edge connecting them.

This term defines a diffusion kernel that propagates activity of genes through network

links. The second term is a regularizer, which penalizes changes by enforcing sparsity

over the vector of differences between transcriptional and functional activities. This

minimizes deviation from original transcriptome. It should be noted here that use

of norm-1 is critical, since norm-2 regularization blends the transcriptional activity

scores and significantly reduces their discriminating power. This negative aspect of

norm-2 minimization is confirmed by my experiments. Finally, constraint 1Tx = 1

is known as the fixed budget. It ensures that vector x is normalized and bounded.

Parameter α determines the relative importance of regularization versus loss. We can

equivalently define a penalization parameter λ = 1−α
α

, which is the standard notation

in optimization framework. This problem is a classical convex optimization problem

and we can solve it using efficient solvers to identify its global optimum.

After solving Equation 6.3, I first scale x∗ by |V |. These scores are centered

around 1, which allows us to perform minimal changes to the weight of interactions

in the global interactome. Using these smoothed activity scores, I can re-weight the

global human interactome as follows:

Â = diag(x∗) ∗A ∗ diag(x∗) (6.4)
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We can also derive an alternative formulation for ActPro which, instead of using

transcriptional activity scores computed by UPC, uses expression values computed

through more common methods such as RMA or MAS5.0 [108]. I call this method

penalty propagation, or PenPro for short. In this framework, computed expression

values are not directly comparable and I need to threshold them to classify genes

as either expressed or not. Using the same notation defined previously, I can define

functional activity scores by solving the following problem:

x∗ = argmin
x

{
α

|E|
xLx+

(1− α)

|V |
‖ x− z ‖1

}

Subject to:

1Tx = 1

0 ≤ x
(6.5)

The only difference here is that, instead of transcriptional activity vector z, I use

the binarized expression vector z. We observe similar performance for ActPro and

PenPro, with ActPro being marginally superior in all cases, and thus I will only

present results for ActPro.

6.2.3 Implementation Details

All codes used in my experiments have been implemented in Matlab. To solve the

convex problem in Equation 6.3, I used CVX, a package for specifying and solving

convex programs [63]. I used Mosek together with CVX, which is a high-performance

solver for large-scale linear and quadratic programs [126].

6.3 Results and Discussion

6.3.1 Transcriptional Activity Scores Predict Tissue-specificity of Genes

To validate the quality of UPC normalized expression values, I first analyze the

distribution of gene expressions across all tissues. Figure 6.2a shows the distribution of

transcriptional activities, averaged over all samples. The overall distribution exhibits
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a bimodal characteristic that has a clear separation point that distinguishes expressed

genes from others. I set a global threshold of 0.75 for identifying genes that are

expressed in each tissue. These genes are used in evaluating NR and ERW methods.

It should be noted that the distribution of UPC values vary across cell-types, as shown

in Figure 6.2b; however, the separation point is robust.
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Figure 6.2.: Distribution of UPC normalized gene expression values
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Expression value of genes across tissues can be classified as specific, selective, or

housekeeping. Housekeeping (HK) genes are ubiquitously expressed across all tissues

to perform core cellular functions. On the other hand, tissue specific/selective genes

are uniquely expressed in a given tissue context to perform tissue-specific functions.

These genes typically reside in the periphery of the network, are enriched among

signaling and cell surface receptors, and highly associated with the onset of tissue-

specific disorders [216]. Figure 6.3a shows the total number of genes identified in each

tissue as preferentially expressed (either specific or selective). Testis tissue exhibits

the largest number of preferentially expressed genes (I refer to these as markers), with

more that 1, 400 genes, while blood samples have the fewest markers with only ∼ 250

marker genes. In order to assess whether the sets of preferentially expressed genes can

predict tissue-specific functions, I performed GO enrichment analysis over different

sets of tissue-specific markers using GOsummaries package in R/Bioconductor [95].

This package uses g:Profiler [153] as backend for enrichment analysis and provides a

simple visualization of the results as a word cloud. The coverage of available anno-

tations for different tissues is not uniform; that is, some tissues are better annotated

for specific terms than the others. I chose six well-annotated tissues with high, mid,

and low number of identified markers for further study. I limited terms to the ones

with at least 20 and at most 500 genes to avoid overly generic/specific terms. Finally,

I used a strong hierarchical filtering to remove duplicate GO terms and thresholded

terms at p-value of 0.05. Figure 6.3b shows the enrichment word-cloud for each tissue.

It can be seen that all terms identified here are highly tissue-specific and represen-

tative of main functions for each tissue, which supports the validity of computed

transcriptional activity scores from UPC.

6.3.2 Constructing Tissue-specific Interactomes

Node Removal (NR) and Edge ReWeighting (ERW) methods need a predefined

set of expressed genes in each tissue to construct tissue-specific interactomes (or a
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given lower bound to threshold expression values). I use the set of all genes with

transcriptional activity greater than or equal to 0.75 as the set of expressed genes

for these methods. I chose this threshold based on the averaged distribution of gene

expressions, as well as further manual curation of genes at different thresholds.

Node Removal (NR) method is known to disintegrate the network with stringent

expression values [115]. To evaluate the performance of NR over different expression

thresholds and assess its sensitivity to the choice of threshold, I computed the size

of largest connected components, while varying the value of expression threshold.

Figure 6.4 shows stable behavior up to threshold value of 0.75, after which the size of

largest component exhibit a rapid shift and the network starts to disintegrate. This

suggests that the expression value of 0.75 is also the optimal topological choice for

NR method.

For the ActPro algorithm, I evaluated the results over three different values of α

in set {0.15, 0.5, 0.85} and reported the result for each case.

6.3.3 Qualitative Characterization of Tissue-specific Interactomes

A key feature of tissue specific networks is their ability to discriminate positive

edges that manifest in each tissue from the entire set of potential interactions in the

global interactome. In case of Node Removal (NR) and Edge ReWeighting (ERW)

methods, it is easy to distinguish positive and negative edges: every edge for which at

least one of the endpoints is not expressed can be classified as a negative edge. The

latter method updates edge weights, to account for expression of their end-points,

whereas the former method sets a hard threshold to either include an edge or not.

In the case of ActPro, I first notice that the distribution of edge weights is very

different between ActPro and previous methods. Whereas NR and ERW methods

never increase the weight of an edge, in ActPro edge weights can increase or decrease.

This behavior, however, is biased towards the positive end. To decompose each

network into its HK, positive, and negative subspaces, I use the following strategy:
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for each tissue-specific network constructed by a given method, I first compute the

relative weight change between the global interactome and the tissue-specific network.

I then normalize these changes using Z-score normalization and define positive and

negative subspaces according to the sign of normalized relative changes. I further

define and separate HK edges as the subset of positive edges that are positive in at

least half of the tissues. Figure 6.5 summarizes the average statistics for constructed

networks using different methods. As a general observation, ActPro classifies fewer

interactions as housekeeping and provides more specific positive and negative edges.

Furthermore, as I increase the α parameter, representing the diffusion depth, we

observe that these edges are more evenly distributed across vertices. To give a concrete

example, I constructed the brain-specific network using ERW and ActPro methods.

Figure 6.6 illustrates the final statistics of the constructed networks. Consistent with

the average statistics, I observe much smaller positive/negative nodes/edges in ERW.

6.3.4 Tissue-specific Interactome Predicts Context-sensitive Interactions in Known

Functional Pathways

To evaluate the power of tissue-specific interactions in capturing context-sensitive

physical interactions in known pathways, I first use Edge Set Enrichment Analysis

(ESEA) to rank pathway edges according to their gain/loss of mutual information

in each tissue context [69]. ESEA aggregates pathways from seven different sources

(KEGG; Reactome; Biocarta, NCI/Nature Pathway Interaction Database; SPIKE;

HumanCyc; and Panther) and represents them as a graph with edges corresponding

to biological relationships, resulting in over 2,300 pathways spanning 130,926 aggre-

gated edges. It then uses an information-theoretic measure to quantify dependencies

between genes based on gene expression data and ranks edges, accordingly. Formally,

for each pathway edge, ESEA computes the differential correlation score (EdgeScore)

as follows:

EdgeScore = MIall(i, j)−MIcontrol(i, j) (6.6)
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where MIall is the mutual information of the gene expression profiles for genes i and

j across all cell-types. Here, MIcontrol measures the mutual information only in the

given tissue context. Each edge can be classified as either a gain of correlation (GoC),

loss of correlation (LoC), or no change (NC) depending on the value of EdgeScore.

I use GoC edges, that is, a pair of genes with positive gain of mutual information in

the tissue context, as true positive edges in each tissue. Similarly, I use all positive

edges in all tissues but the tissue of interest as true negatives.

To assess agreement between ESEA scores over known pathway edges and com-

puted tissue-specific interactions, I rank all edges according to the difference of their

weights in the human tissue-specific interactome compared to the global interactome

and evaluate the enrichment of true positive pathway edges among top-ranked edges.

I compute the receiver operating characteristic (ROC) curve for each tissue and av-

erage the area under the curve (AUC) gain, compared to random baseline, over all

tissues. Figure 6.7 presents the relative performance of each method. All three con-

figurations of the ActPro algorithm are ranked at the top of the list – demonstrating

the superior performance of my proposed method.

To further investigate tissue-specific details for the top-ranked method, ActPro

with α = 0.15, I sorted AUC gain for each tissue, shown in Figure 6.8. This plot ex-

hibits high level of heterogeneity, and surprisingly, four of the tissues had worse than

random performance. This was consistent across all of the methods. To further un-

derstand this, I investigated the ranked list of edges and identified a high enrichment

of edges with LoC among top-ranked edges. I performed enrichment analysis over

these negative edges and identified significant tissue-specific functions among them,

which suggests that the poor observed performance for these tissues is attributed to

their misclassification as negative edges.

