199 research outputs found

    Missile-Borne SAR Raw Signal Simulation for Maneuvering Target

    Get PDF
    SAR raw signal simulation under the case of maneuver and high-speed has been a challenging and urgent work recently. In this paper, a new method based on one-dimensional fast Fourier transform (1DFFT) algorithm is presented for raw signal simulation of maneuvering target for missile-borne SAR. Firstly, SAR time-domain raw signal model is given and an effective Range Frequency Azimuth Time (RFAT) algorithm based on 1DFFT is derived. In this algorithm, the “Stop and Go” (SaG) model is adopted and the wide radar scattering characteristic of target is taken into account. Furthermore, the “Inner Pulse Motion” (IPM) model is employed to deal with high-speed case. This new RFAT method can handle the maneuvering cases, high-speed cases, and bistatic radar cases, which are all possible in the missile-borne SAR. Besides, this raw signal simulation adopts the electromagnetic scattering calculation so that we do not need a scattering rate distribution map as the simulation input. Thus, the multiple electromagnetic reflections can be considered. Simulation examples prove the effectiveness of our method

    An image formation algorithm for missile-borne circular-scanning SAR

    Get PDF

    Synthetic Aperture Radar (SAR) data processing

    Get PDF
    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour

    A Study in GPS-Denied Navigation Using Synthetic Aperture Radar

    Get PDF
    In modern navigation systems, GPS is vital to accurately piloting a vehicle. This is especially true in autonomous vehicles, such as UAVs, which have no pilot. Unfortunately, GPS signals can be easily jammed or spoofed. For example, canyons and urban cities create an environment where the sky is obstructed and make GPS signals unreliable. Additionally, hostile individuals can transmit personal signals intended to block or spoof GPS signals. In these situations, it is important to find a means of navigation that doesn’t rely on GPS. Navigating without GPS means that other types of sensors or instruments must be used to replace the information lost from GPS. Some examples of additional sensors include cameras, altimeters, magnetometers, and radar. The work presented in this thesis shows how radar can be used to navigate without GPS. Specifically, synthetic aperture radar (SAR) is used, which is a method of processing radar data to form images of a landscape similar to images captured using a camera. SAR presents its own unique set of benefits and challenges. One major benefit of SAR is that it can produce images of an area even at night or through cloud cover. Additionally, SAR can image a wide swath of land at an angle that would be difficult for a camera to achieve. However, SAR is more computationally complex than other imaging sensors. Image quality is also highly dependent on the quality of navigation information available. In general, SAR requires that good navigation data be had in order to form SAR images. The research here explores the reverse problem where SAR images are formed without good navigation data and then good navigation data is inferred from the images. This thesis performs feasibility studies and real data implementations that show how SAR can be used in navigation without the presence of GPS. Derivations and background materials are provided. Validation methods and additional discussions are provided on the results of each portion of research

    The University Defence Research Collaboration In Signal Processing: 2013-2018

    Get PDF
    Signal processing is an enabling technology crucial to all areas of defence and security. It is called for whenever humans and autonomous systems are required to interpret data (i.e. the signal) output from sensors. This leads to the production of the intelligence on which military outcomes depend. Signal processing should be timely, accurate and suited to the decisions to be made. When performed well it is critical, battle-winning and probably the most important weapon which you’ve never heard of. With the plethora of sensors and data sources that are emerging in the future network-enabled battlespace, sensing is becoming ubiquitous. This makes signal processing more complicated but also brings great opportunities. The second phase of the University Defence Research Collaboration in Signal Processing was set up to meet these complex problems head-on while taking advantage of the opportunities. Its unique structure combines two multi-disciplinary academic consortia, in which many researchers can approach different aspects of a problem, with baked-in industrial collaboration enabling early commercial exploitation. This phase of the UDRC will have been running for 5 years by the time it completes in March 2018, with remarkable results. This book aims to present those accomplishments and advances in a style accessible to stakeholders, collaborators and exploiters

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp

    Fourth Airborne Geoscience Workshop

    Get PDF
    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection
    • 

    corecore