
Abstract

The complexity of the parameterized halting problem for nondeterministic Turing machines p-HALT

is known to be related to the question of whether there are logics capturing various complexity classes [10].
Among others, if p-HALT is in para-AC0, the parameterized version of the circuit complexity class
AC0, then AC0, or equivalently, (+,×)-invariant FO, has a logic. Although it is widely believed that
p-HALT /∈ para-AC0, we show that the problem is hard to settle by establishing a connection to the
question in classical complexity of whether NE 6⊆ LINH. Here, LINH denotes the linear time hierarchy.

On the other hand, we suggest an approach toward proving NE 6⊆ LINH using bounded arithmetic.
More specifically, we demonstrate that if the much celebrated MRDP (for Matiyasevich-Robinson-Davis-
Putnam) theorem can be proved in a certain fragment of arithmetic, then NE 6⊆ LINH. Interestingly,
central to this result is a para-AC0 lower bound for the parameterized model-checking problem for FO
on arithmetical structures.
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1. Introduction

The parameterized complexity of the following halting problem is still wide open.

p-HALT
Instance: n ∈ N in unary and a nondeterministic

Turing machine (NTM) M.
Parameter: |M|, the size of the machine M.

Problem: Decide whether M accepts the empty in-
put tape in at most n steps.

The importance of p-HALT is derived from its close connections to some prominent open problems in proof
complexity and descriptive complexity [10, 19]. Among others, if p-HALT can be decided by an algorithm
A in time nf(|M|) for a function f : N → N, then there is a logic for PTIME. Although it is generally
believed not to be the case, now we can only rule out such an algorithm A under some very strong non-
standard complexity-theoretic assumption and with a further restriction that the corresponding function f
is computable [9, 10]. On the other hand, for every fixed k ∈ N there is a linear time algorithm Ak such
that for every NTM M with |M| = k the algorithm Ak decides whether M halts in at most n steps. More
precisely, for every k ∈ N we can enumerate all NTM’s

Mk,0, . . . ,Mk,`k−1

with |Mk,i| = k for every i ∈ [`k]. Then let

sk,i :=


s Mk,i accepts the empty input tape,

and a minimum accepting run has s steps
∞ Mk,i does not accept the empty input tape.

The desired algorithm Ak accepts an input (M, n) if M is Mk,i for some i ∈ [`k] and n ≥ sk,i. Equivalently,
it computes a simple family of Boolean functions:

Fn,k(x0 . . . xn−1, y0 . . . yk−1)

=
∨

i ∈ [`k] such
that n ≥ sk,i

(
x0 . . . xn−1 = 1n ∧ y0 . . . yk−1 = Mk,i

)
.
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Observe that Fn,k can be understood as a circuit of depth 2 and sizeO(k·`k ·n). Thus, each slice of p-HALT
is in the circuit complexity class AC0. Hence, p-HALT is in a nonuniform version of parameterized AC0.

Recall that AC0 is the class of classical problems that can be decided by families of circuits of constant
depth and polynomial size. Parameterized AC0, or para-AC0, can be viewed as an analog of AC0 in the
parameterized world. There is some recent interest in para-AC0 [13, 5, 11, 6]. Just like whether p-HALT ∈
FPT, the question of whether p-HALT ∈ para-AC0 can be related to open problems in proof complexity
and descriptive complexity as well. Following [10], it is not hard to see that p-HALT ∈ para-AC0 implies
that there is a logic capturing (+,×)-invariant FO. Recall that para-AC0 ⊆ FPT [13], and there is good
evidence that p-HALT /∈ FPT [9], so the conjecture below seems highly plausible.

Conjecture 1.1. p-HALT /∈ para-AC0.

Given that AC0 is well understood, one would expect that Conjecture 1.1 should be within our reach.
In fact, [11] establishes (unconditional) para-AC0 lower bounds for many well-studied parameterized prob-
lems. It also shows that p-HALT is not in a natural subclass of para-AC0. However, we show that settling
Conjecture 1.1 either in the positive or the negative leads to the resolution of long standing open problems
in complexity theory. On the positive side, we observe that if nondeterministic exponential time with linear
exponent NE is contained in the linear time hierarchy LINH, then p-HALT ∈ para-AC0. This connection
can be further tightened by considering the following variant of p-HALT.

p-HALT=

Instance: n ∈ N in unary and an NTM M.
Parameter: |M|.

Problem: Decide whether M has an accepting run
on the empty input tape of exactly n steps.

Theorem 1.2.

(i) p-HALT= ∈ para-AC0 if and only if NE ⊆ LINH.