At the other end of the spectrum, Fallopian Tube, Vagina, and Cervix Uteri had

consistently high AUC gain across different methods. Figure 6.9 shows the ROC

curve for these tissues.
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6.3.5 Tissue-specific Interactions are Enriched among Proteins with Shared Tissue-

specific Annotations

I hypothesize that tissue-specific edges are enriched with proteins that participate

in similar tissue-specific functions. To evaluate my hypothesis, I collected a set of

manually curated tissue-specific Gene Ontology (GO) annotations from a recent study

[64]. I mapped tissues to GTEx tissues and identified tissue-specific GO annotations

for genes in each tissue-specific interactome. I excluded tissues with less that 100

edges with known annotations. This resulted in 10 tissues, Adipose Tissue, Blood

Vessel, Blood, Brain, Breast, Heart, Kidney, Lung, and Muscle, for which I had

enough annotations. I use the same strategy employed in previous section to identify

the mean gain of AUC for each method, which is illustrated in Figure 6.10. It should

be noted that the gain of AUC is much smaller here than the case with ESEA edges,

which can be attributed to the sparsity of tissue-specific GO annotations. Unlike

ESEA, ActPro with α = 0.5 outperforms the case with α = 0.15.

Among the ten tissues, Adipose and Muscle tissues performed marginally better

than the others with AUC of 0.59 and 0.58, respectively. On the other hand, Lung

tissue had the worst performance with lower than random AUC of 0.47.

6.3.6 Tissue-specific Interactions Densely Connect Genes Corresponding to Tissue-

specific Disorders

Disease genes are densely connected to each other in the interactome, which pro-

vides the basis for a number of methods for network-based disease gene prioritiza-

tion [94]. Tissue-specific interactomes have been shown to have higher accuracy in

predicting disease-related genes using the random-walk method [115]. More recently,

Cornish et al. [33] used the concept of “geneset compactness”, and showed that the av-

erage distance among nodes corresponding to a given disorder is significantly smaller

in tissue-specific networks, compared to an ensemble of random graphs.
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Here, I adopt this concept to measure how closely tissue-specific genes related

to human disorders are positioned in networks constructed using different methods.

First, I use a symmetric diffusion process instead of Random-Walk with Restart

(RWR), which is a better measure of distance. Second, I use an alternative random

model in which I hypothesize that genes corresponding to tissue-specific disorders are

strongly connected to each other, compared to random genesets of the same size.

To validate my hypothesis, I gather genes corresponding to tissue-specific disor-

ders from a recent study [73]. These genes are extracted from the GWAS Catalog by

mapping known associations to disease-specific loci. Among a total of 99 disorders, I

focused on the gold standard set of 29 diseases with at least 10 high-quality primary

targets. I successfully mapped 27 of these diseases to GTEx tissues, which are used

for the rest of my study. Consistent with previous studies [115], I observed a small

subset of disease genes not to be expressed in the tissue in which they cause pathol-

ogy. Among all disease genes, I only retained genes that are connected in the global

interactome and are expressed above 0.1 UPC score.

For a given tissue-specific interactome represented by its adjacency matrix, AT ,

I define a stochastic matrix S = ∆−
1
2 AT∆−

1
2 , where ∆ is the diagonal matrix, with

entries δii being the degree of node i in the human tissue-specific interactome. Using

this matrix, I can compute degree-weighted random-walk scores among gene pairs as:

P = (1− α)(I− αS)−1 (6.7)

I define the random-walk distance as dij = −log10(pij), after replacing zero elements

of P with ε = 2−52. Given a disease geneset Γ, I measure its compactness as the

normalized average of distances for all pairs of nodes in the geneset:

κΓ =

∑
i 6=j∈Γ dij(|Γ|

2

) (6.8)

Finally, I sampled without replacement, 100K vertex samples of size |Γ| from the

tissue-specific interactome and computed the compactness for each of the samples,

individually. I defined an empirical p-value as the fraction of random instances with
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higher compactness (lower κ) compared to Γ. I removed disorders for which none

of the methods yield significant p-value given a threshold of 0.05. The final dataset

consists of 15 diseases with significantly compact interactions. To combine the p-

values for different disorders, I use the Edgington method [44]. This method gathers

a statistic S =
∑k

i=1 pi for a set of k given p-values, and computes the meta p-value

by assigning significance to S as:

bSc∑
j=0

−1j
(
k

j

)
(S − j)k

k!
(6.9)

The list of all individual and combined p-values is shown in Table 6.1. In these ex-

periments, ActPro (α = 0.85) had the most significant results, closely followed by

ActPro (α = 0.5). This suggests that propagating information using diffusion kernel

in ActPro enhances its prediction power for tissue-specific pathologies. Furthermore,

there are four diseases for which the global interactome had more significant pre-

dictions compared to tissue-specific networks, among which primary biliary cirrhosis

and psoriasis had the highest difference. This difference may be attributed to mis-

classification of disease/ tissue in Himmelstein et al. [73], or existence of cross tissue

mechanisms of action for the disease.

6.3.7 Tissue-specific Interactome Identifies Novel Disease-related Pathways – Case

Study in Neurodegenerative Disorders

I now investigate whether tissue-specific interactomes can help in predicting novel

pathways that are involved in the progression of neurodegenerative disorders. I per-

form a case study of Alzheimer’s and Parkinson’s diseases, both of which were among

disorders with high compactness in brain tissue. I use Prize-Collecting Steiner Tree

(PCST) algorithm to identify the underlying pathway among disease-genes identified

by GWAS studies. Formally, PCST problem can be formulated as:

argmin
<v,e>∈T

{∑
e

ce − λ
∑
v

bv

}
, (6.10)
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Table 6.1: Compactness of tissue specific disease genes in their tissue-specific inter-

actome

global ActPro 0.15 ActPro 0.50 ActPro 0.85 ERW NR

Alzheimer’s disease 4.12E-3 6.96E-3 5.98E-3 5.44E-3 5.32E-3 9.60E-2

breast carcinoma 1.83E-3 1.11E-3 8.40E-4 8.30E-4 4.09E-3 8.15E-2

chronic lymphocytic leukemia 8.20E-4 7.40E-4 4.80E-4 5.10E-4 8.50E-4 2.94E-2

coronary artery disease 3.95E-1 1.58E-1 1.09E-1 1.03E-1 1.33E-1 1.93E-2

Crohn’s disease 2.56E-2 1.93E-2 1.50E-2 1.44E-2 8.54E-2 4.14E-1

metabolic syndrome X 1.11E-2 1.09E-2 1.07E-2 1.12E-2 1.02E-1 7.39E-1

Parkinson’s disease 1.59E-2 1.25E-2 9.89E-3 9.50E-3 1.34E-2 9.62E-2

primary biliary cirrhosis 7.20E-4 1.32E-3 3.16E-3 3.40E-3 2.80E-2 6.86E-1

psoriasis 2.10E-4 1.10E-3 1.16E-3 9.50E-4 4.67E-3 3.24E-1

rheumatoid arthritis 1.70E-2 9.28E-3 1.06E-2 1.10E-2 6.39E-2 3.61E-1

systemic lupus erythematosus 4.98E-2 1.19E-2 7.56E-3 7.22E-3 2.55E-3 1.60E-4

type 1 diabetes mellitus 2.64E-2 3.01E-2 2.38E-2 2.40E-2 2.64E-1 9.39E-1

type 2 diabetes mellitus 1.57E-3 2.90E-4 2.40E-4 1.80E-4 5.60E-4 7.90E-3

vitiligo 1.17E-3 2.13E-3 3.04E-3 3.54E-3 1.84E-2 5.69E-1

schizophrenia 3.47E-1 2.13E-1 1.93E-1 1.84E-1 1.40E-1 4.10E-2

combined 1.53E-13 1.24E-17 6.62E-19 3.70E-19 9.03E-14 2.43E-03

where T is an induced tree of the given graph, v and e are the set of vertices and

edges in T , respectively, ce is the cost of choosing edge e, and bv is the reward/prize

of collecting node v. Similar methods have been proposed previously to connect

upstream signaling elements to downstream transcriptional effector genes [190,191].

To identify disease-related pathways, I first prune non-specific interactions in the

network by removing vertices that have more than 500 interactions. I transform edge

confidence values (conductances) to edge penalties (resistances) by inverting each edge

weight. Node prizes are defined as the ratio of their incident edges that fall within

disease-related genes to the total degree of a node. I assigned a node prize of 1,000

to disease genes to ensure that they are selected as terminal nodes. Finally, I use a

recent message passing algorithm [8] to identify PCST rooted at each disease-related

gene and choose the best tree as the backbone of the disease-related pathway. Over
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each node, I use a maximum depth of 4 and λ = 1 as parameters to the message

passing algorithm. Figure 6.11 shows final tissue-specific pathways for Alzheimer’s

and Parkinson’s diseases.

Alzheimer’s disease (AD) network contains two distinct subnetworks, one centered

around CLTC and the other centered around ABL1. PICALM, CLU, APOE, and

SORL1 are all known genes involved in AD, which are also involved negative regulation

of amyloid precursor protein catabolic process. All four of these genes converge on

CLCT gene, but through different paths. PICALM gene is known to play a central

role in clathrin-related endocytosis. This protein directly binds to CLTC and recruits

clathrin and adaptor protein 2 (AP-2) to the plasma membrane [21]. On the other

hand, CLU, APOE, and SORL1 are linked to the CLTC through novel linker genes

XRCC6, MAPT/BIN1 and GG2A/HGS, respectively. Gamma-adaptin gene, GGA2,

binds to clathrins and regulates protein traffic between the Golgi network and the

lysosome. This network is postulated to be an important player in AD [21]. HGS gene

is a risk factor age-related macular degeneration (AMD) and has been hypothesized

to be a shared factor for AD [111]. Interestingly, MAPT, a novel marker identified

in this study, is a risk factor for Parkinson’s disease and very recently shown to

also be linked to AD [38]. A second component in AD network is centered around

ABL1 gene, which, together with CBL, INPPL1, CD2AP, and MAPT share the

SH3 domain binding function. INPPL1 gene, a metabolic syndrome risk factor, has

been hypothesized to link AD with the recently posed term “type 3 diabetes” [3].

