8 research outputs found

    Fast Parallel Fixed-Parameter Algorithms via Color Coding

    Get PDF
    Fixed-parameter algorithms have been successfully applied to solve numerous difficult problems within acceptable time bounds on large inputs. However, most fixed-parameter algorithms are inherently \emph{sequential} and, thus, make no use of the parallel hardware present in modern computers. We show that parallel fixed-parameter algorithms do not only exist for numerous parameterized problems from the literature -- including vertex cover, packing problems, cluster editing, cutting vertices, finding embeddings, or finding matchings -- but that there are parallel algorithms working in \emph{constant} time or at least in time \emph{depending only on the parameter} (and not on the size of the input) for these problems. Phrased in terms of complexity classes, we place numerous natural parameterized problems in parameterized versions of AC0^0. On a more technical level, we show how the \emph{color coding} method can be implemented in constant time and apply it to embedding problems for graphs of bounded tree-width or tree-depth and to model checking first-order formulas in graphs of bounded degree

    The parameterized space complexity of model-checking bounded variable first-order logic

    Get PDF
    The parameterized model-checking problem for a class of first-order sentences (queries) asks to decide whether a given sentence from the class holds true in a given relational structure (database); the parameter is the length of the sentence. We study the parameterized space complexity of the model-checking problem for queries with a bounded number of variables. For each bound on the quantifier alternation rank the problem becomes complete for the corresponding level of what we call the tree hierarchy, a hierarchy of parameterized complexity classes defined via space bounded alternating machines between parameterized logarithmic space and fixed-parameter tractable time. We observe that a parameterized logarithmic space model-checker for existential bounded variable queries would allow to improve Savitch's classical simulation of nondeterministic logarithmic space in deterministic space O(log2n)O(\log^2n). Further, we define a highly space efficient model-checker for queries with a bounded number of variables and bounded quantifier alternation rank. We study its optimality under the assumption that Savitch's Theorem is optimal

    A parameterized halting problem, the linear time hierarchy, and the MRDP theorem

    Get PDF
    The complexity of the parameterized halting problem for nondeterministic Turing machines p-Halt is known to be related to the question of whether there are logics capturing various complexity classes [10]. Among others, if p-Halt is in para-AC0, the parameterized version of the circuit complexity class AC0, then AC0, or equivalently, (+, x)-invariant FO, has a logic. Although it is widely believed that p-Halt ∉. para-AC0, we show that the problem is hard to settle by establishing a connection to the question in classical complexity of whether NE ⊈ LINH. Here, LINH denotes the linear time hierarchy. On the other hand, we suggest an approach toward proving NE ⊈ LINH using bounded arithmetic. More specifically, we demonstrate that if the much celebrated MRDP (for Matiyasevich-Robinson-Davis-Putnam) theorem can be proved in a certain fragment of arithmetic, then NE ⊈ LINH. Interestingly, central to this result is a para-AC0 lower bound for the parameterized model-checking problem for FO on arithmetical structures.Peer ReviewedPostprint (author's final draft

    Serial and parallel kernelization of Multiple Hitting Set parameterized by the Dilworth number, implemented on the GPU

    Full text link
    The NP-hard Multiple Hitting Set problem is finding a minimum-cardinality set intersecting each of the sets in a given input collection a given number of times. Generalizing a well-known data reduction algorithm due to Weihe, we show a problem kernel for Multiple Hitting Set parameterized by the Dilworth number, a graph parameter introduced by Foldes and Hammer in 1978 yet seemingly so far unexplored in the context of parameterized complexity theory. Using matrix multiplication, we speed up the algorithm to quadratic sequential time and logarithmic parallel time. We experimentally evaluate our algorithms. By implementing our algorithm on GPUs, we show the feasability of realizing kernelization algorithms on SIMD (Single Instruction, Multiple Date) architectures.Comment: Added experiments on one more data se

    Parallelism with limited nondeterminism

    Get PDF
    Computational complexity theory studies which computational problems can be solved with limited access to resources. The past fifty years have seen a focus on the relationship between intractable problems and efficient algorithms. However, the relationship between inherently sequential problems and highly parallel algorithms has not been as well studied. Are there efficient but inherently sequential problems that admit some relaxed form of highly parallel algorithm? In this dissertation, we develop the theory of structural complexity around this relationship for three common types of computational problems. Specifically, we show tradeoffs between time, nondeterminism, and parallelizability. By clearly defining the notions and complexity classes that capture our intuition for parallelizable and sequential problems, we create a comprehensive framework for rigorously proving parallelizability and non-parallelizability of computational problems. This framework provides the means to prove whether otherwise tractable problems can be effectively parallelized, a need highlighted by the current growth of multiprocessor systems. The views adopted by this dissertation—alternate approaches to solving sequential problems using approximation, limited nondeterminism, and parameterization—can be applied practically throughout computer science
    corecore