(ii) p-HALT= ∈ para-AC0 implies p-HALT ∈ para-AC0.

Thus, to settle Conjecture 1.1 one might try to first separate NE from LINH. Perhaps surprisingly, we
tie this question to the provability of the MRDP (for Matiyasevich-Robinson-Davis-Putnam) theorem [12]
in bounded arithmetic. The MRDP theorem states that every Σ1-definable arithmetic relation of natural
numbers is Diophantine. It has been long realized that proving MRDP in certain fragments of arithmetic
has complexity-theoretic consequences. Based on [18], Wilkie [?] observed that, assuming NP 6= coNP,
MRDP is not provable in I∆0, the fragment of Peano arithmetic where the induction scheme only applies
to ∆0-formulas.

We show that:

Theorem 1.3. If I∆0 proves MRDP for small numbers, then NE 6⊆ LINH.

Basically, I∆0 proves MRDP for small numbers1 means that the equivalence of any ∆0-formula ϕ(x̄)
to some Diophantine formula is proved in I∆0 for all x̄ of logarithmic order. Model-theoretically, the
equivalence holds in any I∆0-model for all x̄ from the initial segment of numbers x such that 2x exists,
while proof-theoretically, we allow the I∆0-proof to use exponentiation, but only once. Gaifman and Dim-
itracopoulos [15] showed that I∆0 + ∀x∃y (2x = y) does prove MRDP. Kaye [17] proved MRDP using
only induction for bounded existential formulas plus an axiom stating the totality of a suitable function
of exponential growth. It is a standing open question [15] whether I∆0 or I∆0 plus the totality of some
subexponential function can prove MRDP. In fact, if the latter holds, then I∆0 proves MRDP for small
numbers.

Our proof of Theorem 1.3 relies on an analysis of the parameterized model-checking problem for
FO(+,×), i.e., first-order logic on arithmetical structures:

1See Section 5 for the precise definition.
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p-MC
(
FO(+,×)

)
Instance: n ≥ 2 in unary and ϕ ∈ FO(+,×).

Parameter: |ϕ|.
Problem: Decide whether

(
[n],+,×

)
|= ϕ.

Theorem 1.4. p-MC
(
FO(+,×)

)
/∈ para-AC0.

Could Conjecture 1.1 be false? We establish a connection between p-HALT ∈ para-AC0 and the
existence of AC0-bi-immune sets in NP. Let C be a complexity class. A problem Q ⊆ {0, 1}∗ is C-bi-
immune, if neither Q nor {0, 1}∗ \ Q contains an infinite subset that belongs to C. In [9] it is shown that
p-HALT ∈ FPT implies that NP does not have any P-bi-immune set. We prove a similar result with regard
to AC0:

Theorem 1.5. If p-HALT ∈ para-AC0, then NP contains no AC0-bi-immune set.

An infinite set Q ⊆ {0, 1}∗ is AC0-immune if every infinite subset of Q is not in AC0. In particular,
every AC0-bi-immune set is also AC0-immune. The question of whether NP has an AC0-immune set is an-
other long standing open question and has been asked once it became known that the separations of standard
time and space hierarchy theorems hold with bi-immunity, or, equivalently [4], almost everywhere [16, 1].
While Zimand [23] obtained some partial positive answers, Allender and Gore showed [2] that the answer
to this question relativizes. That is, with the presence of different oracles, NP might or might not have AC0-
immune sets. Their oracle constructions can be adapted to the case of AC0-bi-immunity. So Theorem 1.5
gives some evidence that also a negative solution of Conjecture 1.1 could be hard to obtain.

Organization of the paper. We recall some basic notions of complexity and logic in Section 2. The
connection between p-HALT and the complexity classes NE and LINH is then discussed in Section 3.
After that, Section 4 proves the para-AC0 lower bound for the problem p-MC

(
FO(+,×)

)
. Building on this

lower bound, in Section 5 we show that proving MRDP in an appropriate fragment of arithmetic separates
NE from LINH. Section 6 is devoted to a proof of Theorem 1.5. Finally, we conclude in Section 7.

2. Preliminaries

N denotes the set of natural numbers, i.e., non-negative integers. For every n ∈ N let [n] := {0, . . . , n−1}.
The length of n ∈ N, i.e., the length of the binary expansion n, is |n| := dlog(n+ 1)e.

We assume that the reader is familiar with basic notions in logic and complexity theory, so the following
only covers those central to our purposes.