Finally, we note that MAPT gene is one of the central genes that links these two

main components, the role of which warrants further investigation.

Parkinson’s disease (PD) network, on the other hand, contains one densely con-

nected core centered around MAPT gene. There are two main branches converging

on MAPT. On the left, WNT3, FZD1, and GSK3B constitute upstream elements

of the WNT signaling pathway, which is known to play an important role in PD

neurodegeneration [12]. GSK3 gene product is postulated to directly interact with

MAPT (τ) and LRKK2, while implicitly regulating SNCA (α-Syn) in a β-cat depen-
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dent manner. However, we observed direct interaction between GSK3B and SNCA,

and parallel pathways connecting it to LRRK2 via SNCA and MAPT. Both SNCA

and MAPT also take part in the right branch, together with CAV1 and RHOA,

which is enriched in reactive oxygen species metabolic process. Accumulation of ROS

contributes to mitochondrial dysfunction and protein misfolding, both of which are

linked to progression of PD. RIT2 enzyme is identified independently and confirmed

as PD susceptibility factor [133]. Pankratz et al. also suggested CALM1 as the

bridge linking RIT2 with MAPT and SNCA, which confirms my findings. Cyclin G

associated kinase (GAK ) is a known risk factor for PD. I identified HSPA8 as a key

link between GAK, WNT signaling pathway, and CSNK1E with central PD genes,

MAPT, SNCA, and LRRK2. HSPA8 gene has been proposed as a biomarker for diag-

nosis of PD [105]. Finally, myelin basic protein (MBP) interacts closely with CALM1

and LRRK2. This gene has been previously shown to be differentially expressed in

PD and proposed as potential biomarker for PD [90].

In summary, I show that the brain-specific interactome derived from my method

helps in uncovering tissue-specific pathways that are involved in neurodegenerative

diseases. Similar analysis of other human tissues can potentially contribute to iden-

tification of new therapeutic targets for other human disorders.
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Figure 6.3.: Evaluation of tissue-specific markers using a threshold value of 0.75 to

define expressed genes.
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Figure 6.5.: Qualitative characteristics of tissue-specific interactomes constructed us-

ing different methods.
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Figure 6.8.: Performance of ActPro with α = 0.15 over different tissues
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Figure 6.10.: Mean gain of Area under the curve (AUC) for predicting proteins co-

annotated with tissue-specific functions
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Figure 6.11.: Tissue-specific pathways in human neurodegenerative disorders. Nodes

are colored according to their tissue-specific expressions, with novel identified genes

marked in red, accordingly. The thickness of edges represent their confidence with

tree edges marked as blue.
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7 CONSERVATION OF CELL TYPE-SPECIFIC NETWORKS

ACROSS SPECIES

7.1 Background

Budding yeast, S. cerevisiae, is widely used as an experimental system, due to its

ease of manipulation in both haploid and diploid forms, and rapid growth compared

to animal models. Coupled with the continuous development of new experimental

methodologies for manipulating various aspects of its cellular machinery, it has served

as the primary model organism for molecular and systems biology [17]. Motivated

by the availability of its full genome in 1996 as the first eukaryotic organism to be

sequenced [59], an array of functional genomics tools emerged, including a compre-

hensive collection of yeast deletion mutants [56, 211], genome-wide over-expression

libraries [84], and green fluorescent protein (GFP)-tagged yeast strains [55, 76]. The

maturity of yeast’s genetic and molecular toolbox has, in turn, positioned it as the

primary platform for development of many high-throughput technologies, including

transcriptome [29, 37, 104], proteome [224], and metabolome [81, 202] screens. These

-omic datasets, all originally developed in yeast, aim to capture dynamic snapshots

of the state of biomolecules during cellular activities. With the advent of “systems

modeling”, a diverse set of methods have been devised to assay the interactions,

both physical and functional, among different active entities in the cell, including

protein-protein [78, 98, 192], protein-DNA [79, 106], and genetic [34, 184, 185] inter-

actions. These interactions, also referred to as the interactome, embody a complex

network of functional pathways that closely work together to modulate the cellu-

lar machinery. Comparative analysis of these pathways relies on network alignment

methods, much the same way as sequence matching and alignments are used for in-

dividual genes and proteins. Network alignments use both the homology of genes, as
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well as their underlying interactions, to project functional pathways across different

species [97,99,163,167]. These methods have been previously applied to detection of

ortholog proteins, projection of functional pathways, and construction of phylogenetic

trees.

Yeast and humans share a significant fraction of their functional pathways that

control key aspects of eukaryotic cell biology, including the cell cycle [71], metabolism

[142], programmed cell death [20, 127], protein folding, quality control and degra-

dation [18], vesicular transport [15], and many key signaling pathways, such as

mitogen-activated protein kinase (MAPK) [26,209], target of rapamycin (TOR) [36],

and insulin/IGF-I [9] signaling pathways. In the majority of cases, yeast has been

the model organism in which these pathways were originally identified and studied.

These conserved biochemical pathways drive cellular growth, division, trafficking,

stress-response, and secretion, among others, all of which are known to be associ-

ated with various human pathologies. This explains the significant role for yeast as

a model organism for human disorders [140, 141, 168]. Yeast has contributed to my

understanding of cancers [66,138,139] and neurodegenerative disorders [89,137,182].

Having both chronological aging (amount of time cells survive in post-mitotic state)

and replicative aging (number of times a cell can divide before senescence occurs),

yeast is also used extensively as a model organism in aging research. It has con-

tributed to the identification of, arguably, more human aging genes than any other

model organism [112].

Depending on the conservation of the underlying pathways, there are two main

approaches to studying them in yeast. It has been estimated that, out of 2,271

known disease-associated genes, 526 genes (∼ 23%) have a close ortholog in the yeast

genome, spanning 1 out of every 10 yeast genes [50]. For these orthologous pairs of

disease-associated genes, I can directly increase the gene dosage of the endogenous

yeast protein by using overexpression plasmids, or decrease it, through either gene

knockout or knockdown experiments, in order to study gain- or loss-of-function phe-

notypes, respectively. A key challenge in phenotypic screens is that disrupting genes,
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even when they have close molecular functions, can result in characteristically differ-

ent organism-level phenotypes. Phenologs, defined as phenotypes that are related by

the orthology of their associated genes, have been proposed to address this specific

problem [119]. A recent example of such an approach is the successful identification

of a highly conserved regulatory complex implicated in human leukemia [178]. This

complex, named COMPASS (Complex of Proteins Associated with Set1), was origi-

nally identified by studying protein interactions of the yeast Set1 protein, which is the

ortholog of the human mixed-lineage leukemia (MLL) gene, and years later was shown

to be conserved from yeast to fruit flies to humans. On the other hand, if the disease-

associated gene(s) in humans does not have close orthologs in yeast, heterologous

expression of the human disease-gene in yeast, also referred to as “humanized yeast”,

can be used to uncover conserved protein interactions and their context, to shed light

on the molecular mechanisms of disease development and progression. For the major-

ity of disease-genes with known yeast orthologs, heterologous expression of the mam-

malian gene is functional in yeast and can compensate for the loss-of-function pheno-

type in yeast deletion strains [17]. This approach has already been used to construct

humanized yeast model cells to study cancers [66], apoptosis-related diseases [31], mi-

tochondrial disorders [147], and neurodegenerative diseases [137]. Perhaps one of the

more encouraging examples is the very recent discovery of a new compound, N-aryl

benzimidazole (NAB), which strongly protects cells from α-synuclein toxicity in the

humanized yeast model of Parkinson’s disease [180]. In a follow-up study, they tested

an analog of the NAB compound in the induced pluripotent stem (iPS) cells gen-

erated from the neuron samples of Parkinson’s patients with α-synuclein mutations.

They observed that the same compound can reverse the toxic effects of α-synuclein

aggregation in neuron cells [30]. Using this combined phenotypic screening, instead

of the traditional target-based approach, they were not only able to discover a key

compound targeting similar conserved pathways in yeast and humans, but also un-

cover the molecular network that alleviates the toxic effects of α-synuclein. These

humanized yeast models have also been used to study human genetic variations [41].
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Various successful instances of target identification, drug discovery, and disease

network reconstruction using humanized yeast models have established its role as a

model system for studying human disorders. When coupled with more physiologically

relevant model organisms to cross-validate predictions, yeast can provide a simple yet

powerful first-line tool for large-scale genetic and chemical screening [137,139]. How-

ever, as a unicellular model organism, yeast fails to capture organism-level phenotypes

that emerge from inter-cellular interactions. Perhaps, more importantly, it is unclear

how effectively it can capture tissue-specific elements that make a tissue uniquely sus-

ceptible to disease. All human tissues inherit the same genetic code, but they exhibit

unique functional and anatomical characteristics. Similar sets of molecular perturba-

tions can cause different tissue-specific pathologies given the network context in which

the perturbation takes place. For example, disruption of energy metabolism can con-

tribute to the development of neurodegenerative disorders, such as Alzheimer’s, in

the nervous system, while causing cardiomyopathies in muscle tissues [13]. These

context-dependent phenotypes are driven by genes that are specifically or preferen-

tially expressed in one or a set of biologically relevant tissue types, also known as

tissue-specific and tissue-selective genes, respectively. Disease genes, and their cor-

responding protein complexes, have significant tendencies to selectively express in

tissues where defects cause pathology [60, 103]. How tissue-selective pathways drive

tissue-specific physiology and pathophysiology is not completely understood; neither

is the extent to which I can use yeast as an effective model organism to study these

pathways.

