431 research outputs found

    Fast left ventricle tracking in CMR images using localized anatomical affine optical flow

    Get PDF
    "Progress in Biomedical Optics and Imaging, vol. 16, nr. 41"In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 ± 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction.The authors acknowledge funding support from FCT - Fundação para a Ciência e Tecnologia, Portugal, in the scope of the PhD grant SFRH/BD/93443/2013 and the project EXPL/BBB-BMD/2473/2013. D. Barbosa would also like to acknowledge the kind support of the Fundação Luso-Americana para o Desenvolvimento (FLAD), which has funded the travel costs for participation at SPIE Medical Imaging 2015.info:eu-repo/semantics/publishedVersio

    Fast left ventricle tracking using localized anatomical affine optical flow

    Get PDF
    Fast left ventricle tracking using localized anatomical affine optical flowIn daily clinical cardiology practice, left ventricle (LV) global and regional function assessment is crucial for disease diagnosis, therapy selection, and patient follow-up. Currently, this is still a time-consuming task, spending valuable human resources. In this work, a novel fast methodology for automatic LV tracking is proposed based on localized anatomically constrained affine optical flow. This novel method can be combined to previously proposed segmentation frameworks or manually delineated surfaces at an initial frame to obtain fully delineated datasets and, thus, assess both global and regional myocardial function. Its feasibility and accuracy were investigated in 3 distinct public databases, namely in realistically simulated 3D ultrasound, clinical 3D echocardiography, and clinical cine cardiac magnetic resonance images. The method showed accurate tracking results in all databases, proving its applicability and accuracy for myocardial function assessment. Moreover, when combined to previous state-of-the-art segmentation frameworks, it outperformed previous tracking strategies in both 3D ultrasound and cardiac magnetic resonance data, automatically computing relevant cardiac indices with smaller biases and narrower limits of agreement compared to reference indices. Simultaneously, the proposed localized tracking method showed to be suitable for online processing, even for 3D motion assessment. Importantly, although here evaluated for LV tracking only, this novel methodology is applicable for tracking of other target structures with minimal adaptations.The authors acknowledge funding support from FCT - Fundacao para a Ciência e a Tecnologia, Portugal, and the European Social Found, European Union, through the Programa Operacional Capital Humano (POCH) in the scope of the PhD grants SFRH/BD/93443/2013 (S. Queiros) and SFRH/BD/95438/2013 (P. Morais), and by the project ’PersonalizedNOS (01-0145-FEDER-000013)’ co-funded by Programa Operacional Regional do Norte (Norte2020) through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio

    Automated Diagnosis of Cardiovascular Diseases from Cardiac Magnetic Resonance Imaging Using Deep Learning Models: A Review

    Full text link
    In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMR) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians due to many slices of data, low contrast, etc. To address these issues, deep learning (DL) techniques have been employed to the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. In the following, investigations to detect CVDs using CMR images and the most significant DL methods are presented. Another section discussed the challenges in diagnosing CVDs from CMR data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. The most important findings of this study are presented in the conclusion section

    Fast fully automatic myocardial segmentation in 4D cine cardiac magnetic resonance datasets

