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Abstract

We present a robust method for extracting 3D centerlines from volumetric datasets. We start from a 2D
skeletonization method to locate voxels centered with respect to three orthogonal slicing directions. Next,
we introduce a new detection criterion to extract the centerline voxels from the above skeletons, followed
by a thinning, reconnection, and a ranking step. Overall, the proposed method produces centerlines that
are object-centered, connected, one voxel thick, robust with respect to object noisiness, handles arbitrary
object topologies, comes with a simple pruning threshold, and is fast to compute. We compare our results
with two other methods on a variety of real-world datasets.

1. Introduction

Skeletons and centerlines have become increasingly
popular in a number of application areas, such as
computer vision 2, 11, medical visualization 18, 17, 16,
feature representation and tracking 10, and geomet-
ric modeling 9, 3, 8. Sample applications using skele-
tons and centerlines are object modeling and simpli-
fication and camera path planning for 3D navigation.
Since many (often conflicting) centerline and skeleton
definitions exist, we make the following distinctions.
A 3D object’s skeleton is the locus of maximal 3D
balls contained in the object. A 3D skeleton is, in gen-
eral, a two-dimensional collection of points, lines, and
surfaces 2, 5. Centerlines are closely related to skele-
tons. A centerline is a one-dimensional object (a set of
curves embedded in 3D) which captures a 3D object’s
main symmetry axes, but does not contain detailed
information about the object boundary. Centerlines
provide a compact, efficient, and simple to analyze de-
scription for tubular structures such as blood vessels,
neurons, or elongated organs such as the human colon
16, 17, 1. As a simple example, Fig. 1 shows the surface
skeleton (a) and centerline (without branches) (b) of
a 3D box.

Regardless of the extraction method used, several
requirements exist for computing centerlines from vol-

umetric datasets. Given the numerous (often purely
algorithmic) centerline definitions, it is hard to come
with unique criteria, such as what is ’thin’ or ’cen-
tered’. However, it is widely accepted 18, 17, 4 that a
centerline should be:

1. connected: the centerline of a compact 3D object
should be a set of connected voxels (R1).

2. centered: centerline voxels should be locally cen-
tered with respect to the object’s boundary (R2).

3. thin: centerlines, represented as voxelized curves,
should be as thin as possible – ideally, not thicker
than one voxel (R3).

4. insensitive to boundary noise: small surface de-
tails should not produce large twists or numerous
small branches on the centerline. A simple thresh-
old should allow gradual removal of such branches,
keeping the object thin and connected (R4).

5. efficient to compute: computing centerlines
should run robustly and quickly on large volumes
(R5).

In some cases, an extra requirement (R6) is that the
centerline should capture topological features such as
bifurcations and holes via branches and loops, re-
spectively. More specific requirements exist too, such
as centerline smoothness or object reconstructibility
from the centerline. However, one can not satisfy all
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these requirements simultaneously 4, 14. In the follow-
ing, we shall consider requirements R1 to R6.

In this paper, we present a new algorithm for ex-
tracting voxel-based centerlines from 3D objects. Our
algorithm dwells upon the Augmented Fast-Marching
Method (AFMM) 15 used for 2D skeletonization. The
algorithm we propose here produces one voxel thick,
centered, and connected centerlines, is robust with re-
spect to boundary noise, handles 3D objects of any
topologies, and has a single intuitive threshold for re-
moving undesired branches (R1..R6). The paper is or-
ganized as follows. Section 2 overviews several exist-
ing centerline algorithms. Section 3 presents the new
method’s six steps: preprocessing (Sec. 3.2), 2D skele-
ton detector extraction (Sec. 3.3), centerline detector
computaton (Sec. 3.4), thinning (Sec. 3.5), reconnec-
tion (Sec. 3.6), and ranking (Sec. 3.7). Section 4 dis-
cusses the obtained results and algorithm implementa-
tion. Section 5 concludes the paper and outlines future
improvements.

a) b)

Figure 1: a) Skeleton; b) Centerline

2. Background

Centerlines and the more general skeletons are pro-
duced by three method classes 18, 17: topological
thinning, distance-based methods, and polygon-based
methods. The last class (including Voronoi diagram 9

and boundary shrinking 14 methods) models objects
and skeletons as polygonal objects. We focus here on
voxel-based modeling, both for the object and its cen-
terline, so we shall discuss only the first two classes.

