28 research outputs found

    Towards one video encoder per individual : guided High Efficiency Video Coding

    Get PDF

    Bayesian adaptive algorithm for fast coding unit decision in the High Efficiency Video Coding (HEVC) standard

    Get PDF
    The latest High Efficiency Video Coding standard (HEVC) provides a set of new coding tools to achieve a significantly higher coding efficiency than previous standards. In this standard, the pixels are first grouped into Coding Units (CU), then Prediction Units (PU), and finally Transform Units (TU). All these coding levels are organized into a quadtree-shaped arrangement that allows highly flexible data representation; however, they involve a very high computational complexity. In this paper, we propose an effective early CU depth decision algorithm to reduce the encoder complexity. Our proposal is based on a hierarchical approach, in which a hypothesis test is designed to make a decision at every CU depth, where the algorithm either produces an early termination or decides to evaluate the subsequent depth level. Moreover, the proposed method is able to adaptively estimate the parameters that define each hypothesis test, so that it adapts its behavior to the variable contents of the video sequences. The proposed method has been extensively tested, and the experimental results show that our proposal outperforms several state-of-the-art methods, achieving a significant reduction of the computational complexity (36.5% and 38.2% average reductions in coding time for two different encoder configurations) in exchange for very slight losses in coding performance (1.7% and 0.8% average bit rate increments).This work has been partially supported by the National Grant TEC2014-53390-P of the Spanish Ministry of Economy and Competitiveness

    Fast mode decision in the HEVC Video coding standard by exploiting region with dominated motion and saliency features

    Get PDF
    The emerging High Efficiency Video Coding (HEVC) standard introduces a number of innovative and powerful coding tools to acquire better compression efficiency compared to its predecessor H.264. The encoding time complexities have also increased multiple times that is not suitable for realtime video coding applications. To address this limitation, this paper employs a novel coding strategy to reduce the time complexity in HEVC encoder by efficient selection of appropriate block-partitioning modes based on human visual features (HVF). The HVF in the proposed technique comprise with human visual attention modelling-based saliency feature and phase correlation-based motion features. The features are innovatively combined through a fusion process by developing a content-based adaptive weighted cost function to determine the region with dominated motion/saliency (RDMS)- based binary pattern for the current block. The generated binary pattern is then compared with a codebook of predefined binary pattern templates aligned to the HEVC recommended block-paritioning to estimate a subset of inter-prediction modes. Without exhaustive exploration of all modes available in the HEVC standard, only the selected subset of modes are motion estimated and motion compensated for a particular coding unit. The experimental evaluation reveals that the proposed technique notably down-scales the average computational time of the latest HEVC reference encoder by 34% while providing similar rate-distortion (RD) performance for a wide range of video sequences

    A novel motion classification based intermode selection strategy for HEVC performance improvement

    Full text link
    High Efficiency Video Coding (HEVC) standard adopts several new approaches to achieve higher coding efficiency (approximately 50% bit-rate reduction) compared to its predecessor H.264/AVC with same perceptual image quality. Huge computational time has also increased due to the algorithmic complexity of HEVC compared to H.264/AVC. However, it is really a demanding task to reduce the encoding time while preserving the similar quality of the video sequences. In this paper, we propose a novel efficient intermode selection technique and incorporate into HEVC framework to predict motion estimation and motion compensation modes between current and reference blocks and perform faster inter mode selection based on three dissimilar motion types in divergent video sequences. Instead of exploring and traversing all the modes exhaustively, we merely select a subset of candidate modes and the final mode from the selected subset is determined based on their lowest Lagrangian cost function. The experimental results reveal that average encoding time can be downscaled by 40% with similar rate-distortion performance compared to the exhaustive mode selection strategy in HEVC

    Efficient video coding using visual sensitive information for HEVC coding standard

    Get PDF
    The latest high efficiency video coding (HEVC) standard introduces a large number of inter-mode block partitioning modes. The HEVC reference test model (HM) uses partially exhaustive tree-structured mode selection, which still explores a large number of prediction unit (PU) modes for a coding unit (CU). This impacts on encoding time rise which deprives a number of electronic devices having limited processing resources to use various features of HEVC. By analyzing the homogeneity, residual, and different statistical correlation among modes, many researchers speed-up the encoding process through the number of PU mode reduction. However, these approaches could not demonstrate the similar rate-distortion (RD) performance with the HM due to their dependency on existing Lagrangian cost function (LCF) within the HEVC framework. In this paper, to avoid the complete dependency on LCF in the initial phase, we exploit visual sensitive foreground motion and spatial salient metric (FMSSM) in a block. To capture its motion and saliency features, we use the dynamic background and visual saliency modeling, respectively. According to the FMSSM values, a subset of PU modes is then explored for encoding the CU. This preprocessing phase is independent from the existing LCF. As the proposed coding technique further reduces the number of PU modes using two simple criteria (i.e., motion and saliency), it outperforms the HM in terms of encoding time reduction. As it also encodes the uncovered and static background areas using the dynamic background frame as a substituted reference frame, it does not sacrifice quality. Tested results reveal that the proposed method achieves 32% average encoding time reduction of the HM without any quality loss for a wide range of videos

    Visual Saliency Estimation Via HEVC Bitstream Analysis

    Get PDF
    Abstract Since Information Technology developed dramatically from the last century 50's, digital images and video are ubiquitous. In the last decade, image and video processing have become more and more popular in biomedical, industrial, art and other fields. People made progress in the visual information such as images or video display, storage and transmission. The attendant problem is that video processing tasks in time domain become particularly arduous. Based on the study of the existing compressed domain video saliency detection model, a new saliency estimation model for video based on High Efficiency Video Coding (HEVC) is presented. First, the relative features are extracted from HEVC encoded bitstream. The naive Bayesian model is used to train and test features based on original YUV videos and ground truth. The intra frame saliency map can be achieved after training and testing intra features. And inter frame saliency can be achieved by intra saliency with moving motion vectors. The ROC of our proposed intra mode is 0.9561. Other classification methods such as support vector machine (SVM), k nearest neighbors (KNN) and the decision tree are presented to compare the experimental outcomes. The variety of compression ratio has been analysis to affect the saliency

    Efficient HEVC-based video adaptation using transcoding

    Get PDF
    In a video transmission system, it is important to take into account the great diversity of the network/end-user constraints. On the one hand, video content is typically streamed over a network that is characterized by different bandwidth capacities. In many cases, the bandwidth is insufficient to transfer the video at its original quality. On the other hand, a single video is often played by multiple devices like PCs, laptops, and cell phones. Obviously, a single video would not satisfy their different constraints. These diversities of the network and devices capacity lead to the need for video adaptation techniques, e.g., a reduction of the bit rate or spatial resolution. Video transcoding, which modifies a property of the video without the change of the coding format, has been well-known as an efficient adaptation solution. However, this approach comes along with a high computational complexity, resulting in huge energy consumption in the network and possibly network latency. This presentation provides several optimization strategies for the transcoding process of HEVC (the latest High Efficiency Video Coding standard) video streams. First, the computational complexity of a bit rate transcoder (transrater) is reduced. We proposed several techniques to speed-up the encoder of a transrater, notably a machine-learning-based approach and a novel coding-mode evaluation strategy have been proposed. Moreover, the motion estimation process of the encoder has been optimized with the use of decision theory and the proposed fast search patterns. Second, the issues and challenges of a spatial transcoder have been solved by using machine-learning algorithms. Thanks to their great performance, the proposed techniques are expected to significantly help HEVC gain popularity in a wide range of modern multimedia applications

    Low-complexity scalable and multiview video coding

    Get PDF
    corecore