23,584 research outputs found

    Cobalt-Porphyrin Catalyzed Electrochemical Reduction of Carbon Dioxide in Water II: Mechanism from First Principles

    Full text link
    We apply first principles computational techniques to analyze the two-electron, multi-step, electrochemical reduction of CO2 to CO in water using cobalt porphyrin as a catalyst. Density Functional Theory calculations with hybrid functionals and dielectric continuum solvation are used to determine the steps at which electrons are added. This information is corroborated with ab initio molecular dynamics simulations in an explicit aqueous environment which reveal the critical role of water in stabilizing a key intermediate formed by CO2 bound to cobalt. Using potential of mean force calculations, the intermediate is found to spontaneously accept a proton to form a carboxylate acid group at pH<9.0, and the subsequent cleavage of a C-OH bond to form CO is exothermic and associated with a small free energy barrier. These predictions suggest that the proposed reaction mechanism is viable if electron transfer to the catalyst is sufficiently fast. The variation in cobalt ion charge and spin states during bond breaking, DFT+U treatment of cobalt 3d orbitals, and the need for computing electrochemical potentials are emphasized.Comment: 33 pages, 7 figure

    Fast C-V method to mitigate effects of deep levels in CIGS doping profiles

    Full text link
    In this work, methods to determine more accurate doping profiles in semiconductors is explored where trap-induced artifacts such as hysteresis and doping artifacts are observed. Specifically in CIGS, it is shown that this fast capacitance-voltage (C-V) approach presented here allows for accurate doping profile measurement even at room temperature, which is typically not possible due to the large ratio of trap concentration to doping. Using deep level transient spectroscopy (DLTS) measurement, the deep trap responsible for the abnormal C-V measurement above 200 K is identified. Importantly, this fast C-V can be used for fast evaluation on the production line to monitor the true doping concentration, and even estimate the trap concentration. Additionally, the influence of high conductance on the apparent doping profile at different temperature is investigated

    On the use of low-cost computer peripherals for the assessment of motor dysfunction in Parkinson’s disease – Quantification of bradykinesia using target tracking tasks

    Get PDF
    The potential of computer games peripherals to measure the motor dysfunction in Parkinson’s diseases is assessed. Of particular interest is the quantification of bradykinesia. Previous studies used modified or custom haptic interfaces, here an unmodified force feedback joystick and steering wheel are used with a laptop. During testing an on screen cursor moves in response to movements of the peripheral, the user has to track a continuously moving target (pursuit tracking), or move to a predetermined target (step tracking). All tasks use movement in the horizontal axis, allowing use of joystick or steering wheel. Two pursuit tracking tasks are evaluated, pseudo random movement, and a swept frequency task. Two step tracking tasks are evaluated, movement between two or between two of five fixed targets. Thirteen patients and five controls took part on a weekly basis. Patients were assessed for bradykinesia at each session using standard clinical measures. A range of quantitative measures was developed to allow comparison between and within patients and controls using ANOVA. Both peripherals are capable of discriminating between controls and patients, and between patients with different levels of bradykinesia. Recommendations for test procedures and peripherals are given

    History effect in inhomogeneous superconductors

    Full text link
    A model was proposed to account for a new kind of history effect in the transport measurement of a sample with inhomogeneous flux pinning coupled with flux creep. The inhomogeneity of flux pinning was described in terms of alternating weak pinning (lower jc) and strong pinning region (higher jc). The flux creep was characterized by logarithmic barrier. Based on this model, we numerically observed the same clockwise V-I loops as reported in references. Moreover, we predicted behaviors of the V-I loop at different sweeping rates of applied current dI/dt or magnetic fields Ba, etc. Electric transport measurement was performed in Ag-sheathed Bi2-xPbxSr2Ca2Cu3Oy tapes immersed in liquid nitrogen with and without magnetic fields. V-I loop at certain dI/dt and Ba was observed. It is found that the area of the loop is more sensitive to dI/dt than to Ba, which is in agreement well with our numerical results.Comment: To appear in Phys Rev B, October 1 Issu

    Gas identification with tin oxide sensor array and self-organizing maps: adaptive correction of sensor drifts

    Get PDF
    Low-cost tin oxide gas sensors are inherently nonspecific. In addition, they have several undesirable characteristics such as slow response, nonlinearities, and long-term drifts. This paper shows that the combination of a gas-sensor array together with self-organizing maps (SOM's) permit success in gas classification problems. The system is able to determine the gas present in an atmosphere with error rates lower than 3%. Correction of the sensor's drift with an adaptive SOM has also been investigate
    corecore