2.1. Topological thinning

Thinning methods iteratively peel off boundary vox-
els (also called simple points) whose deletion does not
alter the object topology (R1,R6). Parallel algorithms
achieve high speeds by deleting a whole set of such
points at a time 16, 13, 6. Efficient detection of these
points is done by checking a point’s (small, usual 3x3)

neighborhood against a set of deletion templates. Spe-
cial templates prevent deletion of branch end points,
i.e. those simple points which encode an object’s ge-
ometry. Thinning produces usually connected (R1),
one voxel thick (R3), though not necessarily geomet-
rically centered, structures 4, 6. Moreover, preserving
end points leads to many undesired small branches.
Template sets exist for producing both surface skele-
tons and centerlines 13, 6. Finally, objects with com-
plex topologies (e.g. holes) are correctly handled (R6).

2.2. Distance-based methods

These methods compute the boundary’s distance
transform (DT) or distance map and define the skele-
ton as the DT’s local maxima, or ’ridges’. This defi-
nition produces surface skeletons, as opposed to cen-
terlines. However, these structures are usually discon-
nected, not guaranteed to be one voxel thick, and
quite sensitive to boundary noise. Several DT com-
putation methods exist, usually trading speed for pre-
cision (Chamfer-based, level-set based 15, 12, or true
Euclidean 7). Several enhancements of the basic idea
exist, as follows. Zhou et al. 18 connect the directly ex-
tracted local maxima by local maximum paths (LM-
paths), whose construction respects R1, R2, and R3.
However, the authors mention that this method is still
sensitive to the DT accuracy. Moreover, the local max-
imum extraction might produce surface skeletons and
not centerlines, e.g. in the case of an axis-aligned 3D
box (such as in Fig. 1). Indeed, if all box’s sizes are
different, there would exist a planar rectangular set
of voxels in the middle of the box which would com-
ply with the local maximum criterion. An enhance-
ment of this method 17 uses a second distance field
(the SS-field) that encodes the distance to a given
seed voxel set. From a cluster, i.e. all voxels with the
same SS-field value, the one having maximal DT-value
is added to the centerline. Various geometric, topo-
logic, and ordering criteria are provided to cope with
multiple centerline branches, multiple DT maxima for
a cluster, and centerline reconnection and smooth-
ing. A separate class of methods extracts centerlines
without branches, used for camera path-panning in
medical applications. For example, the CEASAR al-
gorithm 1 computes the DT’s gradient and finds voxels
on and close to the centerline by analyzing the gradi-
ent’s local variations, followed by reconnection of these
structures. The final centerline is computed by apply-
ing various cost-based path tracing methods on the
connected set of extracted voxels. However matching
R1..R5, this algorithm does not handle objects with
branches or holes. It is also not very clear how sensi-
tive the algorithm is to the DT gradient-based detec-
tion and to the volume’s discretization.
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Figure 2: Centerline extraction pipeline

3. New Method

3.1. Overview

The proposed method extends and enriches the ap-
plication of the AFMM to centerline extraction 15.
In 15, a tentative method for 3D centerline extrac-
tion is proposed, as follows. First, binary 2D skele-
tons (one marks the skeleton, zero marks the back-
ground) are extracted from each axis-aligned 2D data
slice, yielding three volume ’stacks’ of 2D skeletons,
called the X, Y, and Z skeletons. Next, the centerline
is taken as per-voxel binary intersection of the X,Y,
and Z skeletons. This yields those voxels at maximal
boundary distance, measured in the three orthogonal
2D slices. As mentioned in 15, the method has several
serious drawbacks. The produced centerline is not con-
nected, not one-voxel thick, and contains undesired
branches. Moreover, the method is very sensitive to
the dataset resolution and the 2D skeleton threshold.
Slight resolution and/or threshold changes make the
one pixel thick, discrete X, Y, and Z skeletons, ’miss’
each other, yielding an empty intersection, i.e. a miss-
ing centerline voxel. Lowering the skeleton threshold
produces more branches, thus potentially less missing
centerline points. However, this leads to numerous un-
desired, not object-centered, branches as well as cen-
terlines that are several voxels thick. Given all these,
the above method is not suited for application on real
world datasets.

