1,221 research outputs found

    Fast Relaxation Solvers for Hyperbolic-Elliptic Phase Transition Problems

    Get PDF
    International audiencePhase transition problems in compressible media can be modelled by mixed hyperbolicelliptic systems of conservation laws. Within this approach phase boundaries are understood as shock waves that satisfy additional constraints, sometimes called kinetic relations. In recent years several tracking-type algorithms have been suggested for numerical approximation. Typically a core piece of these algorithms is the usage of exact Riemann solvers incorporating the kinetic relation at the location of phase boundaries. However, exact Riemann solvers are computationally expensive or even not available. In this paper we present a class of approximate Riemann solvers for hyperbolic-elliptic models that relies on a generalized relaxation procedure. It preserves in particular the kinetic relation for phase boundaries exactly and gives for isolated phase transitions the correct solutions. In combination with a novel sub-iteration procedure the approximate Riemann solvers are used in the tracking algorithms. The efficiency of the approach is validated on a barotropic system with linear kinetic relation where exact Riemann solvers are available. For a nonlinear kinetic relation and a thermoelastic system we use the new method to gain information on the Riemann problem. Up to our knowledge an exact solution for arbitrary Riemann data is currently not available in these cases

    "Mariage des Maillages": A new numerical approach for 3D relativistic core collapse simulations

    Full text link
    We present a new 3D general relativistic hydrodynamics code for simulations of stellar core collapse to a neutron star, as well as pulsations and instabilities of rotating relativistic stars. It uses spectral methods for solving the metric equations, assuming the conformal flatness approximation for the three-metric. The matter equations are solved by high-resolution shock-capturing schemes. We demonstrate that the combination of a finite difference grid and a spectral grid can be successfully accomplished. This "Mariage des Maillages" (French for grid wedding) approach results in high accuracy of the metric solver and allows for fully 3D applications using computationally affordable resources, and ensures long term numerical stability of the evolution. We compare our new approach to two other, finite difference based, methods to solve the metric equations. A variety of tests in 2D and 3D is presented, involving highly perturbed neutron star spacetimes and (axisymmetric) stellar core collapse, demonstrating the ability to handle spacetimes with and without symmetries in strong gravity. These tests are also employed to assess gravitational waveform extraction, which is based on the quadrupole formula.Comment: 29 pages, 16 figures; added more information about convergence tests and grid setu

    GRMHD in axisymmetric dynamical spacetimes: the X-ECHO code

    Full text link
    We present a new numerical code, X-ECHO, for general relativistic magnetohydrodynamics (GRMHD) in dynamical spacetimes. This is aimed at studying astrophysical situations where strong gravity and magnetic fields are both supposed to play an important role, such as for the evolution of magnetized neutron stars or for the gravitational collapse of the magnetized rotating cores of massive stars, which is the astrophysical scenario believed to eventually lead to (long) GRB events. The code is based on the extension of the Eulerian conservative high-order (ECHO) scheme [Del Zanna et al., A&A 473, 11 (2007)] for GRMHD, here coupled to a novel solver for the Einstein equations in the extended conformally flat condition (XCFC). We fully exploit the 3+1 Eulerian formalism, so that all the equations are written in terms of familiar 3D vectors and tensors alone, we adopt spherical coordinates for the conformal background metric, and we consider axisymmetric spacetimes and fluid configurations. The GRMHD conservation laws are solved by means of shock-capturing methods within a finite-difference discretization, whereas, on the same numerical grid, the Einstein elliptic equations are treated by resorting to spherical harmonics decomposition and solved, for each harmonic, by inverting band diagonal matrices. As a side product, we build and make available to the community a code to produce GRMHD axisymmetric equilibria for polytropic relativistic stars in the presence of differential rotation and a purely toroidal magnetic field. This uses the same XCFC metric solver of the main code and has been named XNS. Both XNS and the full X-ECHO codes are validated through several tests of astrophysical interest.Comment: 18 pages, 9 figures, accepted for publication in A&

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed

    Capturing nonclassical shocks in nonlinear elastodynamic with a conservative finite volume scheme

    Full text link
    For a model of nonlinear elastodynamics, we construct a finite volume scheme which is able to capture nonclassical shocks (also called undercompressive shocks). Those shocks verify an entropy inequality but are not admissible in the sense of Liu. They verify a kinetic relation which describes the jump, and keeps an information on the equilibrium between a vanishing dispersion and a vanishing diffusion. The scheme pre-sented here is by construction exact when the initial data is an isolated nonclassical shock. In general, it does not introduce any diffusion near shocks, and hence nonclas-sical solutions are correctly approximated. The method is fully conservative and does not use any shock-tracking mesh. This approach is tested and validated on several test cases. In particular, as the nonclassical shocks are not diffused at all, it is possible to obtain large time asymptotics

    Cumulative reports and publications thru 31 December 1982

    Get PDF
    Institute for Computer Applications in Science and Engineering (ICASE) reports are documented
    • …
    corecore