I propose a quantitative framework to assess the scope and limitations of yeast

as a model organism for studying human tissue-specific pathways. This framework

is grounded in a novel statistical model for effectively assessing the similarity of each

tissue with yeast, considering both expressed genes and their underlying physical in-

teractions as a part of functional pathways. To understand the organization of human

tissues, I present a computational approach for partitioning the functional space of

human proteins and their interactions based on their conservation both across species
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and among different tissues. Using this methodology, I identify a set of core genes,

defined as the subset of the most conserved housekeeping genes between humans

and yeast. These core genes are not only responsible for many of the fundamental

cellular processes, including translation, protein targeting, ribosome biogenesis, and

mRNA degradation, but also show significant enrichment in terms of viral infectious

pathways. On the other hand, human-specific housekeeping genes are primarily in-

volved in cell-to-cell communication and anatomical structure development, with the

exception of mitochondrial complex I, which is also human-specific. Next, I identify

comprehensive sets of tissue-selective functions that contribute the most to the com-

puted overall similarity of each tissue with yeast. These conserved, tissue-selective

pathways provide a comprehensive catalog for which yeast can be used as an effective

model organism. Conversely, human-specific, tissue-selective genes show the highest

correlation with tissue-specific pathologies and their functional enrichment resembles

highly specific pathways that drive normal physiology of tissues.

Comparative analysis of yeast and human tissues to construct conserved and non-

conserved functional tissue-specific networks can be used to elucidate molecular/ func-

tional mechanisms underlying dysfunction. Moreover, it sheds light on the suitability

of the yeast model for the specific tissue/ pathology. In cases where suitability of

yeast can be established, through conservation of tissue-specific pathways in yeast, it

can serve as an experimental model for further investigations of new biomarkers, as

well as pharmacological and genetic interventions.

7.2 Materials and Methods

7.2.1 Datasets

Protein-protein Interaction (PPI) Networks

I adopted human tissue-specific networks from Bossi et al. [16]. They integrated

protein-protein interactions from 21 different databases to create the whole human
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interactome consisting of 80,922 interactions among 10,229 proteins. Then, they

extracted the set of expressed genes in each tissue from GNF Gene Atlas and used

it to construct the tissue-specific networks, defined as the vertex-induced subgraphs

of the entire interactome with respect to the nodes corresponding to the expressed

genes in each tissue.

Additionally, I obtained the yeast interactome from the BioGRID [175] database,

update 2011 [174], version 3.1.94, by extracting all physical interactions, exclud-

ing interspecies and self interactions. This resulted in a total of 130,483 (76,282

non-redundant) physical interactions among 5,799 functional elements in yeast (both

RNA and protein). Next, I downloaded the list of annotated CDS entries from the

Saccharomyces Genome Database (SGD) [28] and restricted interactions to the set of

pairs where both endpoints represent a protein-coding sequence, i.e., protein-protein

interactions. The final network consists of 71,905 interactions between 5,326 proteins

in yeast.

Protein Sequence Similarities Between Yeast and Humans

I downloaded the protein sequences for yeast and humans in FASTA format from

Ensembl database, release 69, on Oct 2012. These datasets are based on the GRCh37

and EF4 reference genomes, each of which contain 101,075 and 6,692 protein sequences

for H. Sapiens and S. Cerevisiae, respectively. Each human gene in this dataset has,

on average, 4.49 gene products (proteins). I identified and masked low-complexity

regions in protein sequences using pseg program [212]. The ssearch36 tool, from

FASTA [135] version 36, was then used to compute the local sequence alignment of

the protein pairs using the Smith-Waterman algorithm [169]. I used this tool with

the BLOSUM50 scoring matrix to compute sequence similarity of protein pairs in

humans and yeast. All sequences with E-values less than or equal to 10 are recorded

as possible matches, which results in a total of 664,769 hits between yeast and human

proteins. For genes with multiple protein isoforms, coming from alternatively spliced
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variants of the same gene, I only record the most significant hit. The final dataset

contains 162,981 pairs of similar protein-coding genes.

7.2.2 Sparse Network Alignment Using Belief Propagation

Analogous to the sequence alignment problem, which aims to discover conserved

genomic regions across different species, network alignment is motivated by the need

for extracting shared functional pathways that govern cellular machinery in different

organisms. The network alignment problem in its abstract form can be formulated

as an optimization problem with the goal of identifying an optimal mapping between

the nodes of the input networks, which maximizes both sequence similarity of aligned

proteins and conservation of their underlying interactions. At the core of every align-

ment method are two key components: i) a scoring function and ii) an efficient search

strategy to find the optimal alignment. The scoring function is usually designed to

favor the alignment of similar nodes, while simultaneously accounting for the number

of conserved interactions between the pair of aligned nodes. Biologically speaking,

this translates to identifying functional orthologs and interologs, respectively.

Given a pair of biological networks, G = (VG, EG) and H = (VH , EH), with

nG = |VG| and nH = |VH | vertices, respectively, we can represent the similarity

of vertex pairs between these two networks using a weighted bipartite graph L =

(VG ∗ VH , EL,w), where w : EL → R is a weight function defined over edges of

L. I will denote mapping between vertices vi ∈ VG and vi′ ∈ VH with (i, i′) and

ii′, interchangeably. Let us encode the edge conservations using matrix S, where

S(ii′, jj′) = 1, iff alignment of vi → vi′ together with vj → vj′ will conserve an

edge between graphs G and H , and S(ii′, jj′) = 0, otherwise. Then, the network



139

alignment problem can be formally represented using the following integer quadratic

program:

max
x

(αwTx+
β

2
xTSx) (7.1)

Subject to:

 Cx ≤ 1nG∗nH
Matching constraints;

xii′ ∈ {0, 1}, Integer constraint.

Here, C andw are the incidence matrix and edge weights of the graph L, respectively,

whereas x is the matching indicator vector. Vector w, which encodes the prior

knowledge of node-to-node similarity between the input pair of networks, defines the

search space of potential orthologs and can be computed using sequence, structural,

or functional similarity of the proteins corresponding to node pairs. In this study,

I chose sequence similarity of aligned protein sequences to assign edge weights in

the bipartite graph defined by L. When L is a complete bipartite graph, i.e. each

pair of vertices between G and H represents a viable ortholog candidate, I will have

S = G⊗H . However, Bayati et al. [10] recently proposed an efficient method, based

on the message passing algorithm, for cases whereL is sparse, i.e., |EL| << nG∗nH , by

restricting the search space to the subset of promising candidates that are provided

by EL. I will use this algorithm throughout this chapter for solving the network

alignment problem.

7.2.3 Tissue-specific Random Model (TRAM) for Generating Pseudo-random Tis-

sues

Let us denote the global human interactome by G = (VG, EG), and each tissue-

specific network by T = (VT , ET ), respectively. Using this notation, we have nT =

|VT |, VT ⊂ VG, and ET ⊂ EG is the subset of all edges from G that connect vertices

in VT , i.e., T is the vertex-induced subgraph of G under VT . This is the formal

description of the model used by Bossi et al. [16] to construct human tissue-specific

networks. Using this construction model, we note that every tissue-specific network

inherits a shared core of interactions among housekeeping genes that are universally
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expressed to maintain basic cellular functions. Let us denote this subset of genes by

VU ⊂ VT , having nU = |VU | members, and the corresponding induced core sub-graph

using U = (VU , EU ).

In this setting, I propose a new random model to explicitly mimic the topology

of tissue-specific networks. Formally, given each human tissue-specific network, I

seed an ensemble of pseudo-random tissues denoted by RT = G(VR, ER), in which

every instance shares two main characteristics from the original network: (i) the total

number of vertices, (ii) the shared core of housekeeping interactions. To summarize,

this random graph sampling scheme is as follows: first, I initialize the vertex set VR
using VU , which includes nU housekeeping genes. Next, to ensure that the newly

generated random instance has the same number of vertices as the seed network, we

sample nT − nU vertices without replacement from the remaining vertices, VG \ VU .

Finally, we construct the random graph as the vertex induced sub-graph of the global

human interactome imposed by VR.

It can be noted that my random model not only provides a pseudo-random net-

work seeded on each tissue-specific network, but also provides a node-to-node sim-

ilarity score between the newly generated graph and the yeast interactome. This

is a critical component of my framework, which distinguishes it from other random

graph models, such as Erdos-Renyi, network growth, or preferential attachment. The

only other effort to combine topology with the node-to-node similarity score is pro-

posed by Sahraeian et al. [158], which fits a gamma distribution over the the known

pairs of ortholog/ non-orthologs proteins in three species (according to their KEGG

pathways), and uses the fitted distribution to sample new sequence similarity scores.

However, this model does not benefit from the structural knowledge of the tissue-

specific networks. Moreover, its sequence similarity generation model loosely fits the

observed data and does not provide a fine-tuned model to assess the significance of

tissue-specific alignments. My model, one the other hand, is grounded in the same

construction model as the original tissue-specific networks, and provides enough se-
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lectivity to distinguish similarity/ dissimilarity of aligned networks with yeast and to

assign an empirical p-value to each alignment.

7.2.4 Significance of Network Alignments

For each optimal alignment of a human tissue-specific network with yeast, given by

its indicator variable x, I quantify the overall sequence similarity of aligned proteins

with the matching score of the alignment, ŵ = wTx, and the total number of con-

served edges by the alignment overlap, ô = 1
2
xTSx. These measures can be used to

rank different network alignments. However, without a proper reference to compare

with, it is almost impossible to interpret these values in a statistical sense. To ad-

dress this issue, I sample an ensemble of kR random networks from the tissue-specific

random model (TRAM), independently align each instance to the yeast interactome,

and empirically compute a topological, a homological (sequence-based), and a mixed

alignment p-value for each alignment using Monte-Carlo simulation.