The new method we propose has six steps, as fol-
lows: preprocessing, normalized 2D skeleton detector
extraction, centerline detector computation, thinning,
reconnection, and ranking (Fig. 2). These steps are de-
scribed next. As running example, we use the simple
object in Fig. 3.

3.2. Preprocessing

We work with 3D uniformly sampled binary vol-
umes containing object (full), background (empty)
and boundary (full, neighbor with empty) voxels. In
the extracted 2D slices, we have object, background,

and boundary pixels respectively. We follow the defini-
tions in 4 of face (F), edge (E), and vertex (V) connec-
tivity. We define a voxel (pixel) component as a set of
nonempty voxels (respectively pixels) such that any
two of them are V-connected via a nonempty voxel
(recpectively pixel) path. Background voxels are thus
F-connected.

Preprocessing has two phases. In phase A, all 3D
disconnected object components (i.e. separate objects
in the input volume) are found and all object voxels p
are flagged in a field C(p) by their component index.
Phase B is done just before the 2D slices extracted
from the 3D volume are skeletonized. In this phase,
every 2D component of the image to be skeletonized
is detected and its boundary length is computed. The
boundary length of components with holes is the sum
of the lengths of all the separate (inner and outer)
boundary segments. We define then the fields L and A
such that, for every pixel p, L(p) equals the boundary
length and A(p) the area of the component p belongs
to. Next, we eliminate (set to background) all pixels
for which A(p) is smaller than a given threshold and
fill (set to object) all pixels for which A(p) is larger
than the same threshold. In practice, we set the elim-
ination threshold to 2% of the maximum A(p) on all
components. This eliminates the small noise elements
in the data. Hole elimination is important, since the
smallest hole drastically affects the object’s skeleton
topology by creating undesired branches and loops.

3.3. Normalized 2D skeleton detector

extraction

This step starts by applying the AFMM algorithm on
the preprocessed 2D slices. We summarize the steps
of the AFMM algorithm (see 15 for a detalied discus-
sion):

1. initialize a distance-to-boundary field T to 0 on the
boundary.

2. initialize a field U to a monotonically increasing
numbering of the boundary pixels, starting from a
random boundary location.
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3. propagate T and U to all object pixels.
4. compute U ’s sharp discontinuity detector D =

max(∂U/∂x, ∂U/∂y), the derivatives being com-
puted via forward or central differences.

5. define skeleton pixels as those where D is larger
than some threshold.

In contrast to the original AFMM, we now stop af-
ter step 4 and define the normalized skeleton detector
for a pixel p as S(p) = D(p)/L(p). Since U(p) < L(p),
S(p) is normalized between 0 and 1 and represents the
length of the boundary segment that collapsed into
skeleton point p, normalized with respect to the total
boundary length. Normalization is crucial for the next
step (Sec. 3.4). Since the AFMM handles any topolo-
gies, requirement R6 is fulfilled. We end this step by
assembling all 2D detectors S for the X, Y, and Z
slicing directions in three scalar volumes Sx, Sy, and
Sz.