    Get PDF
    Dissertação de mestrado integrado em Engenharia BiomédicaCardiovascular diseases (CVDs) are the leading cause of death in the world, representing 30% of all global deaths. Among others, assessment of the left ventricular (LV) morphology and global function using non-invasive cardiac imaging is an interesting technique for diagnosis and treatment follow-up of patients with CVDs. Nowadays, cardiac magnetic resonance (CMR) imaging is the gold-standard technique for the quantification of LV volumes, mass and ejection fraction, requiring the delineation of endocardial and epicardial contours of the left ventricle from cine MR images. In clinical practice, the physicians perform this segmentation manually, being a tedious, time consuming and unpractical task. Even though several (semi-)automated methods have been presented for LV CMR segmentation, fast, automatic and optimal boundaries assessment is still lacking, usually requiring the physician to manually correct the contours. In the present work, we propose a novel fast fully automatic 3D+time LV segmentation framework for CMR datasets. The proposed framework presents three conceptual blocks: 1) an automatic 2D mid-ventricular initialization and segmentation; 2) an automatic stack initialization followed by a 3D segmentation at the end-diastolic phase; and 3) a tracking procedure to delineate both endo and epicardial contours throughout the cardiac cycle. In each block, specific CMR-targeted algorithms are proposed for the different steps required. Hereto, we propose automatic and feasible initialization procedures. Moreover, we adapt the recent B-spline Explicit Active Surfaces (BEAS) framework to the properties of CMR image segmentation by integrating dedicated energy terms and making use of a cylindrical coordinate system that better fits the topology of CMR data. At last, two tracking methods are presented and compared. The proposed framework has been validated on 45 4D CMR datasets from a publicly available database and on a large database from an ongoing multi-center clinical trial with 318 4D datasets. In the technical validation, the framework showed competitive results against the state-of-the-art methods, presenting leading results in both accuracy and average computational time in the common database used for comparative purposes. Moreover, the results in the large scale clinical validation confirmed the high feasibility and robustness of the proposed framework for accurate LV morphology and global function assessment. In combination with the low computational burden of the method, the present methodology seems promising to be used in daily clinical practice.As doenças cardiovasculares (DCVs) são a principal causa de morte no mundo, representando 30% destas a nível global. Na prática clínica, uma técnica empregue no diagnóstico de pacientes com DCVs é a avaliação da morfologia e da função global do ventrículo esquerdo (VE), através de técnicas de imagiologia não-invasivas. Atualmente, a ressonância magnética cardíaca (RMC) é a modalidade de referência na quantificação dos volumes, massa e fração de ejeção do VE, exigindo a delimitação dos contornos do endocárdio e epicárdio a partir de imagens dinâmicas de RMC. Na prática clínica diária, o método preferencial é a segmentação manual. No entanto, esta é uma tarefa demorada, sujeita a erro humano e pouco prática. Apesar de até à data diversos métodos (semi)-automáticos terem sido apresentados para a segmentação do VE em imagens de RMC, ainda não existe um método capaz de avaliar idealmente os contornos de uma forma automática, rápida e precisa, levando a que geralmente o médico necessite de corrigir manualmente os contornos. No presente trabalho é proposta uma nova framework para a segmentação automática do VE em imagens 3D+tempo de RMC. O algoritmo apresenta três blocos principais: 1) uma inicialização e segmentação automática 2D num corte medial do ventrículo; 2) uma inicialização e segmentação tridimensional no volume correspondente ao final da diástole; e 3) um algoritmo de tracking para obter os contornos ao longo de todo o ciclo cardíaco. Neste sentido, são propostos procedimentos de inicialização automática com elevada robustez. Mais ainda, é proposta uma adaptação da recente framework “B-spline Explicit Active Surfaces” (BEAS) com a integração de uma energia específica para as imagens de RMC e utilizando uma formulação cilíndrica para tirar partido da topologia destas imagens. Por último, são apresentados e comparados dois algoritmos de tracking para a obtenção dos contornos ao longo do tempo. A framework proposta foi validada em 45 datasets de RMC provenientes de uma base de dados disponível ao público, bem como numa extensa base de dados com 318 datasets para uma validação clínica. Na avaliação técnica, a framework proposta obteve resultados competitivos quando comparada com outros métodos do estado da arte, tendo alcançado resultados de precisão e tempo computacional superiores a estes. Na validação clínica em larga escala, a framework provou apresentar elevada viabilidade e robustez na avaliação da morfologia e função global do VE. Em combinação com o baixo custo computacional do algoritmo, a presente metodologia apresenta uma perspetiva promissora para a sua aplicação na prática clínica diária

    Developing advanced mathematical models for detecting abnormalities in 2D/3D medical structures.