Let ŵR and ôR be the random vectors representing the weight and overlap of

aligning random tissues with yeast, respectively. First, I define individual p-values

for the conservation of network topology and sequence homology. Let us denote by

k
(ŵ)
P and k

(ô)
P the number of random samples that have weight and overlap greater than

or equal to the original alignment, respectively. Then, we can define the following

p-values:

p− valhomolgy =
k

(ŵ)
P

kR
(7.2)

p− valtopology =
k

(ô)
P

kR
(7.3)

Before I define the mixed p-value, I define upper and lower bounds on the p-value.

These bounds are independent of the mixing parameter. For cases where both ô ≤

ôR(i) and ŵ ≤ ŵR(i), for 1 ≤ i ≤ kR, I can report that the random alignment is at

least as good as the original alignment. Conversely, if both ôR(i) < ô and ŵR(i) < ŵ ,

we can assert that the original alignment outperforms the random alignment. Let us
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denote the number of such cases by kP and kN , respectively. Using this formulation,

I can compute the following bounds on the mixed p-value of the alignment:

δR =
kP
kR
≤ alignment p-value ≤ 1− kN

kR
= ∆R (7.4)

Please note that ∆R and δR are not p-values themselves, rather, they represent α-

independent bounds on the mixed p-values. I can use these bounds to estimate

the similarity of each tissue-specific network to the yeast interactome. Tissues for

which the upper-bounds on the alignment p-value are smaller than a given threshold

αu are considered similar to yeast, while tissues with lower-bounds larger than αl

are considered dissimilar. For cases where the following conditions hold: ôR(i) < ô

and ŵ < ŵR(i), or ô < ôR(i) and ŵR(i) < ŵ , the p-values are α-dependent. To

quantify this ambiguity, I define the reliability of a p-value as kN+kP
kR

. When there

is no ambiguity, that is, both the homological and topological p-values of each case

are either concurrently significant or concurrently insignificant, the reliability score is

one. Otherwise, in cases where one of them is significant while the other is not, the

reliability score decreases, accordingly. Finally, I define an unadjusted mixed p-value

similar to the convex combination used in network alignment. Let us define a new

random variable ôwR = α ∗ ôR + β ∗ ŵR. Using this notation, I define the mixed

p-value as:

p− value = Prob(α ∗ ô + β ∗ ŵ ≤ ôwR) (7.5)

7.2.5 Differential Expression of Genes with Respect to a Group of Tissues

Given a homogenous group of human tissues/cell types, I first identify all expressed

genes in the group, i.e., all non-housekeeping genes that are expressed in at least one

of the tissue members. Next, in order to identify the subset of expressed genes that

are selectively expressed, I use a hypergeometric random model. A gene is identified

as selectively expressed if it is expressed in significantly higher number of tissues in

the given group than randomly selected tissue subsets of the same size. Let N and n

denote the total number of tissues in this study and the subset of tissues in the given
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group, respectively. Moreover, let us represent by cN the number of all tissues in

which a given gene is expressed, whereas cn similarly represents the number of tissues

in the given group that the gene is expressed. Finally, let the random variable X be

the number of tissues in which the gene is expressed, if we randomly select subsets

of tissues of similar size. Using this formulation, we can define the tissue-selectivity

p-value of each expressed gene in the given group as follows:

p-value(X = cn) = Prob(cn ≤ X)

= HGT (cn|N, n, cN)

=

min(cN ,n)∑
x=cn

C(cN , x)C(N − cN , n− x)

C(N, n)
(7.6)

In order to partition genes into selective and ubiquitous genesets, I derive the tissue-

selectivity p-value distribution of all expressed non-housekeeping genes in the given

group. I use the Gaussian kernel to smooth this distribution and then find the critical

points of the smoothed density function to threshold for tissue-selective genes. The

motivation behind my choice is that these points provide shifts in the underlying dis-

tribution, from tissue-selective to ubiquitous genes. Given the bi-modal characteristic

of the distribution, it has three expected critical points. I use the first of these points

as my cutoff point. This provides highest precision for declared tissue-selective genes,

but lower recall than the other two choices.

7.2.6 Conservation of Genesets Based on the Majority Voting Rule

Given a set of genes that are selectively expressed in a homogenous group of tis-

sues/cell types, I am interested in tri-partitioning them into either conserved, human-

specific, or unclassified genes. Conserved genes are the subset of tissue-selective genes

that are consistently aligned in majority of aligned tissues in the given group. Con-

versely, human-specific genes are the subset of tissue-selective genes that are consis-

tently unaligned in majority of tissues in the given group. Finally, unclassified genes
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are the subset of tissue-selective genes for which we do not have enough evidence to

classify them as either conserved or human-specific.

The key data-structure I use to tri-partition genesets is the alignment consistency

table. Let C be a group of homogenous tissues with n = |C|. Furthermore, let gTS
C

represent the set of tissue-selective genes with respect to C, such that kTS
C = |gTS

C |.

The alignment consistency table is a table of size kTS
C × n, represented by T TS

C , in

which T TS
C (i, j) is the aligned yeast partner of ith tissue selective gene under the

network alignment of jth tissue in C, or ′−′ (gap), if it is unaligned. I find the most

common partner for each tissue-selective gene and use a consensus rate, represented by

τ , to summarize each rows of the alignment consistency table. If a gene is consistently

aligned to the same yeast partner in at least τ ∗n tissues in C, I declare it as conserved.

Similarly, if it is unaligned in at least τ ∗n tissues in C, I classify it as human-specific.

If neither one of these conditions hold, I report it as unclassified.

7.3 Results and Discussion

In this section, I present a comparative framework for investigating the scope and

limitations of yeast as a model organism for studying tissue-specific biology in humans.

Figure 7.1 illustrates the high-level summary of my study design. We start by aligning

each of the human tissue-specific networks with the yeast interactome. I couple the

alignment module with a novel statistical model to assess the significance of each

alignment and use it to infer the respective similarity/ dissimilarity of human tissue-

specific networks with their corresponding counterparts in yeast. Using a network of

tissue-tissue similarities computed using their transcriptional profile, I show that my

network alignment p-values are consistent with groupings derived from transcriptional

signatures. I use this network of tissue similarities to identify four major groups of

tissues/ cell-types. These groups; representing brain tissues, blood cells, ganglion

tissues, and testis-related tissues; are further used to identify tissue-selective genes

that are active within each group compared to the rest of tissues.
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Figure 7.1.: Main components of the analysis framework for comparing yeast with

human tissue-specific interactome

I partition both housekeeping and tissue-selective subsets of human genes sepa-

rately into the conserved and human-specific subsections. I provide extensive valida-

tion for the selective genes with respect to blood cells and brain tissues. Figure 7.2

illustrates the overall partitioning of the genes and their relative subsets. I provide

an in-depth analysis of each of these subsets, and show that while conserved subsets

provide the safe zone for which yeast can be used as an ideal model organism, the

human-specific subset can shed light on the shadowed subspace of the human interac-

tome in yeast. This subset can provide future directions for constructing humanized

yeast models.
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Figure 7.2.: A high-level classification of human genes

7.3.1 Aligning Yeast Interactome with Human Tissue-specific Networks

The global human interactome represents a static snapshot of potential physical

interactions that can occur between pairs of proteins. However, it does not provide

any information regarding the spatiotemporal characteristics of the actual protein

interactions. These interactions have to be complemented with a dynamic context,

such as expression measurements, to help interpret cellular rewiring under different

conditions.

[16] overlaid the mRNA expression level of each transcript (transcriptome) in

different human tissues [177] on top of the global human interactome, integrated from

21 PPI databases, and constructed a set of 79 reference tissue-specific networks. I

adopt these networks and align each one of them separately to the yeast interactome

that I constructed from the BioGRID database.

In order to compare these human tissue-specific networks with the yeast interac-

tome, considering both the sequence similarity of proteins and the topology of their
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interactions, I employ a recently proposed sparse network alignment method, based

on the Belief Propagation (BP) approach. This method is described in the Materials

and methods section [10].

Genes, and their corresponding proteins, do not function in isolation; they form

a complex network of interactions among coupled biochemical pathways in order to

perform their role(s) in modulating cellular machinery. Moreover, each protein may

be involved in multiple pathways to perform a diverse set of functions. Using a

network alignment approach to project these pathways across species allows us to not

only consider their first-order dynamics, through co-expression of homologous protein

pairs, but also the context in which they are expressed.

To construct the state space of potential homologous pairs, we align all protein

sequences in human and yeast and pre-filter hits with sequence similarity E -values

greater than 10. For genes with multiple protein isoforms I only store the most

significant hit. Using these sequence-level homologies, I construct a matrix L that

encodes pairwise sequence similarities between yeast and human proteins. Entries

in matrix L can be viewed as edge weights for a bipartite graph connecting human

genes on one side, and the yeast genes, on the other side. I use this matrix to restrict

the search space of the BP network alignment method (please see Supplementary

Methods for details on E -value normalization and Materials and Methods section for

BP alignment method).

Parameters α and β(= 1 − α) control the relative weight of sequence similarity

(scaled by α) as compared to topological conservation (scaled by β) in the BP network

alignment. Using a set of preliminary simulations aligning the global human inter-

actome with its tissue-specific sub-networks, for which we have the true alignment,

with various choices of α in the range of 0.1 to 0.9, I identify the choices of α = 1
6

and β = 5
6

to perform the best in my experiments. I use the same set of parame-

ters to align each tissue-specific network with the yeast interactome, as it provides a

balanced contribution from sequence similarities and the number of conserved edges.
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7.3.2 Investigating Roles of Housekeeping Genes and their Conservation across Species

Housekeeping genes comprise a subset of human genes that are universally ex-

pressed across all tissues and are responsible for maintaining core cellular functions

needed by all tissues, including translation, RNA processing, intracellular transport,

and energy metabolism [23,39,172]. These genes are under stronger selective pressure,

compared to tissue-specific genes, and evolve more slowly [221]. As such, we expect

to see a higher level of conservation among human housekeeping genes compared with

yeast genes. I refer to the most conserved subset of housekeeping genes between hu-

mans and yeast, computed using network alignment of tissues-specific networks with

the yeast network, as the core genes.