3.4. Centerline detector computation

In this step, a subset of the centerline voxels is de-
tected. We define the centerline CL as the voxels
c of the object O on which the detector function
d : Sx × Sy × Sz → R computed on the volumes Sx,
Sy, and Sz, exceeds a threshold t:

CL = {c ∈ O|d(Sx(c), Sy(c), Sz(c)) > t} (1)

Several options exist for the detector d. The extrac-
tion method presented in 15 amounts to the detector
dAND = (Sx > t) ∧ (Sy > t) ∧ (Sz > t) where Sx,
Sy, and Sz are binary skeleton stacks. We discussed
the important limitations of dAND in Sec. 3.1. A bet-
ter solution is to use dprod = Sx · Sy · Sz, where Sx,
Sy, and Sz are now the continuous, normalized skele-
ton detectors (Sec. 3.3). Similarly to dAND, dprod is
maximal in the points where all three axis-aligned de-
tectors Sx, Sy, and Sz are maximal. However, dAND

has a binary behavior, i.e. it either fully selects or re-
jects voxels. As outlined in Sec. 3.1, this yields either
a very sparse centerline, for high t values, or many
undesired, not centered branches, and a thick center-
line, for low t values. Since t, for dAND,is an absolute
boundary length, in pixels, large crossections deliver
too many branches, whereas small ones are empty.

In contrast, dprod has two advantages. First, it
uses the per-boundary-length normalized detectors S,
which allow correct comparison of skeletons of crossec-
tions having different lengths. Secondly, it uses a con-
tinuous combination of the continuous detectors S
rather than a binary intersection of binary detectors.
dprod expresses ’centrality’ with respect to the three
slicing axes. Voxels on less central skeleton branches
on one slicing axis i (lower Si) are now selected only
if they are central on another slicing axis j (high

Sj). Conversely, central voxels in one slicing direction
are rejected if they are too far off-center in another
direction. Varying t with dprod gradually and uni-
formly populates the centerline with object-centered
branches. This step enforces thus requirements R2 and
R4. In practice, setting t between 0.03 and 0.1 has
given good results for all tested datasets. This corre-
sponds to finding centerline voxels that are produced
by surface features (in the axis-aligned cross-sections)
of 3 to 6% of the cross-section length. For example,
Figs. 3 a) and e) show the detected centerline voxels
for t = 0.01 and t = 0.15 respectively. Even for this
large t variation, the results (number and place of de-
tected voxels) are very similar. Overall thus, this step
enforces requirements R2 and R6.

3.5. Thinning

The previous step delivers a thick (3..8 voxels) center-
line, consisting of disconnected components separated
by gaps. We enforce one voxel thickness in this step
(requirement R3) by applying the directional 3D thin-
ning method of Palagyi and Kuba 13 (denoted PK in
the following). This algorithm uses a number of 3x3
templates to produce, in eight parallel subiterations,
a ’curve skeleton’ of the input 3D object. Special tem-
plates are used to preserve the branch end points from
deletion (see Sec. 2). The algorithm delivers one voxel
thin components for the thick input components, i.e.
preserves the connectivity of the input data. The tem-
plate choice and application order ensures that the
algorithm is orientation independent. Other thinning
algorithms, such as the one presented by Vilanova,
König, and Gröller 16 (denoted VKG in the following)
can be used instead of the PK method, if they preserve
input connectivity and branch end points and deliver
one voxel thin components.

One may be tempted to produce the centerline by
direct thinning of the 3D object. This approach has
several problems. First, due to their local nature, thin-
ning methods do not usually guarantee the centered-
ness of their output 6, 13, 4. Moreover, some thinning
methods are also orientation dependent. Voxel dele-
tion order may be used to enforce the centerline to
be roughly close to the object’s center 4, 6. However,
thinning even smooth and simple objects (e.g. Fig. 4
and Fig. 12 a-c), produces noisy, ill centered structures
(Fig. 4 b,c and Fig. 12 b). Such centerlines usually
have many small branches, since end points must be
preserved (see Sec. 2). Finally, many thinning imple-
mentations on large volumes are slow. In contrast, for
the three-rings structure in Fig. 4, we obtain the exact
circular shape for the centerline, as visible in the side
view in Fig. 4 d.