2.1. Complexity. We view (classical) problems as subsets of {0, 1}∗, the set of binary strings; the length
of a binary string s is denoted |s|. For n ∈ N we let 1n denote the binary string consisting of n many 1’s.
We use multitape Turing machines as our basic model of computation. When considering dlogtime Turing
machines, i.e. deterministic machines running in time O(log n), it is understood that they access their
input via an address tape (cf. e.g. [7]). As usual, P and NP denote deterministic and nondeterministic
polynomial time nO(1), and E and NE denote deterministic and nondeterministic exponential time with
linear exponent, i.e., 2O(n). The linear time hierarchy LINH is the set of problems acceptable by alternating
Turing machines in linear time O(n) with O(1) alternations. Clearly,

LINH ⊆ E ⊆ NE.

Following [7] we define (dlogtime uniform) AC0 as the set of problems decided by AC0-circuit families(
Cn
)
n∈N:

– Cn is a circuit (with ∧,∨,¬ gates and unbounded fan-in) with n variables, size ≤ nc and depth ≤ d,
where c, d ∈ N are two constants independent of n;

– there is a dlogtime Turing machine which given 〈1n, i, b〉 where n, i ∈ N and b ∈ {0, 1} decides
whether the i-th bit of the binary encoding of Cn is b.
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Here, for two binary strings s = s0 · · · s|s|−1 and r = r0 · · · r|r|−1 we use a standard pairing function

〈s, r〉 := s0s0 · · · s|s|−1s|s|−101r0r0 · · · r|r|−1r|r|−1, (1)

and similarly for more arguments.
For s ∈ {0, 1}∗ let num(s) be the natural number with binary expansion 1s. For a problem Q let

un(Q) :=
{

1num(s) | s ∈ Q
}
.

The last statement of the following is [2, Proposition 5], and the first two are trivial:

Proposition 2.1 ([2]). Let Q be a problem. Then:

(i) Q ∈ NE if and only if un(Q) ∈ NP.

(ii) Q ∈ E if and only if un(Q) ∈ P.

(iii) Q ∈ LINH if and only if un(Q) ∈ AC0.

A parameterized problem is a pair (Q, κ) of an underlying classical problemQ ⊆ {0, 1}∗ and a polyno-
mial time computable parameterization κ : {0, 1}∗ → N mapping an instance s ∈ {0, 1}∗ to its parameter
κ(s) ∈ N. As mentioned in the Introduction, the central parameterized complexity class in this paper is
para-AC0. Instead of its original definition using the para-operator of [14], we use the following character-
ization of para-AC0.

Proposition 2.2 ([11]). Let (Q, κ) be a parameterized problem such that Q is decidable and κ is com-
putable by an AC0-circuit family. Then the following are equivalent.

(i) (Q, κ) ∈ para-AC0.

(ii) There is a family (Cn,k)n,k∈N of circuits such that

- there is a computable function f : N → N and constants c, d ∈ N such that for all n, k ∈ N
the circuit Cn,k has n variables, size ≤ f(k) · nc, and depth ≤ d;

- for all s ∈ {0, 1}∗ we have
s ∈ Q ⇐⇒ C|s|,κ(s)(s) = 1;

- there is a deterministic Turing machine which given as input
〈
1n, 1k, i, b

〉
where n, k, i ∈ N

and b ∈ {0, 1} decides in time g(k) + O(log n) whether the i-th bit of the binary encoding of
Cn,k is b, where g : N→ N is a computable function.

(iii) There is a computable h : N → N and an AC0-circuit family (Cn)n∈N such that for all s ∈ {0, 1}∗
with |s| > h(κ(s)): s ∈ Q⇐⇒ C|s|(s) = 1.

2.2. Logic. A vocabulary τ is a finite set of relation symbols and constants. Each relation symbol has
an arity. A τ -structure A consists of a nonempty universe A, an r-ary relation RA ∈ Ar for each relation
symbol R ∈ τ of arity r, and an element cA ∈ A for each constant c ∈ τ .