I identify a gene as housekeeping if it is expressed in all 79 tissues. I identify a total

of 1,540 genes that constitute the shared section of human tissue-specific networks.

These genes, while having similar set of interactions among each other, are connected

differently to the set of tissue-selective genes.

Using the alignment partners of all housekeeping genes in the yeast interactome,

I construct an alignment consistency table of size 1, 540× 79, which summarizes the

network alignments over the shared subsection of tissue-specific networks. Then, I

use the majority voting method to classify housekeeping genes as core, which are

conserved in yeast, human-specific, which are consistently unaligned across human

tissues, and unclassified, for which we do not have enough evidence to classify it as

either one of the former cases.

Network alignments are noisy and contain both false-positive (defined as aligned

pairs that are not functionally related), as well as false-negatives (pairs of functional

orthologs that are missed in the alignment). These errors can come from different

sources, including gene expression data (node errors), interactome (edge errors), or

the alignment procedure (mapping errors). I propose a method based on majority

voting across different alignments to (partially) account for these errors. Given a

set of network alignments, I consider a pair of entities consistently aligned (either
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matched or unmatched) if they are consistent in at least 100 ∗ τ% of alignments in

the set. The parameter τ , called the consensus rate, determines the level of accepted

disagreement among different alignments. A higher value of consensus rate increases

the precision of the method at the cost of decreased sensitivity. In order to select the

optimal consensus rate parameter, I tried values in range [0.5− 1.0] with increments

of 1
2
. I identified the parameter choice of τ = 0.9, equivalent to 90% agreement among

aligned tissues, to perform the best in classifying human-specific and conserved genes,

while keeping the sets well-separated. Using this approach, I was able to tri-partition

1,540 housekeeping genes into 595 conserved, 441 human-specific, and 504 unclassified

genes, respectively.

In order to investigate the conserved sub-network of core genes, I construct their

alignment graph as the Kronecker product of the subgraph induced by core genes in

the human interactome and its corresponding aligned subgraph in yeast. Conserved

edges in this network correspond to interologs, i.e., orthologous pairs of interacting

proteins between yeast and human [217].
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Figure 7.3.: Alignment graph of core human genes
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Figure 7.3 shows the largest connected component of this constructed alignment

graph. I applied the MCODE [7] network clustering algorithm on this graph to

identify highly interconnected regions corresponding to putative protein complexes.

I identified five main clusters, which are color-coded on the alignment graph, and

are shown separately on the adjacent panels. Ribosome is the largest, central cluster

identified in the alignment graph of core genes, and together with proteasome and

spliceosome, constitutes the three most conserved complexes in the alignment graph.

This complex is heavily interconnected to the eIFs, to modulate eukaryotic translation

initiation, as well as proteasome, which controls protein degradation. Collectively,

these complexes regulate protein turnover and maintain a balance between synthesis,

maturation, and degradation of cellular proteins.

In order to further analyze the functional roles of these housekeeping genes, I

use the g:Profiler [153] R package to identify highly over-represented terms. Among

functional classes, I focus on the gene ontology (GO) biological processes, excluding

electronic annotations, KEGG pathways, and CORUM protein complexes to provide

a diverse set of functional roles. I use the Benjamini-Hochberg procedure to control

for false-discovery rate (FDR), with p-value threshold of α = 0.05, and eliminate

all enriched terms with more than 500 genes to prune overly generic terms. Using

this procedure, I identify enriched functional terms for both core and human-specific

subsets of housekeeping genes.

I manually group the most significant terms (p-value ≤ 10−10) in core genes,

which results in five main functional classes, namely ribosome biogenesis, translation,

protein targeting, RNA splicing, and mRNA surveillance. First, we observe a one-to-

one mapping between enriched terms and identified putative complexes corresponding

to translation initiation (p-value = 7.1∗10−17) and ribosome (p-value = 5.97∗10−11).

In addition, translation termination and elongation are also enriched with decreasing

levels of significance. Moreover, these processes are tightly linked to SRP-dependent

co-translational protein targeting (p-value = 2.7 ∗ 10−15). This, in turn, suggests

protein synthesis as one of the most conserved aspects of eukaryotic cells. Next, we
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note that both mRNA splicing (p-value = 7.04∗10−10) and nonsense-mediated decay

(p-value = 4.66∗10−16) are also enriched among the most significant functional terms,

which supports my earlier hypothesis related to the role of splicesome in the alignment

graph of core genes. Finally, I find that the most significant functional term, as well as

a few other related terms, are involved in viral infection, which suggests that (a subset

of the) core genes provides a viral gateway to mammalian cells. This can be explained

in light of two facts: i) viral organisms rely on the host machinery for their key cellular

functions, and ii) housekeeping genes are more ancient compared to tissue-selective

genes, and core genes provide the most conserved subset of these housekeeping genes.

As such, these genes may contain more conserved protein interaction domains and be

structurally more “familiar” as interacting partners for the viral proteins and provide

ideal candidates for predicting host-pathogen protein interactions.

Next, I perform a similar procedure for the human-specific housekeeping genes.

This subset, unlike core genes, is mostly enriched with terms related to anatomical

structure development and proximal cell-to-cell communication (paracrine signaling),

with the exception of complex I of the electron transport chain, which is the strongest

identified term. This NADH-quinone oxidoreductase is the largest of the five enzyme

complexes in the respiratory chain of mammalian cells. However, this complex is not

present in yeast cells and has been replaced with a single subunit NADH dehydro-

genase encoded by gene NDI1. Impairment of complex I has been associated with

various human disorders, including Parkinson’s and Huntington’s disease. Transfect-

ing complex I-defective cells with yeast NDI1 as a therapeutic agent has been proposed

as a successful approach to rescue complex I defects [118, 214]. This technique, also

known as NDI1 therapy, opens up whole new ways in which yeast can contribute to

the research and development on human diseases: not only yeast can be used as a

model organism, but also can provide candidates that can be used for gene therapy

in mammalian cells.

A key observation here is that the human-specific subset of housekeeping genes is

not only associated with fewer functional terms, but is also less significantly associated
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with these terms. This effect can be attributed to two factors. First, we note that

some of the genes predicted to be human-specific might be an artifact of the method.

For example, the belief propagation (BP) method enforces sequence similarity as

a necessary, but not sufficient, condition for a pair of genes to be aligned, which

means that any human gene with no sequence similarity to yeast genes will not

be aligned, resulting in genes being artificially classified as human-specific. Second,

and more importantly, a majority of functional annotations for human genes are

initially attributed in other species, specially yeast, and transferred across ortholog

groups. Based on my construction, human-specific genes are defined as the subset of

housekeeping genes with no orthology with yeast. As such, it can be expected that

these genes span the shadowed subspace of the functional space of human genes that

is under-annotated.

7.3.3 Quantifying Similarity of Human Tissues with Yeast

Housekeeping genes are shared across all human tissues and cell types. They

provide a conserved set of functions that are fundamental to cellular homeostasis.

However, these genes do not provide direct insight into how different tissues utilize

these key functions to exhibit their dynamic, tissue-specific characteristics. To assess

the similarity of each tissue with yeast, I propose a novel statistical model, called

tissue-specific random model (TRAM), which takes into account the ubiquitous nature

of housekeeping genes and mimics the topological structure of tissue-specific networks

(please see Materials and Methods section for the details of the random model).

I use the alignment score of each tissue-yeast pair as the objective function. To

asses the significance of each alignment score, I use a Monte Carlo simulation method

to sample from the underlying probability distribution of alignment scores.

For each tissue-specific network, I sample kR = 10, 000 pseudo-random tissues of

the same size from TRAM, separately align them with the yeast interactome, and

compute the number of conserved edges and sequence similarity of aligned protein
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pairs as alignment statistics, in order to compute the empirical p-values. For each

network alignment, I compute a topological, a homological (sequence-based), and a

mixed (alignment score) p-value. Additionally, I use cases in which alignment quality

is significantly better in the original tissue alignment, both in terms of sequence and

topology, to quantify an upper bound on the alignment p-values. Conversely, cases

in which both of these measures are improved in the random samples can be used to

define a lower bound on the alignment p-value.

First, we note that all tissues with significant mixed p-values also have both sig-

nificant topological and homological (sequence-based) p-values. For a majority of

tissues with insignificant mixed p-values, we still observe significant homological, but

insignificant topological p-values. I summarize the most and the least similar tissues

to yeast by applying a threshold of αl = αu = 10−2 to the p-value upper and lower

bounds, respectively. Using the p-value upper bound (∆R) of 10−2, I identify a total

of 23 out of 79 tissues with high similarity to yeast. These are listed in Table 7.1.

Among them, blood cells consistently show high significance, without even a single

instance from 10, 000 samples having either the alignment weight or the edge over-

lap of the random sample exceeding the original alignment. Similarly, immune cell

lines and male reproductive tissues also show significant alignment p-values, but with

lower reliability scores. Conversely, there are 19 out of 79 tissues that have δR > 10−2.

These are least similar to yeast. Among these tissues, listed in Table 7.2, ganglion tis-

sues consistently show the least similarity to yeast. An interesting observation is that

tissues and cell types at either end of the table (either the most or the least similar)

usually have very high reliability scores, that is both their topology and homology

p-values are consistent.