Our approach avoids such problems. Our thinning
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detection thinning reconnection

detection thinning reconnection
a) b) c) d)

e) f) g) h)

Figure 3: Centerline extraction steps: detection (a,e), thinning (b,f), reconnection (c,g), for two different detection
thresholds. Ranking (d) and initial object (h)

a) b)

c) d)

Figure 4: Three-rings object (a). Centerlines: PK
thining method (b), VKG thinning method (see also
Sec. 4) (c), our method (d)

input is only a few voxels thick and already centered,
so the ill centeredness, orientation dependency, and
speed problems of the chosen thinning method have
practically no impact (see example in Fig. 3 b,f). Fi-
nally, augmenting the AFMM to use the produced cen-

terlines for object reconstruction, approximation, and
matching, is a promising research area.

3.6. Reconnection

In this step, the thin centerline components output
by the previous step are reconnected, thus enforcing
requirement R1 (see example in Fig. 3 c,g). Several
reconnection strategies exist, e.g. the local maximum
path (LMpath) method presented in 17. LMpaths con-
nect centerline components, detected in 17 as local
maxima, by thin, centered voxel sequences that fol-
low the object boundary’s DT gradient.

We propose an alternative technique that does not
need the object boundary’s DT or its gradient. We use
the fact that the gaps in the centerline caused by our
detector (Sec. 3.4) are very small, a few voxels only in
most cases. First, we sort all disconnected centerline
components ci in increasing size (number of voxels) or-
der, using a hash table. Next, we apply an algorithm
that iteratively merges the smallest component with
the closest component (see Fig. 5). Only components
having the same C value (see Sec. 3.2) are merged,
to prevent merging centerlines of independent, logi-
caly disconnected objects. The process stops when no
more components can be merged. The distance be-
tween two components (function closest()in Fig. 5)
is computed as the minimum of their inter-voxel dis-
tances. Merging is done by constructing a 3D voxel
line between the closest two voxels of the components
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struct Component { VoxelArray v; };                       

void reconnect(HashTable h)
{
 while (h.size()>1)                  
 {
  Component c1 = h.removeElem(0),c2,c;   //c1 = h[0] = smallest component
  Voxel v1,v2,va,vb; 
  float dmin = MAX_DIST;                 //MAX_DIST is e.g. 10^6 
  for(int i=1;i<h.size();i++)            //try merging c1 with another 
  {                                      //component
   c = h[i];
   if (C(c1.v[0])!=C(c.v[0])) continue;  //c1,c not in same object
   float d = closest(c1,c,va,vb);        //va,vb=closest voxels in c1,c
   if (d<dmin) 
   { v1=va; v2=vb; c2=c; dmin=d; }   
  }
  
  if (dmin==MAX_DIST)                    //c1 can’t be merged
   delete c1 from h;                     //eliminate c1 from reconnection
  else
  {
   add voxels of c2 to c1;               //merge c2 into c1
   VoxelArray line = drawLine(v1,v2);    //voxelize line v1−v2
   add voxels in line[] to c1;
   delete c2 from h;
   reinsert c1 in h;                     //needed as c1’s size changed
  }
 }
}  

Figure 5: Reconnection algorithm

to be merged (function drawLine()). Other solutions,
such as LMpaths 17 or tracing steepest ascent paths
in the DT gradient field 1 could be used too. However,
given the small gap size delivered by our detector (see
Sec. 3.4), tracing lines is a simple, cheap, and accept-
able solution. Note that the LMpaths are also, in many
cases, line segments.

Picking the smallest component is a good heuristic
for minimizing the number of distance computations.
Overall, reconnection takes less than a second even
for hundreds of components of thousands of voxels in
total.

3.7. Ranking

The previous step delivers a one voxel thick, connected
centerline. In this last step, we assign a rank R to ev-
ery centerline voxel, according to their distance, along
the centerline, to an end point. This allows pruning
centerline branches in function of their importance, as
explained next. First, we describe the ranking algo-
rithm (see also Fig. 6). We start initializing R to 0 for
background voxels, 1 for centerline voxels, and 2 for
centerline end points. End points are detected as those
centerline voxels having exactly one centerline voxel
V-neighbor, a property enforced by the PK thinning
method (see 13 for details). In step 2, we propagate the
rank values along the centerline branches until bifur-
cations are met, increasing the rank with 1 at every
newly found point. Bifurcations are found as points
with more than two centerline V-neighbors, a prop-

erty enforced by the PK thinning method 13. If we
reach a previously ranked end point during propaga-
tion, we overwrite its rank if the propagated rank is
higher.

