2,133 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    When Enough is Enough: Location Tracking, Mosaic Theory, and Machine Learning

    Get PDF
    Since 1967, when it decided Katz v. United States, the Supreme Court has tied the right to be free of unwanted government scrutiny to the concept of reasonable xpectations of privacy.[1] An evaluation of reasonable expectations depends, among other factors, upon an assessment of the intrusiveness of government action. When making such assessment historically the Court has considered police conduct with clear temporal, geographic, or substantive limits. However, in an era where new technologies permit the storage and compilation of vast amounts of personal data, things are becoming more complicated. A school of thought known as “mosaic theory” has stepped into the void, ringing the alarm that our old tools for assessing the intrusiveness of government conduct potentially undervalue privacy rights. Mosaic theorists advocate a cumulative approach to the evaluation of data collection. Under the theory, searches are “analyzed as a collective sequence of steps rather than as individual steps.”[2] The approach is based on the recognition that comprehensive aggregation of even seemingly innocuous data reveals greater insight than consideration of each piece of information in isolation. Over time, discrete units of surveillance data can be processed to create a mosaic of habits, relationships, and much more. Consequently, a Fourth Amendment analysis that focuses only on the government’s collection of discrete units of trivial data fails to appreciate the true harm of long-term surveillance—the composite. In the context of location tracking, the Court has previously suggested that the Fourth Amendment may (at some theoretical threshold) be concerned with the accumulated information revealed by surveillance.[3] Similarly, in the Court’s recent decision in United States v. Jones, a majority of concurring justices indicated willingness to explore such an approach.[4] However, in general, the Court has rejected any notion that technological enhancement matters to the constitutional treatment of location tracking.[5] Rather, it has found that such surveillance in public spaces, which does not require physical trespass, is equivalent to a human tail and thus not regulated by the Fourth Amendment. In this way, the Court has avoided quantitative analysis of the amendment’s protections. The Court’s reticence is built on the enticingly direct assertion that objectivity under the mosaic theory is impossible. This is true in large part because there has been no rationale yet offered to objectively distinguish relatively short-term monitoring from its counterpart of greater duration. As Justice Scalia recently observed in Jones: “it remains unexplained why a 4-week investigation is ‘surely’ too long.”[6] This article suggests that by combining the lessons of machine learning with the mosaic theory and applying the pairing to the Fourth Amendment we can see the contours of a response. Machine learning makes clear that mosaics can be created. Moreover, there are also important lessons to be learned on when that is the case. Machine learning is the branch of computer science that studies systems that can draw inferences from collections of data, generally by means of mathematical algorithms. In a recent competition called “The Nokia Mobile Data Challenge,”[7] researchers evaluated machine learning’s applicability to GPS and cell phone tower data. From a user’s location history alone, the researchers were able to estimate the user’s gender, marital status, occupation and age.[8] Algorithms developed for the competition were also able to predict a user’s likely future location by observing past location history. The prediction of a user’s future location could be even further improved by using the location data of friends and social contacts.[9] Machine learning of the sort on display during the Nokia competition seeks to harness the data deluge of today’s information society by efficiently organizing data, finding statistical regularities and other patterns in it, and making predictions therefrom. Machine learning algorithms are able to deduce information—including information that has no obvious linkage to the input data—that may otherwise have remained private due to the natural limitations of manual and human-driven investigation. Analysts can “train” machine learning programs using one dataset to find similar characteristics in new datasets. When applied to the digital “bread crumbs” of data generated by people, machine learning algorithms can make targeted personal