2,567 research outputs found

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Energy-efficient active tag searching in large scale RFID systems

    Get PDF
    Radio Frequency Identification (RFID) has attracted much research attention in recent years. RFID can support automatic information tracing and management during the management process in many fields. A typical field that uses RFID is modern warehouse management, where products are attached with tags and the inventory of products is managed by retrieving tag IDs. Many practical applications require searching a group of tags to determine whether they are in the system or not. The existing studies on tag searching mainly focused on improving the time efficiency but paid little attention to energy efficiency which is extremely important for active tags powered by built-in batteries. To fill in this gap, this paper investigates the tag searching problem from the energy efficiency perspective. We first propose an Energy-efficient tag Searching protocol in Multiple reader RFID systems, namely ESiM, which pushes per tag energy consumption to the limit as each tag needs to exchange only one bit data with the reader. We then develop a time efficiency enhanced version of ESiM, namely TESiM, which can dramatically reduce the execution time while only slightly increasing the transmission overhead. Extensive simulation experiments reveal that, compared to state-of-the-art solution in the current literature, TESiM reduces per tag energy consumption by more than one order of magnitude subject to comparable execution time. In most considered scenarios, TESiM even reduces the execution time by more than 50%.This work is partially supported by the National Science Foundation of China (Grant Nos. 61103203, 61332004, 61402056 and 61420106009), NSFC/RGC Joint Research Scheme (Grant No. N_PolyU519/12), and the EU FP7 CLIMBER project (Grant Agreement No. PIRSES-GA-2012-318939)

    Towards Secure and Scalable Tag Search approaches for Current and Next Generation RFID Systems

    Get PDF
    The technology behind Radio Frequency Identification (RFID) has been around for a while, but dropping tag prices and standardization efforts are finally facilitating the expansion of RFID systems. The massive adoption of this technology is taking us closer to the well known ubiquitous computing scenarios. However, the widespread deployment of RFID technology also gives rise to significant user security issues. One possible solution to these challenges is the use of secure authentication protocols to protect RFID communications. A natural extension of RFID authentication is RFID tag searching, where a reader needs to search for a particular RFID tag out of a large collection of tags. As the number of tags of the system increases, the ability to search for the tags is invaluable when the reader requires data from a few tags rather than all the tags of the system. Authenticating each tag one at a time until the desired tag is found is a time consuming process. Surprisingly, RFID search has not been widely addressed in the literature despite the availability of search capabilities in typical RFID tags. In this thesis, we examine the challenges of extending security and scalability issues to RFID tag search and suggest several solutions. This thesis aims to design RFID tag search protocols that ensure security and scalability using lightweight cryptographic primitives. We identify the security and performance requirements for RFID systems. We also point out and explain the major attacks that are typically launched against an RFID system. This thesis makes four main contributions. First, we propose a serverless (without a central server) and untraceable search protocol that is secure against major attacks we identified earlier. The unique feature of this protocol is that it provides security protection and searching capacity same as an RFID system with a central server. In addition, this approach is no more vulnerable to a single point-of-failure. Second, we propose a scalable tag search protocol that provides most of the identified security and performance features. The highly scalable feature of this protocol allows it to be deployed in large scale RFID systems. Third, we propose a hexagonal cell based distributed architecture for efficient RFID tag searching in an emergency evacuation system. Finally, we introduce tag monitoring as a new dimension of tag searching and propose a Slotted Aloha based scalable tag monitoring protocol for next generation WISP (Wireless Identification and Sensing Platform) tags

    RePos : relative position estimation of UHF-RFID tags for item-level localization

    Get PDF
    Radio frequency identification (RFID) technology brings tremendous applications in location-based services. Specifically, ultra-high frequency (UHF) RFID tag positioning based on phase (difference) of arrival (PoA/PDoA) has won great attention, due to its better positioning accuracy than signal strength-based methods. In most cases, such as logistics, retailing, and smart inventory management, the relative orders of the objects are much more attractive than absolute positions with centimetre-level accuracy. In this paper, a relative positioning (RePos) approach based on inter-tag distance and direction estimation is proposed. In the RePos positioning system, the measured phases are reconstructed based on unwrapping method. Then the distances from antenna to the tags are calculated using the distance differences of pairs of antenna's positions via a least-squares method. The relative relationships of the tags, including relative distances and angles, are obtained based on the geometry information extracted from PDoA. The experimental results show that the RePos RFID positioning system can realize about 0.28-meter ranging accuracy, and distinguish the levels and columns without ambiguity

    A multiple hashing approach to complete identification of missing RFID tags

    Get PDF
    PublishedJournal ArticleOwing to its superior properties, such as fast identification and relatively long interrogating range over barcode systems, Radio Frequency Identification (RFID) technology has promising application prospects in inventory management. This paper studies the problem of complete identification of missing RFID tag, which is important in practice. Time efficiency is the key performance metric of missing tag identification. However, the existing protocols are ineffective in terms of execution time and can hardly satisfy the requirements of real-time applications. In this paper, a Multi-hashing based Missing Tag Identification (MMTI) protocol is proposed, which achieves better time efficiency by improving the utilization of the time frame used for identification. Specifically, the reader recursively sends bitmaps that reflect the current slot occupation state to guide the slot selection of the next hashing process, thereby changing more empty or collision slots to the expected singleton slots. We investigate the optimal parameter settings to maximize the performance of the MMTI protocol. Furthermore, we discuss the case of channel error and propose the countermeasures to make the MMTI workable in the scenarios with imperfect communication channels. Extensive simulation experiments are conducted to evaluate the performance of MMTI, and the results demonstrate that this new protocol significantly outperforms other related protocols reported in the current literature. © 2014 IEEE.This work was supported by NSFC (Grant No.s 60973117, 61173160, 61173162, 60903154, and 61321491), New Century Excellent Talents in University (NCET) of Ministry of Education of China, the National Science Foundation for Distinguished Young Scholars of China (Grant No. 61225010), and the Project funded by China Postdoctoral Science Foundation

    PLACE: Physical Layer Cardinality Estimation for Large-Scale RFID Systems

    Full text link
    corecore