818 research outputs found

    A Universal Part-of-Speech Tagset

    Full text link
    To facilitate future research in unsupervised induction of syntactic structure and to standardize best-practices, we propose a tagset that consists of twelve universal part-of-speech categories. In addition to the tagset, we develop a mapping from 25 different treebank tagsets to this universal set. As a result, when combined with the original treebank data, this universal tagset and mapping produce a dataset consisting of common parts-of-speech for 22 different languages. We highlight the use of this resource via two experiments, including one that reports competitive accuracies for unsupervised grammar induction without gold standard part-of-speech tags

    Natural Language Processing with Small Feed-Forward Networks

    Full text link
    We show that small and shallow feed-forward neural networks can achieve near state-of-the-art results on a range of unstructured and structured language processing tasks while being considerably cheaper in memory and computational requirements than deep recurrent models. Motivated by resource-constrained environments like mobile phones, we showcase simple techniques for obtaining such small neural network models, and investigate different tradeoffs when deciding how to allocate a small memory budget.Comment: EMNLP 2017 short pape

    LFG without C-structures

    Get PDF
    We explore the use of two dependency parsers, Malt and MST, in a Lexical Functional Grammar parsing pipeline. We compare this to the traditional LFG parsing pipeline which uses constituency parsers. We train the dependency parsers not on classical LFG f-structures but rather on modified dependency-tree versions of these in which all words in the input sentence are represented and multiple heads are removed. For the purposes of comparison, we also modify the existing CFG-based LFG parsing pipeline so that these "LFG-inspired" dependency trees are produced. We find that the differences in parsing accuracy over the various parsing architectures is small

    Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision

    Get PDF
    Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it is established that the proposed methods can be used to create substantially more accurate tools for linguistic processing, compared to both unsupervised methods and to recently proposed cross-lingual methods. The empirical support for this claim is particularly strong in the latter case; our models for syntactic dependency parsing and part-of-speech tagging achieve the hitherto best published results for a wide number of target languages, in the setting where no annotated training data is available in the target language

    Conditional Random Field Autoencoders for Unsupervised Structured Prediction

    Full text link
    We introduce a framework for unsupervised learning of structured predictors with overlapping, global features. Each input's latent representation is predicted conditional on the observable data using a feature-rich conditional random field. Then a reconstruction of the input is (re)generated, conditional on the latent structure, using models for which maximum likelihood estimation has a closed-form. Our autoencoder formulation enables efficient learning without making unrealistic independence assumptions or restricting the kinds of features that can be used. We illustrate insightful connections to traditional autoencoders, posterior regularization and multi-view learning. We show competitive results with instantiations of the model for two canonical NLP tasks: part-of-speech induction and bitext word alignment, and show that training our model can be substantially more efficient than comparable feature-rich baselines
    corecore