Propagation is done in ’depth first’ order, i.e. from
the highest ranked voxel on, by keeping the traversed
voxels in a hash table sorted in descending R order.
When all points on branches have been ranked, we
have found a number of bifurcation points. In step 3,
we rank these points with the maximum of their dis-
covered neighbors’ ranks plus 1, i.e. with the length
of the longest incident branch discovered. Finally, we
rank their undiscovered neighbors with the bifurca-
tion point’s rank plus 1, and restart the algorithm
with these neighbors as end points. The Color Plate
(a,e,f,h,i,k) shows several ranked centerlines, using a
rainbow colormap for the rank values.

Selecting those voxels having R > R0 prunes, from
end points on, the centerline branches shorter than
the given pruning threshold R0. This allows trivial re-
moval of the short ’noise’ branches, without discon-
necting the centerline, as the example in Fig. 7 shows.
If desired, other strategies can be used, e.g. ranking all
voxels on a branch with the branch length or finding
the longest path.

4. Discussion

We have tested the presented method on several 3D
datasets (Figs. 9,10,11,12). The extraction process
statistics are shown in Fig. 8, for a Pentium III PC
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HashTable h; Voxel p,q; int n;

for (all voxels p)                   //STEP 1. Initialize R field
  if (p is end point)
  { R(p) = 2; insert p in h; }
  else if (p is centerline point)
    R(p) = 1;
  else if (p is background point)
    R(p) = 0;
 
while (h not empty)       //STEP 2. Propagate R field
{ 
  VoxelArray bf;                    //bf keeps bifurcation points
  while (h not empty)                        
  {
    p = h.removeElem(0);        //q=h[0]=highest ranked endpoint
    q = neighbor of p with R==1
    n = number of q’s neighbors with R==1
    if (n<3)                        //q is on the branch
    { R(q) = max(R(q),R(p)+1); insert q in h; }
    else                           
      insert q in bf;               //q is bifurcation point
  }

  for (all points p in bf)          //STEP 3. Rank bifurcation points
  {
    R(p) = 1+max(R) over all p’s neighbors with R>1
    for (all p’s neighbors q with R==1)
    {
      R(q) = R(p)+1;                //Create and rank new end points
      insert q in h;
    }
  }
}

Figure 6: Ranking algorithm

R0 = 0 R0 = 10

R0 = 25 R0 = 60

Figure 7: Centerline pruning for different R0 values

running at 500 MHz with 128 MB memory. No sepa-
rate per process step timings are done, since virtually
all the time is spent for the 2D skeleton detector com-
putation (Sec. 3.3). Our method’s complexity is the
same as for the AFMM skeletonization method 15,
namely O(N log N) for N object voxels. Figure 8
shows also the timings for the VKG thinning method

(see Sec. 3.5), for a number of datasets. Finally, we
note that our timings also compare favorably with the
CEASAR algorithm 1.

Dataset  size X

Extracted voxels
Components
Thinned voxels

Our method (sec)

631
14
87

7

100

992
6
411

4

326
39
72

6

2970
357
790

17

Dataset  size Y
Dataset  size Z

100
100

165
107
64

100
100
100

150
150
150

256
256
311

165
741

184

130

381
120

499
134

163

91
Reconnection voxels

632

597 2885489 269 702 915

180
213
282
934
90
305
510
45

Dataset  name rings spiral cow twist colon 1 colon 2 lobster

VKG method (sec) 53 3 121 176 944

Figure 8: Extracted voxels, disconnected components,
voxels removed by thinning, voxels added by rconnec-
tion, and total extraction time (colon 1: Fig. 11; colon
2: Fig. 10)