predictions. The greater the number of data points evaluated, the greater the accuracy of the algorithm’s results. In five parts, this article advances the conclusion that the duration of investigations is relevant to their substantive Fourth Amendment treatment because duration affects the accuracy of the predictions. Though it was previously difficult to explain why an investigation of four weeks was substantively different from an investigation of four hours, we now have a better understanding of the value of aggregated data when viewed through a machine learning lens. In some situations, predictions of startling accuracy can be generated with remarkably few data points. Furthermore, in other situations accuracy can increase dramatically above certain thresholds. For example, a 2012 study found the ability to deduce ethnicity moved sideways through five weeks of phone data monitoring, jumped sharply to a new plateau at that point, and then increased sharply again after twenty-eight weeks.[10] More remarkably, the accuracy of identification of a target’s significant other improved dramatically after five days’ worth of data inputs.[11] Experiments like these support the notion of a threshold, a point at which it makes sense to draw a Fourth Amendment line. In order to provide an objective basis for distinguishing between law enforcement activities of differing duration the results of machine learning algorithms can be combined with notions of privacy metrics, such as k-anonymity or l-diversity. While reasonable minds may dispute the most suitable minimum accuracy threshold, this article makes the case that the collection of data points allowing predictions that exceed selected thresholds should be deemed unreasonable searches in the absence of a warrant.[12] Moreover, any new rules should take into account not only the data being collected but also the foreseeable improvements in the machine learning technology that will ultimately be brought to bear on it; this includes using future algorithms on older data. In 2001, the Supreme Court asked “what limits there are upon the power of technology to shrink the realm of guaranteed privacy.”[13] In this piece, we explore an answer and investigate what lessons there are in the power of technology to protect the realm of guaranteed privacy. After all, as technology takes away, it also gives. The objective understanding of data compilation and analysis that is revealed by machine learning provides important Fourth Amendment insights. We should begin to consider these insights more closely. [1] Katz v. United States, 389 U.S. 347, 361 (1967) (Harlan, J., concurring). [2] Orin Kerr, The Mosaic Theory of the Fourth Amendment, 111 Mich. L. Rev. 311, 312 (2012). [3] United States v. Knotts, 460 U.S. 276, 284 (1983). [4] Justice Scalia writing for the majority left the question open. United States v. Jones, 132 S. Ct. 945, 954 (2012) (“It may be that achieving the same result [as in traditional surveillance] through electronic means, without an accompanying trespass, is an unconstitutional invasion of privacy, but the present case does not require us to answer that question.”). [5] Compare Knotts, 460 U.S. at 276 (rejecting the contention that an electronic beeper should be treated differently than a human tail) and Smith v. Maryland, 442 U.S. 735, 744 (1979) (approving the warrantless use of a pen register in part because the justices were “not inclined to hold that a different constitutional result is required because the telephone company has decided to automate”) with Kyllo v. United States, 533 U.S. 27, 33 (2001) (recognizing that advances in technology affect the degree of privacy secured by the Fourth Amendment). [6] United States v. Jones, 132 S.Ct. 945 (2012); see also Kerr, 111 Mich. L. Rev. at 329-330. [7] See Nokia Research Center, Mobile Data Challenge 2012 Workshop, http://research.nokia.com/page/12340. [8] Demographic Attributes Prediction on the Real-World Mobile Data, Sanja Brdar, Dubravko Culibrk & Vladimir Crnojevic, Nokia Mobile Data Challenge Workshop 2012. [9] Interdependence and Predictability of Human Mobility and Social Interactions, Manlio de Domenico, Antonio Lima & Mirco Musolesi, Nokia Mobile Data Challenge Workshop 2012. [10] See Yaniv Altshuler, Nadav Aharony, Michael Fire, Yuval Elovici, Alex Pentland, Incremental Learning with Accuracy Prediction of Social and Individual Properties from Mobile-Phone Data, WS3P, IEEE Social Computing (2012), Figure 10. [11] Id., Figure 9. [12] Admittedly, there are differing views on sources of authority beyond the Constitution that might justify location tracking. See, e.g., Stephanie K. Pell & Christopher Soghoian, Can You See Me Now? Toward Reasonable Standards for Law Enforcement Access to Location Data That Congress Could Enact, 27 Berkeley Tech. L.J. 117 (2012). [13] Kyllo, 533 U.S. at 34

