2,064 research outputs found

    Spatiotemporal Sparse Bayesian Learning with Applications to Compressed Sensing of Multichannel Physiological Signals

    Full text link
    Energy consumption is an important issue in continuous wireless telemonitoring of physiological signals. Compressed sensing (CS) is a promising framework to address it, due to its energy-efficient data compression procedure. However, most CS algorithms have difficulty in data recovery due to non-sparsity characteristic of many physiological signals. Block sparse Bayesian learning (BSBL) is an effective approach to recover such signals with satisfactory recovery quality. However, it is time-consuming in recovering multichannel signals, since its computational load almost linearly increases with the number of channels. This work proposes a spatiotemporal sparse Bayesian learning algorithm to recover multichannel signals simultaneously. It not only exploits temporal correlation within each channel signal, but also exploits inter-channel correlation among different channel signals. Furthermore, its computational load is not significantly affected by the number of channels. The proposed algorithm was applied to brain computer interface (BCI) and EEG-based driver's drowsiness estimation. Results showed that the algorithm had both better recovery performance and much higher speed than BSBL. Particularly, the proposed algorithm ensured that the BCI classification and the drowsiness estimation had little degradation even when data were compressed by 80%, making it very suitable for continuous wireless telemonitoring of multichannel signals.Comment: Codes are available at: https://sites.google.com/site/researchbyzhang/stsb

    Electromagnetic Source Imaging via a Data-Synthesis-Based Convolutional Encoder-Decoder Network

    Full text link
    Electromagnetic source imaging (ESI) requires solving a highly ill-posed inverse problem. To seek a unique solution, traditional ESI methods impose various forms of priors that may not accurately reflect the actual source properties, which may hinder their broad applications. To overcome this limitation, in this paper a novel data-synthesized spatio-temporally convolutional encoder-decoder network method termed DST-CedNet is proposed for ESI. DST-CedNet recasts ESI as a machine learning problem, where discriminative learning and latent-space representations are integrated in a convolutional encoder-decoder network (CedNet) to learn a robust mapping from the measured electroencephalography/magnetoencephalography (E/MEG) signals to the brain activity. In particular, by incorporating prior knowledge regarding dynamical brain activities, a novel data synthesis strategy is devised to generate large-scale samples for effectively training CedNet. This stands in contrast to traditional ESI methods where the prior information is often enforced via constraints primarily aimed for mathematical convenience. Extensive numerical experiments as well as analysis of a real MEG and Epilepsy EEG dataset demonstrate that DST-CedNet outperforms several state-of-the-art ESI methods in robustly estimating source signals under a variety of source configurations.Comment: 15 pages, 14 figures, and journa

    M/EEG source reconstruction based on Gabor thresholding in the source space

    Get PDF
    International audienceThanks to their high temporal resolution, source reconstruction based on Magnetoencephalography (MEG) and/or Electroencephalography (EEG) is an important tool for noninvasive functional brain imaging. Since the MEG/EEG inverse problem is ill-posed, inverse solvers employ priors on the sources. While priors are generally applied in the time domain, the time-frequency (TF) characteristics of brain signals are rarely employed as a spatio-temporal prior. In this work, we present an inverse solver which employs a structured sparse prior formed by the sum of 21\ell_{21} and 1\ell_{1} norms on the coefficients of the Gabor TF decomposition of the source activations. The resulting convex optimization problem is solved using a first-order scheme based on proximal operators. We provide empirical evidence based on EEG simulations that the proposed method is able to recover neural activations that are spatially sparse, temporally smooth and non-stationary. We compare our approach to alternative solvers based also on convex sparse priors, and demonstrate the benefit of promoting sparse Gabor decompositions via a mathematically principled iterative thresholding procedure

    Integrated Analysis of EEG and fMRI Using Sparsity of Spatial Maps

    No full text
    International audienceIntegration of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is an open problem, which has motivated many researches. The most important challenge in EEG-fMRI integration is the unknown relationship between these two modalities. In this paper, we extract the same features (spatial map of neural activity) from both modality. Therefore, the proposed integration method does not need any assumption about the relationship of EEG and fMRI. We present a source localization method from scalp EEG signal using jointly fMRI analysis results as prior spatial information and source separation for providing temporal courses of sources of interest. The performance of the proposed method is evaluated quantitatively along with multiple sparse priors method and sparse Bayesian learning with the fMRI results as prior information. Localization bias and source distribution index are used to measure the performance of different localization approaches with or without a variety of fMRI-EEG mismatches on simulated realistic data. The method is also applied to experimental data of face perception of 16 subjects. Simulation results show that the proposed method is significantly stable against the noise with low localization bias. Although the existence of an extra region in the fMRI data enlarges localization bias, the proposed method outperforms the other methods. Conversely, a missed region in the fMRI data does not affect the localization bias of the common sources in the EEG-fMRI data. Results on experimental data are congruent with previous studies and produce clusters in the fusiform and occipital face areas (FFA and OFA, respectively). Moreover, it shows high stability in source localization against variations in different subjects

    Sparse algorithms for EEG source localization

    Full text link
    Source localization using EEG is important in diagnosing various physiological and psychiatric diseases related to the brain. The high temporal resolution of EEG helps medical professionals assess the internal physiology of the brain in a more informative way. The internal sources are obtained from EEG by an inversion process. The number of sources in the brain outnumbers the number of measurements. In this article, a comprehensive review of the state of the art sparse source localization methods in this field is presented. A recently developed method, certainty based reduced sparse solution (CARSS), is implemented and is examined. A vast comparative study is performed using a sixty four channel setup involving two source spaces. The first source space has 5004 sources and the other has 2004 sources. Four test cases with one, three, five, and seven simulated active sources are considered. Two noise levels are also being added to the noiseless data. The CARSS is also evaluated. The results are examined. A real EEG study is also attempted.Comment: Published in Medical & Biological Engineering & Computing, Springer on Oct 02, 202
    corecore