224 research outputs found

    Fast and robust curve skeletonization for real-world elongated objects

    Full text link
    We consider the problem of extracting curve skeletons of three-dimensional, elongated objects given a noisy surface, which has applications in agricultural contexts such as extracting the branching structure of plants. We describe an efficient and robust method based on breadth-first search that can determine curve skeletons in these contexts. Our approach is capable of automatically detecting junction points as well as spurious segments and loops. All of that is accomplished with only one user-adjustable parameter. The run time of our method ranges from hundreds of milliseconds to less than four seconds on large, challenging datasets, which makes it appropriate for situations where real-time decision making is needed. Experiments on synthetic models as well as on data from real world objects, some of which were collected in challenging field conditions, show that our approach compares favorably to classical thinning algorithms as well as to recent contributions to the field.Comment: 47 pages; IEEE WACV 2018, main paper and supplementary materia

    Skeletonization methods for image and volume inpainting

    Get PDF

    Skeletonization methods for image and volume inpainting

    Get PDF
    Image and shape restoration techniques are increasingly important in computer graphics. Many types of restoration techniques have been proposed in the 2D image-processing and according to our knowledge only one to volumetric data. Well-known examples of such techniques include digital inpainting, denoising, and morphological gap filling. However efficient and effective, such methods have several limitations with respect to the shape, size, distribution, and nature of the defects they can find and eliminate. We start by studying the use of 2D skeletons for the restoration of two-dimensional images. To this end, we show that skeletons are useful and efficient for volumetric data reconstruction. To explore our hypothesis in the 3D case, we first overview the existing state-of-the-art in 3D skeletonization methods, and conclude that no such method provides us with the features required by efficient and effective practical usage. We next propose a novel method for 3D skeletonization, and show how it complies with our desired quality requirements, which makes it thereby suitable for volumetric data reconstruction context. The joint results of our study show that skeletons are indeed effective tools to design a variety of shape restoration methods. Separately, our results show that suitable algorithms and implementations can be conceived to yield high end-to-end performance and quality of skeleton-based restoration methods. Finally, our practical applications can generate competitive results when compared to application areas such as digital hair removal and wire artifact removal

    Flaw Simulation in Product Radiographs

    Get PDF

    A Robust Level-Set Algorithm for Centerline Extraction

    Get PDF

    A Robust Level-Set Algorithm for Centerline Extraction

    Get PDF
    We present a robust method for extracting 3D centerlines from volumetric datasets. We start from a 2D skeletonization method to locate voxels centered with respect to three orthogonal slicing directions. Next, we introduce a new detection criterion to extract the centerline voxels from the above skeletons, followed by a thinning, reconnection, and a ranking step. Overall, the proposed method produces centerlines that are object-centered, connected, one voxel thick, robust with respect to object noisiness, handles arbitrary object topologies, comes with a simple pruning threshold, and is fast to compute. We compare our results with two other methods on a variety of real-world datasets.

    Structured meshes: composition and remeshing guided by the Curve-Skeleton

    Get PDF
    Virtual sculpting is currently a broadly used modeling metaphor with rising popularity especially in the entertainment industry. While this approach unleashes the artists' inspiration and creativity and leads to wonderfully detailed and artistic 3D models, it has the side effect, purely technical, of producing highly irregular meshes that are not optimal for subsequent processing. Converting an unstructured mesh into a more regular and struc- tured model in an automatic way is a challenging task and still open prob- lem. Since structured meshes are useful in different applications, it is of in- terest to be able to guarantee such property also in scenarios of part based modeling, which aim to build digital objects by composition, instead of modeling them from a scratch. This thesis will present methods for obtaining structured meshes in two different ways. First is presented a coarse quad layout computation method which starts from a triangle mesh and the curve-skeleton of the shape. The second approach allows to build complex shapes by procedural composition of PAM's. Since both quad layouts and PAMs exploit their global struc- ture, similarities between the two will be discussed, especially how their structure has correspondences to the curve-skeleton describing the topology of the shape being represented. Since both the presented methods rely on the information provided by the skeleton, the difficulties of using automat- ically extracted curve-skeletons without processing are discussed, and an interactive tool for user-assisted processing is presented
    • …
    corecore