    Context Awareness for Navigation Applications

    Get PDF
    This thesis examines the topic of context awareness for navigation applications and asks the question, “What are the benefits and constraints of introducing context awareness in navigation?” Context awareness can be defined as a computer’s ability to understand the situation or context in which it is operating. In particular, we are interested in how context awareness can be used to understand the navigation needs of people using mobile computers, such as smartphones, but context awareness can also benefit other types of navigation users, such as maritime navigators. There are countless other potential applications of context awareness, but this thesis focuses on applications related to navigation. For example, if a smartphone-based navigation system can understand when a user is walking, driving a car, or riding a train, then it can adapt its navigation algorithms to improve positioning performance. We argue that the primary set of tools available for generating context awareness is machine learning. Machine learning is, in fact, a collection of many different algorithms and techniques for developing “computer systems that automatically improve their performance through experience” [1]. This thesis examines systematically the ability of existing algorithms from machine learning to endow computing systems with context awareness. Specifically, we apply machine learning techniques to tackle three different tasks related to context awareness and having applications in the field of navigation: (1) to recognize the activity of a smartphone user in an indoor office environment, (2) to recognize the mode of motion that a smartphone user is undergoing outdoors, and (3) to determine the optimal path of a ship traveling through ice-covered waters. The diversity of these tasks was chosen intentionally to demonstrate the breadth of problems encompassed by the topic of context awareness. During the course of studying context awareness, we adopted two conceptual “frameworks,” which we find useful for the purpose of solidifying the abstract concepts of context and context awareness. The first such framework is based strongly on the writings of a rhetorician from Hellenistic Greece, Hermagoras of Temnos, who defined seven elements of “circumstance”. We adopt these seven elements to describe contextual information. The second framework, which we dub the “context pyramid” describes the processing of raw sensor data into contextual information in terms of six different levels. At the top of the pyramid is “rich context”, where the information is expressed in prose, and the goal for the computer is to mimic the way that a human would describe a situation. We are still a long way off from computers being able to match a human’s ability to understand and describe context, but this thesis improves the state-of-the-art in context awareness for navigation applications. For some particular tasks, machine learning has succeeded in outperforming humans, and in the future there are likely to be tasks in navigation where computers outperform humans. One example might be the route optimization task described above. This is an example of a task where many different types of information must be fused in non-obvious ways, and it may be that computer algorithms can find better routes through ice-covered waters than even well-trained human navigators. This thesis provides only preliminary evidence of this possibility, and future work is needed to further develop the techniques outlined here. The same can be said of the other two navigation-related tasks examined in this thesis

    Probabilistic modelling and inference of human behaviour from mobile phone time series

    No full text
    With an estimated 4.1 billion subscribers around the world, the mobile phone offers a unique opportunity to sense and understand human behaviour from location, co-presence and communication data. While the benefit of modelling this unprecedented amount of data is widely recognised, a number of challenges impede the development of accurate behaviour models. In this thesis, we identify and address two modelling problems and show that their consideration improves the accuracy of behaviour inference. We first examine the modelling of long-range dependencies in human behaviour. Human behaviour models only take into account short-range dependencies in mobile phone time series. Using information theory, we