    Get PDF
    Detecting abnormalities in two-dimensional (2D) and three-dimensional (3D) medical structures is among the most interesting and challenging research areas in the medical imaging field. Obtaining the desired accurate automated quantification of abnormalities in medical structures is still very challenging. This is due to a large and constantly growing number of different objects of interest and associated abnormalities, large variations of their appearances and shapes in images, different medical imaging modalities, and associated changes of signal homogeneity and noise for each object. The main objective of this dissertation is to address these problems and to provide proper mathematical models and techniques that are capable of analyzing low and high resolution medical data and providing an accurate, automated analysis of the abnormalities in medical structures in terms of their area/volume, shape, and associated abnormal functionality. This dissertation presents different preliminary mathematical models and techniques that are applied in three case studies: (i) detecting abnormal tissue in the left ventricle (LV) wall of the heart from delayed contrast-enhanced cardiac magnetic resonance images (MRI), (ii) detecting local cardiac diseases based on estimating the functional strain metric from cardiac cine MRI, and (iii) identifying the abnormalities in the corpus callosum (CC) brain structure—the largest fiber bundle that connects the two hemispheres in the brain—for subjects that suffer from developmental brain disorders. For detecting the abnormal tissue in the heart, a graph-cut mathematical optimization model with a cost function that accounts for the object’s visual appearance and shape is used to segment the the inner cavity. The model is further integrated with a geometric model (i.e., a fast marching level set model) to segment the outer border of the myocardial wall (the LV). Then the abnormal tissue in the myocardium wall (also called dead tissue, pathological tissue, or infarct area) is identified based on a joint Markov-Gibbs random field (MGRF) model of the image and its region (segmentation) map that accounts for the pixel intensities and the spatial interactions between the pixels. Experiments with real in-vivo data and comparative results with ground truth (identified by a radiologist) and other approaches showed that the proposed framework can accurately detect the pathological tissue and can provide useful metrics for radiologists and clinicians. To estimate the strain from cardiac cine MRI, a novel method based on tracking the LV wall geometry is proposed. To achieve this goal, a partial differential equation (PDE) method is applied to track the LV wall points by solving the Laplace equation between the LV contours of each two successive image frames over the cardiac cycle. The main advantage of the proposed tracking method over traditional texture-based methods is its ability to track the movement and rotation of the LV wall based on tracking the geometric features of the inner, mid-, and outer walls of the LV. This overcomes noise sources that come from scanner and heart motion. To identify the abnormalities in the CC from brain MRI, the CCs are aligned using a rigid registration model and are segmented using a shape-appearance model. Then, they are mapped to a simple unified space for analysis. This work introduces a novel cylindrical mapping model, which is conformal (i.e., one to one transformation and bijective), that enables accurate 3D shape analysis of the CC in the cylindrical domain. The framework can detect abnormalities in all divisions of the CC (i.e., splenium, rostrum, genu and body). In addition, it offers a whole 3D analysis of the CC abnormalities instead of only area-based analysis as done by previous groups. The initial classification results based on the centerline length and CC thickness suggest that the proposed CC shape analysis is a promising supplement to the current techniques for diagnosing dyslexia. The proposed techniques in this dissertation have been successfully tested on complex synthetic and MR images and can be used to advantage in many of today’s clinical applications of computer-assisted medical diagnostics and intervention

    Advances in computational modelling for personalised medicine after myocardial infarction

    Get PDF
    Myocardial infarction (MI) is a leading cause of premature morbidity and mortality worldwide. Determining which patients will experience heart failure and sudden cardiac death after an acute MI is notoriously difficult for clinicians. The extent of heart damage after an acute MI is informed by cardiac imaging, typically using echocardiography or sometimes, cardiac magnetic resonance (CMR). These scans provide complex data sets that are only partially exploited by clinicians in daily practice, implying potential for improved risk assessment. Computational modelling of left ventricular (LV) function can bridge the gap towards personalised medicine using cardiac imaging in patients with post-MI. Several novel biomechanical parameters have theoretical prognostic value and may be useful to reflect the biomechanical effects of novel preventive therapy for adverse remodelling post-MI. These parameters include myocardial contractility (regional and global), stiffness and stress. Further, the parameters can be delineated spatially to correspond with infarct pathology and the remote zone. While these parameters hold promise, there are challenges for translating MI modelling into clinical practice, including model uncertainty, validation and verification, as well as time-efficient processing. More research is needed to (1) simplify imaging with CMR in patients with post-MI, while preserving diagnostic accuracy and patient tolerance (2) to assess and validate novel biomechanical parameters against established prognostic biomarkers, such as LV ejection fraction and infarct size. Accessible software packages with minimal user interaction are also needed. Translating benefits to patients will be achieved through a multidisciplinary approach including clinicians, mathematicians, statisticians and industry partners
    corecore