7.3.4 Identifying Groups of Coherent Tissues

Next, I investigate the correlation between the similarity of human tissues among

each other and how it relates to their corresponding alignment p-values with yeast
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Table 7.1: Tissues with the most significant similarity to the yeast interactome

Name pval lower bound overall pval pval upper bound reliability

Myeloid Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Monocytes < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Dentritic Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

NK Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

T-Helper Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Cytotoxic T-Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

B-Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Endothelial < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Hematopoietic Stem Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1

MOLT-4 < 1.00e-04 < 1.00e-04 < 1.00e-04 1

B Lymphoblasts < 1.00e-04 < 1.00e-04 < 1.00e-04 1

HL-60 < 1.00e-04 < 1.00e-04 < 1.00e-04 1

K-562 < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Early Erythroid < 1.00e-04 < 1.00e-04 < 1.00e-04 1

Bronchial Epithelial Cells < 1.00e-04 < 1.00e-04 0.0002 0.9998

Colorectal Adenocarcinoma < 1.00e-04 < 1.00e-04 0.0004 0.9996

Daudi < 1.00e-04 < 1.00e-04 0.0009 0.9991

Testis Seminiferous Tubule < 1.00e-04 < 1.00e-04 0.0012 0.9988

Smooth Muscle < 1.00e-04 < 1.00e-04 0.0016 0.9984

Blood (Whole) < 1.00e-04 < 1.00e-04 0.0053 0.9947

Thymus < 1.00e-04 0.0001 0.0062 0.9938

Testis Interstitial < 1.00e-04 0.0004 0.0086 0.9914

in order to better understand the transitivity of this relationship. I expect that

similar tissues should exhibit consistent alignment p-values, resulting in groups of

homogenous tissues with coherent alignments scores.

To this end, I first construct a network of tissue-tissue similarities (TTSN) using

the global transcriptome of human tissues from the GNF Gene Atlas, including 44,775

human transcripts covering both known, as well as predicted and poorly characterized
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Table 7.2: Tissues with the least significant similarity to the yeast interactome

Name pval lower bound overall pval pval upper bound reliability

Trigeminal Ganglion 0.9947 0.9994 1 0.9947

Superior Cervical Ganglion 0.9847 0.9991 1 0.9847

Ciliary Ganglion 0.9407 0.9813 0.9964 0.9443

Atrioventricular Node 0.8746 0.9792 0.9921 0.8825

Skin 0.8355 0.9297 0.9809 0.8546

Heart 0.7934 0.9585 0.9815 0.8119

Appendix 0.7596 0.9371 0.973 0.7866

Dorsal Root Ganglion 0.7065 0.933 0.9717 0.7348

Skeletal Muscle 0.3994 0.5902 0.7866 0.6128

Uterus Corpus 0.233 0.7736 0.8769 0.3561

Lung 0.0771 0.3853 0.5544 0.5227

Pons 0.0674 0.5201 0.6983 0.3691

Salivary Gland 0.0639 0.3449 0.5173 0.5466

Liver 0.0600 0.6857 0.8519 0.2081

Ovary 0.0388 0.2735 0.4481 0.5907

Trachea 0.0259 0.2376 0.4146 0.6113

Globus Pallidus 0.0206 0.2471 0.4336 0.587

Cerebellum 0.0127 0.1950 0.3783 0.6344

genes. For each pair of tissues/ cell types, I compute a similarity score using the

Pearson correlation of their transcriptional signatures and use the 90th percentile of

similarity scores to select the most similar pairs. I annotate each node in the TTSN

with its corresponding alignment p-value as a measure of similarity with the yeast

interactome. This meta-analysis allows us to investigate how linear measurements of

gene/protein activity project to the space of protein interactions, in order to re-wire

the underlying interactome in each human tissue.

Figure 7.4 presents the final network. In this network, each node represents a

human tissue/cell type and each weighted edge illustrates the extent of overall tran-
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Figure 7.4.: Projection of alignment p-values on the network of tissue-tissue similar-

ities

scriptional similarity between pairs of tissues. This network is filtered to include only

tissue pairs with the highest overlap with each other. In order to assign color to each

node, I use z -score normalization on the log-transformed alignment mixed p-values.

Green and red nodes correspond to the highly positive and highly negative range of

z -scores, which represent similar and dissimilar tissues to yeast, respectively.

Preliminary analysis of this network indicates that the alignment p-value of tis-

sues highly correlates with their overall transcriptional overlap. Furthermore, these

high-level interactions coincide with each other and fall within distinct groups with
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consistent patterns. I manually identified four such groups and separately annotated

them in the network. These groups correspond to brain tissue, blood cells, ganglion

tissues, and testis tissues. Among these groups, blood cells and testis tissues exhibit

consistent similarity with yeast, whereas brain and ganglion tissues bear consistent

dissimilarity.

The existence of homogenous group of tissues with consistent similarity with yeast

suggests an underlying conserved machinery in these clusters. This raises the question

of what is consistently aligned within each tissue group and how it relates to the

computed alignment p-values? I address this question, and relate it to the onset of

tissue-specific pathologies in the remaining subsections.

7.3.5 Dissecting Tissue-selective Genes with Respect to Their Conservation

In this subsection, I investigate the subset of non-housekeeping genes in each

homogenous group of human tissues and partition them into sets of genes, and their

corresponding pathways that are either conserved in yeast or are human-specific.

Next, I analyze how these pathways contribute to the overall similarity/ dissimilarity

of human tissues with yeast.
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Figure 7.5.: Membership distribution of non-housekeeping genes in human tissues
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Figure 7.5 presents the probability density function for the membership distribu-

tion of non-housekeeping genes in different human tissues. The observed bi-modal

distribution suggests that most non-housekeeping genes are either expressed in a very

few selected tissues or in the majority of human tissues. I use this to partition the

set of expressed non-housekeeping genes, with the goal of identifying genes that are

selectively expressed in each group of human tissues.

0 0.05 0.25 0.38 0.5 0.75 0.94 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Tissue−selective p−value

pd
f

Distribution of tissue−selective p−values in blood cells
B

0 0.06 0.25 0.43 0.5 0.75 0.94 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Tissue−selective p−value

pd
f

Distribution of tissue−selective p−values in brain tissues

A

0 0.07 0.25 0.41 0.5 0.75 0.981
0

0.5

1

1.5

2

2.5

3

Tissue−selective p−value

pd
f

Distribution of tissue−selective p−values in ganglion tissues

C

0 0.07 0.14 0.25 0.5 0.75 0.92 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Tissue−selective p−value

pd
f

Distribution of tissue−selective p−values in testis tissues

D

Figure 7.6.: Distribution of tissue-selectivity p-values in different tissue groups

I start with all expressed non-housekeeping genes in each tissue group, i.e., genes

that are expressed in at least one of the tissue members. Next, in order to identify the

subset of expressed genes that are selectively expressed in each group, I use the tissue-
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selectivity p-value of each gene. In this formulation, a gene is identified as selectively

expressed if it is expressed in a significantly higher number of tissues in the given group

than randomly selected tissue subsets of the same size (see Materials and Methods

section for details). Figure 7.6 illustrates the distribution of tissue-selectivity p-values

of expressed genes with respect to four major groups in Figure 7.4. Each of these

plots exhibit a bi-modal characteristic similar to the membership distribution function

in Figure 7.5. This can be explained by the fact that membership distribution is a

mixture distribution, with the underlying components being the same distribution for

the subset of genes that are expressed in different tissue groups. I use critical points

of the p-value distributions to threshold for tissue-selective genes. The motivation

behind this choice is that these points provide shifts in the underlying distribution,

from tissue-selective to ubiquitous genes. Given the bi-modal characteristics of these

distributions, they all have three critical points, the first of which I use as the cutoff

point. This provides highest precision for declared tissue-selective genes, but lower

recall than the other two choices.

Having identified the subset of tissue-selective genes with respect to each tissue

group, I use the majority voting scheme to tri-partition these sets based on their

alignment consistency with yeast. Similar to the procedure I used to tri-partition

housekeeping genes, I tried different choices of consensus rate parameter from 50% to

100% with increments of 5%. The percent of unclassified genes decreases linearly with

the consensus rate, while relative portions of human-specific/ conserved genes remain

the same. I chose 90% for my final results, as it leaves the least number of genes as

unclassified, while keeping human-specific and conserved genes well-separated.

Table 7.3 presents the number of expressed genes, selectively expressed genes, and

the percent of tissue-selective genes that are conserved, human-specific, or unclassified

within each group of tissues. There is a similar relationship between the ratio of

conserved/human-specific genes within each group of tissues and their alignment p-

values, suggesting that alignment p-values are highly correlated with the conservation
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Table 7.3: Summary of tissue-selective gene partitioning

Cluster name # expressed genes # TS genes # CG (%) # HS (%) # unclassified (%)

Brain Tissues 5936 891 273 (30.64 %) 401 (45.01 %) 217 (24.35 %)

Blood Cells 6092 1093 460 (42.09 %) 385 (35.22 %) 248 (22.69 %)

Testis Tissues 5358 328 119 (36.28 %) 126 (38.41 %) 83 (25.30 %)

Ganglion Tissues 5278 274 76 (27.74 %) 136 (49.64 %) 62 (22.63 %)

of tissue-selective genes and their corresponding pathways. Figure 7.7 illustrates the

relative sizes of each subset of genes identified in this study.
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Figure 7.7.: Summary of gene classifications. Housekeeping and tissue-selective genes,

in four main groups of human tissues, which are classified into three main classes based

on their conservation in yeast

Conserved genes and their corresponding pathways comprise the functional sub-

space in which we can use yeast as a suitable model organism to study tissue-specific

physiology and pathophysiology. On the other hand, human-specific genes provide a

complementary set that can be used to construct tissue-engineered humanized yeast

models. They also provide promising candidates for tissue-specific gene therapies in a
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similar fashion to NDI1 therapy, in cases where an alternative functional mechanism

can be found in yeast. To further investigate these subsets, I focus on blood cells and

brain tissues, which illustrate the clearest separation between their tissue-selective

and conserved genes in their TSS distribution, and subject them to more in depth

functional analysis in next subsections.