The set of τ -formulas ϕ of first-order logic FO is built up from atomic τ -formulas using Boolean
connectives ¬,∨,∧ and the existential ∃ and universal ∀ quantifiers. An atomic τ -formula is of the form
either t0 = t1 or Rt0 . . . tr−1, where t0, . . . , tr−1 are either variables or constants in τ , and where R is an
r-ary relation symbol in τ . When the vocabulary τ is clear from context, we simply call ϕ a formula. In
case it has no free variables, then ϕ is a sentence. On the other hand, writing ϕ as ϕ(x0, . . . , xk−1) means
that the free variables in ϕ are among x0, . . . , xk−1. And A |= ϕ(a0, . . . , ak−1) for a τ -structure A and
a0, . . . , ak−1 ∈ A means that the assignment of a0, . . . , ak−1 to x0, . . . , xk−1 satisfies ϕ in A. Formally,
ϕ(a0, . . . , ak−1) is a sentence in the language τ plus the ai’s as new constants understood to be interpreted
by themselves in A.
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An arithmetical structure is of the form either
(
N,+,×

)
or
(
[n],+, ×

)
for some n ≥ 2.2 More

precisely, they are τarith-structures A with τarith = {+,×, 1} where both + and × are ternary relations,
and where 1 is a constant. The universe of A is either N or [n] with n ≥ 2,

+A :=
{

(a, b, c) ∈ A3
∣∣ a+ b = c

}
,

×A :=
{

(a, b, c) ∈ A3
∣∣ a× b = c

}
,

and 1A = 1. A binary string s = s0 . . . sn−1 with n ≥ 2 can be naturally viewed as the arithmetical
structure

(
[n],+,×

)
expanded with a unary relation ONE s containing those positions i ∈ [n] with si = 1.

More precisely, we define the string structure S(s) of s:

S(s) :=
(
[n],+,×,ONE s

)
,

where ONE s =
{
i ∈ [n]

∣∣ si = 1
}
.

A τarith-formula is also called an FO(+,×)-formula. To improve readability, atomic FO(+,×)-
formulas +t1t2t3 and ×t1t2t3 are written as t3 = t1 + t2 and t3 = t1 × t2. Similarly, FO(+,×,ONE )-
formulas refer to the FO-formulas of vocabulary τarith ∪ {ONE}. It is well known that definability in
FO(+,×,ONE ) coincides with computability by

(
dlogtime uniform

)
AC0-circuit families:

Theorem 2.3 ([7]). A problem Q is in AC0 if and only if there is an FO(+,×,ONE )-sentence ϕ such that
for every string s ∈ {0, 1}∗ with |s| ≥ 2

s ∈ Q ⇐⇒ S(s) |= ϕ.

2.3. Bounded formulas and the MRDP Theorem. Let p(x̄) be a polynomial with natural coefficients. It
is straightforward to define a quantifier-free formula polyp(x̄, y, z̄) such that for every ā ∈ N|x̄| and b ∈ N

p(ā) = b ⇐⇒
(
N,+,×

)
|= ∃z̄ polyp(ā, b, z̄).

For example, for p(x) = x2
1 + x2 + 1 we let

polyp := (z1 = x1 × x1) ∧ (z2 = z1 + x2) ∧ (y = z2 + 1).

Then for every formula ϕ(x̄, y) and every polynomial p(x̄) with natural coefficients we use ∃y<p ϕ to
denote the self-evident formula

∃y
(
∃x′∃z̄ polyp(x̄)+x′+1(x̄, x′, y, z̄) ∧ ϕ

)
.

Here, x′ is a new variable distinct from x̄, y and z̄. Similarly we can define ∀y<p ϕ as

∀y
(
∃x′∃z̄ polyp(x̄)+x′+1(x̄, x′, y, z̄)→ ϕ

)
.

We call ∃y<p and ∀x<p bounded quantifiers.

Definition 2.4. An FO(+,×)-formula ϕ is in ∆0 if it can be constructed from atomic FO(+,×)-formulas
using the Boolean connectives and the bounded quantifiers.

Theorem 2.5 (Gödel). Let f : N → N be a computable function. Then there is a ∆0-formula ϕf (x, y, z̄)
such that for every a, b ∈ N

f(a) = b ⇐⇒
(
N,+,×

)
|= ∃z̄ ϕf (a, b, z̄).

We use the following version of the MRDP theorem.

2Thus, 1 is always an element in [n].
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Theorem 2.6. For every ∆0-formula ϕ(x̄) there are two polynomials p(x̄, ȳ) and q(x̄, ȳ) with natural
coefficients such that (

N,+,×
)
|= ∀x̄

(
ϕ(x̄)↔ ∃ȳ p(x̄, ȳ) = q(x̄, ȳ)

)
,

where p(x̄, ȳ) = q(x̄, ȳ) denotes the formula

∃w∃z̄∃z̄′
(
polyp(x̄, ȳ, w, z̄) ∧ polyq(x̄, ȳ, w, z̄

′)
)
.