quantify long-range dependencies in mobile phone time series for the first time, demonstrate that they exhibit periodic oscillations and introduce novel tools to analyse them. We further show that considering what the user did 24 hours earlier improves accuracy when predicting user behaviour five hours or longer in advance. The second problem that we address is the modelling of temporal variations in human behaviour. The time spent by a user on an activity varies from one day to the next. In order to recognise behaviour patterns despite temporal variations, we establish a methodological connection between human behaviour modelling and biological sequence alignment. This connection allows us to compare, cluster and model behaviour sequences and introduce novel features for behaviour recognition which improve its accuracy. The experiments presented in this thesis have been conducted on the largest publicly available mobile phone dataset labelled in an unsupervised fashion and are entirely repeatable. Furthermore, our techniques only require cellular data which can easily be recorded by today's mobile phones and could benefit a wide range of applications including life logging, health monitoring, customer profiling and large-scale surveillance

    Design and Evaluation of a Solo-Resident Smart Home Testbed for Mobility Pattern Monitoring and Behavioural Assessment

    Full text link
    [EN] Aging population increase demands for solutions to help the solo-resident elderly live independently. Unobtrusive data collection in a smart home environment can monitor and assess elderly residents' health state based on changes in their mobility patterns. In this paper, a smart home system testbed setup for a solo-resident house is discussed and evaluated. We use paired Passive infra-red (PIR) sensors at each entry of a house and capture the resident's activities to model mobility patterns. We present the required testbed implementation phases, i.e., deployment, post-deployment analysis, re-deployment, and conduct behavioural data analysis to highlight the usability of collected data from a smart home. The main contribution of this work is to apply intelligence from a post-deployment process mining technique (namely, the parallel activity log inference algorithm (PALIA)) to find the best configuration for data collection in order to minimise the errors. Based on the post-deployment analysis, a re-deployment phase is performed, and results show the improvement of collected data accuracy in re-deployment phase from 81.57% to 95.53%. To complete our analysis, we apply the well-known CASAS project dataset as a reference to conduct a comparison with our collected results which shows a similar pattern. The collected data further is processed to use the level of activity of the solo-resident for a behaviour assessment.Shirali, M.; Bayo-Monton, JL.; Fernández Llatas, C.; Ghassemian, M.; Traver Salcedo, V. (2020). Design and Evaluation of a Solo-Resident Smart Home Testbed for Mobility Pattern Monitoring and Behavioural Assessment. Sensors. 20(24):1-25. https://doi.org/10.3390/s20247167S1252024Lutz, W., Sanderson, W., & Scherbov, S. (2001). The end of world population growth. Nature, 412(6846), 543-545. doi:10.1038/35087589United Nations, Department of Economic and Social Affairs, World Population Prospoects 2019 https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdfAtzori, L., Iera, A., & Morabito, G. (2017). Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56, 122-140. doi:10.1016/j.adhoc.2016.12.004Cook, D. J., Duncan, G., Sprint, G., & Fritz, R. L. (2018). Using Smart City Technology to Make Healthcare Smarter. Proceedings of the IEEE, 106(4), 708-722. doi:10.1109/jproc.2017.2787688Cook, D. J., & Krishnan, N. (2014). Mining the home environment. Journal of Intelligent Information Systems, 43(3), 503-519. doi:10.1007/s10844-014-0341-4Alaa, M., Zaidan, A. A., Zaidan, B. B., Talal, M., & Kiah, M. L. M. (2017). A review of smart home applications based on Internet of Things. Journal of Network and Computer Applications, 97, 48-65. doi:10.1016/j.jnca.2017.08.017Palipana, S., Pietropaoli, B., & Pesch, D. (2017). Recent advances in RF-based passive device-free localisation for indoor applications. Ad Hoc Networks, 64, 80-98. doi:10.1016/j.adhoc.2017.06.007Chen, G., Wang, A., Zhao, S., Liu, L., & Chang, C.