It is interesting to compare the full 3D skeletons (ex-
tracted with the method presented in 12) with the 3D
centerlines (extracted by the method presented here).
As Fig. 9 and Fig. 12 a,c (Color Plate a-b,f-l) show,
centerlines are contained, and close to the centers, of
the 3D skeletons – an insightful result, given that the
skeletons and centerlines are extracted by two com-
pletely different methods.
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Figures 10 and 11 show the centerlines, computed
with our method and the VKG thinning method, on a
dissected, respectively in vivo-scanned colon dataset.
For the dissected colon (Fig. 10), the results are very
similar. For the other dataset, our method delivers,
even without pruning, less branches (Fig. 11 b,Color
Plate c). A simple pruning yields a clean centerline
(Fig. 11 b,Color Plate d). As in Fig. 4, Figures 12 a,b
show that our method produces smoother, more cen-
tered structures than thinning methods. To outline the
method’s robustness, we show in Fig. 4 d the center-
line we computed for a noisy, unsmooth object on a
coarse dataset (130 × 130 × 44 voxels, pruning thresh-
old R0 = 8). Note, for comparison with other methods
that perform post-extraction smoothing (e.g. 1), that
all examples shown here are unsmoothed centerlines.

The only user inputs the method has are the detec-
tion (t, Sec. 3.4) and pruning (R0, Sec. 3.7) thresh-
olds. As explained, t encodes our centerline model by
specifying the minimal boundary feature length that
causes a centerline point. Setting t to any value be-
tween 0.03 and 0.1 delivered practically identical re-
sults for all datasets we tried. Lower t values create too
many branches, as the AFMM method becomes unsta-
ble for too small boundary features (see 15). Higher t
values may miss some secondary centerline branches.
In practice, we simply fixed t = 0.05 so that users
only need to set the pruning threshold R0. Setting R0

is simple, as it describes the length, in voxels, of the
centerline branches to be pruned.

The thinning and reconnection steps are inter-
changeable, yielding the same result, since reconnec-
tion adds only one voxel thick line segments (Sec. 3.6).
As most centerline methods, we use an implicit center-

a) b)

c)

d) e) f)

Figure 9: 3D skeletons (b,d,f) and centerlines (a,c,e)
of the same object, different views

line model, defined via the three axis-aligned crossec-
tions. The choice of these slicing directions is indeed
arbitrary, motivated only by the implementation sim-
plicity. However, for a general 3D object exhibiting no
local symmetry, it is very hard to give a unique, lo-
cal definition of what a centerline-orthogonal crossec-
tion is. This advocates that our model based on the
axis-aligned crossections is as acceptable as any other
definition.

a) b)

Figure 10: Straightened colon centerline: our method
(a), VKG method (b)

For the implementation, we used the publicly avail-
able AFMM source code (see 15). The PK thinning
method 13 is trivial to implement. Finally, the recon-
nection and ranking steps are described in pseudocode
in Secs. 3.6 and 3.7.
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5. Conclusion

The 3D centerline extraction method we have pre-
sented has a number of advantages, as follows. First, it
delivers guaranteedly connected, object-centered, one
voxel thin centerlines. Secondly, it works efficiently on
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a) b) c)

Figure 11: Colon centerline: VKG method (a), our
method R0 = 0 (b) and R0 = 15 (c)

large, noisy, datasets. Thirdly, it captures topologi-
cal features such as branches and holes. Fourthly, it
is simple to implement, the core AFMM code being
publicly available and well described in 15. Finally, it
has two intuitive, simple to set, user inputs: the de-
tection threshold t and the pruning threshold R0. No
derivative and/or gradient computations are required,
which makes the method stable.

Future research should address a number of issues.
We are interested to exactly evaluate the method’s
’worst case’, i.e. the largest centerline disconnections
the detection step (Sec. 3.4) may produce. More prac-
tically, considerable speed-ups can be achieved by us-
ing adaptive AFMM implementations to compute the
2D skeletons, making this technique interesting for
near real time applications.
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b)

c)

a)

e)

f)

i)

j) k) l) m)

d)

h)g)

Figure 13: Centerline examples: Simple object centerline and skeleton (a,b). Straightened and original colon (c,d).
Frog duodenum (e). Spiral (h). Cow centerline and skeleton (f,g,i-l). Lobster (m)
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