108,920 research outputs found

    High Dimensional Semiparametric Scale-Invariant Principal Component Analysis

    Full text link
    We propose a new high dimensional semiparametric principal component analysis (PCA) method, named Copula Component Analysis (COCA). The semiparametric model assumes that, after unspecified marginally monotone transformations, the distributions are multivariate Gaussian. COCA improves upon PCA and sparse PCA in three aspects: (i) It is robust to modeling assumptions; (ii) It is robust to outliers and data contamination; (iii) It is scale-invariant and yields more interpretable results. We prove that the COCA estimators obtain fast estimation rates and are feature selection consistent when the dimension is nearly exponentially large relative to the sample size. Careful experiments confirm that COCA outperforms sparse PCA on both synthetic and real-world datasets.Comment: Accepted in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPMAI

    Resonances and Twist in Volume-Preserving Mappings

    Full text link
    The phase space of an integrable, volume-preserving map with one action and dd angles is foliated by a one-parameter family of dd-dimensional invariant tori. Perturbations of such a system may lead to chaotic dynamics and transport. We show that near a rank-one, resonant torus these mappings can be reduced to volume-preserving "standard maps." These have twist only when the image of the frequency map crosses the resonance curve transversely. We show that these maps can be approximated---using averaging theory---by the usual area-preserving twist or nontwist standard maps. The twist condition appropriate for the volume-preserving setting is shown to be distinct from the nondegeneracy condition used in (volume-preserving) KAM theory.Comment: Many typos fixed and notation simplified. New nthn^{th} order averaging theorem and volume-preserving variant. Numerical comparison with averaging adde

    An iterative method for the approximation of fibers in slow-fast systems

    Get PDF
    In this paper we extend a method for iteratively improving slow manifolds so that it also can be used to approximate the fiber directions. The extended method is applied to general finite dimensional real analytic systems where we obtain exponential estimates of the tangent spaces to the fibers. The method is demonstrated on the Michaelis-Menten-Henri model and the Lindemann mechanism. The latter example also serves to demonstrate the method on a slow-fast system in non-standard slow-fast form. Finally, we extend the method further so that it also approximates the curvature of the fibers.Comment: To appear in SIAD

    Initial Conditions for Models of Dynamical Systems

    Full text link
    The long-time behaviour of many dynamical systems may be effectively predicted by a low-dimensional model that describes the evolution of a reduced set of variables. We consider the question of how to equip such a low-dimensional model with appropriate initial conditions, so that it faithfully reproduces the long-term behaviour of the original high-dimensional dynamical system. Our method involves putting the dynamical system into normal form, which not only generates the low-dimensional model, but also provides the correct initial conditions for the model. We illustrate the method with several examples. Keywords: normal form, isochrons, initialisation, centre manifoldComment: 24 pages in standard LaTeX, 66K, no figure

    Affine Subspace Representation for Feature Description

    Full text link
    This paper proposes a novel Affine Subspace Representation (ASR) descriptor to deal with affine distortions induced by viewpoint changes. Unlike the traditional local descriptors such as SIFT, ASR inherently encodes local information of multi-view patches, making it robust to affine distortions while maintaining a high discriminative ability. To this end, PCA is used to represent affine-warped patches as PCA-patch vectors for its compactness and efficiency. Then according to the subspace assumption, which implies that the PCA-patch vectors of various affine-warped patches of the same keypoint can be represented by a low-dimensional linear subspace, the ASR descriptor is obtained by using a simple subspace-to-point mapping. Such a linear subspace representation could accurately capture the underlying information of a keypoint (local structure) under multiple views without sacrificing its distinctiveness. To accelerate the computation of ASR descriptor, a fast approximate algorithm is proposed by moving the most computational part (ie, warp patch under various affine transformations) to an offline training stage. Experimental results show that ASR is not only better than the state-of-the-art descriptors under various image transformations, but also performs well without a dedicated affine invariant detector when dealing with viewpoint changes.Comment: To Appear in the 2014 European Conference on Computer Visio

    Perturbation analysis of trapped-particle dynamics in axisymmetric dipole geometry

    Full text link
    The perturbation analysis of the bounce action-angle coordinates (J,ζ)(J,\zeta) for charged particles trapped in an axisymmetric dipole magnetic field is presented. First, the lowest-order bounce action-angle coordinates are derived for deeply-trapped particles in the harmonic-oscillator approximation. Next, the Lie-transform perturbation method is used to derive higher-order anharmonic action-angle corrections. Explicit expressions (with anharmonic corrections) for the canonical parallel coordinates s(J,ζ)s(J,\zeta) and p∥(J,ζ)p_{\|}(J,\zeta) are presented, which satisfy the canonical identity {s,  p∥}(J,ζ)≡1\{s,\; p_{\|}\}(J,\zeta) \equiv 1. Lastly, analytical expressions for the bounce and drift frequencies (which include anharmonic corrections) yield excellent agreement with exact numerical results.Comment: 16 pages, 3 figure

    Gait recognition based on shape and motion analysis of silhouette contours

    Get PDF
    This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods
    • …
    corecore