-Y. (2017). Latent feature learning for activity recognition using simple sensors in smart homes. Multimedia Tools and Applications, 77(12), 15201-15219. doi:10.1007/s11042-017-5100-4Tewell, J., O’Sullivan, D., Maiden, N., Lockerbie, J., & Stumpf, S. (2019). Monitoring meaningful activities using small low-cost devices in a smart home. Personal and Ubiquitous Computing, 23(2), 339-357. doi:10.1007/s00779-019-01223-2Krishnan, N. C., & Cook, D. J. (2014). Activity recognition on streaming sensor data. Pervasive and Mobile Computing, 10, 138-154. doi:10.1016/j.pmcj.2012.07.003Wang, A., Chen, G., Wu, X., Liu, L., An, N., & Chang, C.-Y. (2018). Towards Human Activity Recognition: A Hierarchical Feature Selection Framework. Sensors, 18(11), 3629. doi:10.3390/s18113629Liu, Y., Wang, X., Zhai, Z., Chen, R., Zhang, B., & Jiang, Y. (2019). Timely daily activity recognition from headmost sensor events. ISA Transactions, 94, 379-390. doi:10.1016/j.isatra.2019.04.026Viani, F., Robol, F., Polo, A., Rocca, P., Oliveri, G., & Massa, A. (2013). Wireless Architectures for Heterogeneous Sensing in Smart Home Applications: Concepts and Real Implementation. Proceedings of the IEEE, 101(11), 2381-2396. doi:10.1109/jproc.2013.2266858Rashidi, P., Cook, D. J., Holder, L. B., & Schmitter-Edgecombe, M. (2011). Discovering Activities to Recognize and Track in a Smart Environment. IEEE Transactions on Knowledge and Data Engineering, 23(4), 527-539. doi:10.1109/tkde.2010.148Samsung SmartThings http://www.smartthings.com/Apple HomeKit https://www.apple.com/ios/home/Vera3 Advanced Smart Home Controller http://getvera.com/controllers/vera3/AndroidThings https://developer.android.com/things/index.htmlTeleAlarm Assisted Living http://www.telealarm.com/en/products/assisted-livingBirdie—Connected Sensors around the Home https://birdie.care/AllJoyn Framework https://identity.allseenalliance.org/developersCook, D. J., Crandall, A. S., Thomas, B. L., & Krishnan, N. C. (2013). CASAS: A Smart Home in a Box. Computer, 46(7), 62-69. doi:10.1109/mc.2012.328Skubic, M., Alexander, G., Popescu, M., Rantz, M., & Keller, J. (2009). A smart home application to eldercare: Current status and lessons learned. Technology and Health Care, 17(3), 183-201. doi:10.3233/thc-2009-0551Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., & Jansen, E. (2005). The Gator Tech Smart House: a programmable pervasive space. Computer, 38(3), 50-60. doi:10.1109/mc.2005.107Doctor, F., Hagras, H., & Callaghan, V. (2005). A Fuzzy Embedded Agent-Based Approach for Realizing Ambient Intelligence in Intelligent Inhabited Environments. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 35(1), 55-65. doi:10.1109/tsmca.2004.838488Abowd, G. D., & Mynatt, E. D. (2005). Designing for the Human Experience in Smart Environments. Smart Environments, 151-174. doi:10.1002/047168659x.ch7Technology Integrated Health Management (TIHM) Project https://www.sabp.nhs.uk/tihmAhvar, E., Daneshgar-Moghaddam, N., Ortiz, A. M., Lee, G. M., & Crespi, N. (2016). On analyzing user location discovery methods in smart homes: A taxonomy and survey. Journal of Network and Computer Applications, 76, 75-86. doi:10.1016/j.jnca.2016.09.012Milenkovic, M., & Amft, O. (2013). Recognizing Energy-related Activities Using Sensors Commonly Installed in Office Buildings. Procedia Computer Science, 19, 669-677. doi:10.1016/j.procs.2013.06.089Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Dogan, O., Bayo-Monton, J.-L., Fernandez-Llatas, C., & Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors, 19(3), 557. doi:10.3390/s19030557Schmitter-Edgecombe, M., & Cook, D. J. (2009). Assessing the Quality of Activities in a Smart Environment. Methods of Information in Medicine, 48(05), 480-485. doi:10.3414/me0592Alberdi Aramendi, A., Weakley, A., Aztiria Goenaga, A., Schmitter-Edgecombe, M., & Cook, D. J. (2018). Automatic assessment of functional health decline in older adults based on smart home data. Journal of Biomedical Informatics, 81, 119-130. doi:10.1016/j.jbi.2018.03.009Dawadi, P. N., Cook, D. J., & Schmitter-Edgecombe, M. (2016). Automated Cognitive Health Assessment From Smart Home-Based Behavior Data. IEEE Journal of Biomedical and Health Informatics, 20(4), 1188-1194. doi:10.1109/jbhi.2015.2445754Sprint, G., Cook, D. J., & Schmitter-Edgecombe, M. (2017). Unsupervised Detection and Analysis of Changes in Everyday Physical Activity Data. Intelligent Systems Reference Library, 97-122. doi:10.1007/978-3-319-67513-8_6Taheri Tanjanai, P., Moradinazar, M., & Najafi, F. (2016). Prevalence of depression and related social and physical factors amongst the Iranian elderly population in 2012. Geriatrics & Gerontology International, 17(1), 126-131. doi:10.1111/ggi.12680Zhao, Z., Zhang, M., Yang, C., Fang, J., & Huang, G. Q. (2018). Distributed and collaborative proactive tandem location tracking of vehicle products for warehouse operations. Computers & Industrial Engineering, 125, 637-648. doi:10.1016/j.cie.2018.05.00
    corecore