7.3.6 Elucidating Functional Roles of the Brain and Blood Selective Genes

I use g:ProfileR on both human-specific and conserved genes to identify their en-

riched functions. These two subsets share many common terms, due to the underlying

prior of both being subsets of tissue-selective genes. To comparatively analyze these

functions and rank them based on their human-specificity, I use the log of p-value

ratios between human-specific and conserved genes to filter terms that are at least

within 2-fold enrichment. I focus on GO biological processes, KEGG pathways, and

CORUM protein complexes and remove all genesets with more than 500 genes to filter

for overly generic terms. Finally, to group these terms together and provide a visual

representation of the functional space of genes, I use EnrichmentMap (EM) [122], a

recent Cytoscape [171] plug-in, to construct a network (map) of the enriched terms. I

use the log ratio of p-values to color each node in the graph. Figures 7.8 and 7.9 illus-

trate the final enrichment map of unique human-specific and conserved blood-selective

and brain-selective functions, respectively.

Conserved blood-selective functions, shown in Figure 7.8 (A), are primarily en-

riched with terms related to DNA replication, cellular growth, and preparing cell for

cell-cycle. Among these terms, DNA replication-is tightly linked to both DNA repair

and telomere maintenance related terms. Telomere maintenance, specially via telom-

erase enzyme, is one of the cellular functions that is known to be conserved in yeast,

but only active in a selected subset of differentiated human tissues and cell types,

including hematopoietic stem cells and male reproductive tissues [109]. Functional

terms involved in DNA conformation changes, including condensin complex, as well
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Figure 7.8.: Enrichment map of unique blood-selective functions
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Figure 7.9.: Enrichment map of unique brain-selective functions

as cell cycle phase transition, specifically from G1 to S phases, are two other groups

of conserved functional terms that are highly conserved from yeast to human. On

the other hand, human-specific blood-selective functions, shown in Figure 7.8 (B),

are mainly involved in lymphocyte proliferation and activation. Terms in these two

groups are also tightly related to each other and form a larger cluster together. In

addition, cytokine production and T-cell mediated cytotoxicity also exhibit human-
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specific, blood-selective characteristics. This is partially expected, as these functions

are highly specialized immune-cell functions that are evolved particularly in humans

to ensure his survival in less-favorable conditions.

Figure 7.9 (A) shows the functional space of conserved brain-selective functions.

Many of these terms correspond to various aspects of brain development, including

olfactory bulb, telencephalon, pallium, and cerebral cortex development, as well as

the regulatory circuit that controls nervous system development. Considering the

unicellular nature of yeast, the exact mechanisms in which orthologs of these path-

ways modulate yeast cellular machinery is less studied. An in-depth analysis to

identify matching phenologs can help us use yeast to study various disorders related

to brain development. Another functional aspect that exhibits high conservation is

the mTOR complex 2. The target of rapamycin (TOR) signaling is a highly con-

served pathway, which forms two structurally distinct protein complexes, mTORC1

and mTORC2. The former complex has a central role in nutrient-sensing and cell

growth, and as such, has been used extensively to study calorie restriction (CR)

mediated lifespan extension. On the other hand, mTORC2 has been recently pro-

posed to modulate consolidation of long-term memory [75]. Cholesterol biosynthesis

and transport is another conserved functional aspect that differs significantly from

other human tissues. As the most cholesterol-rich organ in the body, expression of

genes corresponding to lipoprotein receptors and apolipoproteins is tightly regulated

among different brain cells and plays an important role in normal brain development.

Dysregulation of these metabolic pathways is implicated in various neurological dis-

orders, such as Alzheimer’s disease [132].Finally, microtubular structure and tubulin

polymerization also shows significant conservation and is known to play a key role in

brain development [189]. These cytoskeletal proteins have recently been associated

with brain-specific pathologies, including epilepsy [87].

Finally, we study human-specific brain functions, which are shown in Figure 7.9

(B). One of the key functional aspects in this group is the semaphorin-plexin signaling

pathway. This pathway was initially characterized based on its role in the anatomical
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structure maturation of the brain, specifically via the repulsive axon guidance, but

later was found to be essential for morphogenesis of a wide range of organ systems,

including sensory organs and bone development [223]. Another human-specific sig-

naling pathway identified in brain is the glutamate receptor signaling pathway, which

also cross-talks with circadian entrainment, as well as neuron-neuron transmission.

This pathway plays a critical role in neural plasticity, neural development and neu-

rodegeneration [128]. It has also been associated with both chronic brain diseases,

such as schizophrenia, as well as neurodegenerative disorders, such as Alzheimer’s

disease [210].

Both conserved and human-specific genes play important roles in tissue-specific

pathologies. In addition, these genes, which are enriched with regulatory and signaling

functions, cross-talk with housekeeping genes to control cellular response to various

factors. As such, a complete picture of disease onset, development, and progression

can only be achieved from a systems point of view. From this perspective, we study

not only the genes (or their states) that are frequently altered in disease, but also

the underlying tissue-specific and housekeeping pathways in which they interact to

exhibit the observed phenotype(s). In the next subsection, I further investigate this

hypothesis. I study the potential of different subsets of the identified tissue-selective

genes for predicting tissue-specific pathologies.

7.3.7 Assessing the Significance of Tissue-specific Pathologies among Conserved and

Human-specific Tissue-selective Genes

To further study the predictive power of tissue-selective genes for human patholo-

gies, I use the genetic association database (GAD) disease annotations as my gold

standard [11]. This database collects gene-disease associations from genetic associa-

tion studies. Additionally, each disease has been assigned to one of the 19 different

disease classes in GAD database. I use DAVID functional annotation tool for disease

enrichment analysis of tissue-selective genes [74].
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Table 7.4: Enriched disease classes of tissue-selective genes

Conserved genes Human-specific genes

Disease class p-value Disease class p-value

Blood cells Cancer 9.3 ∗ 10−4 Immune 1.2 ∗ 10−5

Brain tissues Psych 3.6 ∗ 10−4 Psych 5.7 ∗ 10−8

Chemdependency 2.6 ∗ 10−3 Neurological 3.0 ∗ 10−2

Pharmacogenomic 9.7 ∗ 10−2

First, I seek to identify which disease classes are significantly enriched among each

set of tissue-selective genes. Table 7.4 shows the disease classes enriched in each group

of brain and blood selective genes. Conserved blood-selective genes are predominantly

enriched with cancers, whereas human-specific blood-selective genes are mainly associ-

ated with immune disorders. This can be linked to the previous results indicating that

conserved subset is mainly involved in regulating growth, DNA replication, and cell

cycle, whereas human-specific genes are primarily involved in lymphocyte prolifera-

tion and activation. Conversely, brain-selective genes show higher similarities in terms

of disease classes that they can predict. Both conserved and human-specific brain-

selective genes can predict psychiatric disorders, but human-specific subset seems to

be a more accurate predictor. On the other hand, neurological disorders are only

enriched in human-specific subset of brain-selective genes, whereas disorders classi-

fied as pharmacogenomic and chemdependency show higher enrichment in conserved

genes.

To summarize the specific disorders that are enriched in each subset of brain-

selective genes, I integrate all identified diseases and rank them based on their en-

richment p-value, if it is only enriched in one set, or their most significant p-value,

if it is enriched in both sets. Table 7.5 shows the top 10 disease terms enriched

in either human-specific or conserved brain-selective genes. In majority of cases,

human-specific genes are more significantly associated with brain-specific pathologies
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Table 7.5: Comparative analysis of brain-specific pathologies

Disorder Conserved genes Human-specific genes

schizophrenia 0.008573 8.4905E-06

autism 0.048288 0.00077448

dementia 0.0014356 -

schizophrenia; schizoaffective disorder; bipolar dis-

order

- 0.0021433

myocardial infarct; cholesterol, HDL; triglycerides;

atherosclerosis, coronary; macular degeneration;

colorectal cancer

0.0051617 -

epilepsy 0.071562 0.0064716

seizures - 0.020381

bipolar disorder 0.048288 0.022016

attention deficit disorder conduct disorder opposi-

tional defiant disorder

0.032444 0.023865

than conserved genes. In addition, there are unique disorders, such as schizophrenia,

bi-polar disorder, and seizures, that are only enriched among human-specific genes.

In conclusion, both conserved and human-specific subsets of tissue-selective genes

are significantly associated with different human disorders. However, the human-

specific subset shows higher association with tissue-specific pathologies. To this end,

they guide us to appropriate molecular constructs (gene insertions) in yeast to ex-

plore molecular/functional mechanisms that cause tissue-specific dysfunction. Such

mechanisms can be tested in humans, and if validated, yeast can serve as an ex-

perimental model for further investigations of biomarkers and pharmacological and

genetic interventions.
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8 CONCLUSION AND FUTURE DIRECTIONS

In this dissertation, I developed computational methods coupled with statistical mod-

els to analyze human transcriptomics and interactomics datasets from single cell level

up to complex tissues. These methods lay the foundation to study cell type-specific

biology and pathobiology at a scale that has not been possible before. To this end,

I have proposed a novel algorithms to (i) measure similarity of cells, (ii) identify cell

types from single cell datasets, (iii) separate cell types from complex tissues, (iv)

reconstruct tissue-specific interactomes, and (v) assess conservation of these tissue-

specific pathways.

One major direction for extending this work is to combine gene expression de-

convolution with single cell analysis. Single cell transcriptomics can provide a rough

sketch of what each cell type should look like. This cell type-specific expression panel

then can be used to perform supervised deconvolution. On the other hand, one major

challenge in single cell analysis is the lack of ability to estimate underlying fractions

in complex mixtures, such as tumor microenvironment. Deconvolution techniques

provide these cellular decompositions, which can be additionally incorporated into

single cell analysis to correct for sampling biases, among other confounding factors.
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[137] Clara Pereira, Cláudia Bessa, Joana Soares, Mariana Leão, and Lućılia Saraiva.
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