Since both polyp and polyq are quantifier-free, Theorem 2.6 implies that the formula ϕf in Theorem 2.5
can be further simplified:

Corollary 2.7. Let f : N → N be a computable function. Then there is a quantifier-free formula
ϕf (x, y, z̄) such that for every a, b ∈ N

f(a) = b ⇐⇒
(
N,+,×

)
|= ∃z̄ ϕf (a, b, z̄).

3. p-HALT, NE, and LINH

Recall that E and NE denote deterministic and nondeterministic exponential time with with linear exponent,
i.e., the classes of problems decidable by deterministic/nondeterministic Turing machines in time 2O(n).
Whether p-HALT and p-HALT= are fixed-parameter tractable is closely related to the relationship between
E and NE.

Theorem 3.1 ([3, 8]).

(i) p-HALT= ∈ FPT if and only if E = NE.

(ii) p-HALT= ∈ FPT implies p-HALT ∈ FPT.

As a matter of fact, the proof of Theorem 3.1 can be adapted to show Theorem 1.2.

Proof of Theorem 1.2: (i) Consider the classical problem:

Q
Instance: n ∈ N in binary and an NTM M.
Problem: Decide whether M accepts the empty in-

put tape in exactly n steps.

Clearly, Q ∈ NE. Thus, assuming NE ⊆ LINH, we conclude that un(Q) ∈ AC0 by Proposition 2.1 (iii).
Observe that

un(Q) =
{

1num(〈n,M〉)
∣∣∣ n ∈ N in binary and the NTM M accepts

the empty input tape in exactly n steps
}
,

where ∣∣∣1num(〈n,M〉)
∣∣∣ = `, where ` is the natural number

with binary expansion 1 〈n,M〉

= O
(

2|〈n,M〉|
)

= O
(

22·|M| · n2
)

(
by n in binary and (1)

)
.

Then from the circuits witnessing un(Q) ∈ AC0, it is routine to construct a family
(
Cn,k

)
n,k∈N of circuits

such that

– for every n, k ∈ N, the circuit Cn,k has constant depth and size 2O(|M|) · nO(1);
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– for every n ∈ N and every NTM M, the machine M accepts the empty input tape in exactly n steps
if and only if Cn,|M|(〈n,M〉) = 1;

– the circuit Cn,k is easy to construct from n and k.

Thus, Proposition 2.2 implies that p-HALT= ∈ para-AC0, which establishes the direction from right to left
in (i).

Conversely, assume that p-HALT= ∈ para-AC0. Let Q ⊆ {0, 1}∗ be a problem in NE. To show that
Q ∈ LINH, it suffices to prove un(Q) ∈ AC0 again by Proposition 2.1 (iii). Recall that

un(Q) =
{

1num(s)
∣∣ s ∈ Q} .

Also observe that
num(s) 6= num(s′) for every s, s′ ∈ Q with s 6= s′. (2)

As Q ∈ NE there is an NTM M and a constant c ∈ N such that M decides whether s ∈ Q in time 2c·|s| and
every run of M on input s has length at most 2c·|s|. It is clear that

2c·|s| ≤ num(s)c. (3)

We define a nondeterministic Turing machine M∗ that started with empty input tape runs as follows:

1. guess a string t ∈ {0, 1}∗

2. simulate M on input t for num(t)c many steps

3. if M rejects, then reject

4. make some additional dummy steps such that
so far the total running time of M∗ is 2 ·
num(t)c − 1

5. accept.

By (2) and (3) we have for every s ∈ {0, 1}∗:

s ∈ Q ⇐⇒ M∗ accepts the empty input tape
in exactly 2 · num(s)c many steps. (4)

Now, we apply the assumption that p-HALT ∈ para-AC0 to obtain a family of circuits(
Cn,|M∗|

)
n∈N

with the following properties.

(C1) The circuits Cn,|M∗| have constant depth and size bounded by f(|M∗|) · nO(1) for a computable
function f : N→ N. But since M∗ is a fixed machine, we have

∣∣Cn,|M∗|∣∣ = nO(1).

(C2) For every n ∈ N the NTM M∗ accepts the empty input tape in exactly n steps if and only if
Cn,|M∗|(〈1n,M∗〉) = 1.

(C3) We can construct the circuits Cn,|M∗| easily from n.

Then we define for every n ∈ N a circuit Dn(t) with t ∈ {0, 1}n as follows. For s ∈ {0, 1}∗ with
num(s) = n we have

Dn
(

1num(s)
)

:= C2·num(s)c,|M∗|

(〈
12·num(s)c ,M∗

〉)
.

Note that 2 · num(s)c = 2 · nc. For t 6= 1num(s) let

Dn(t) := 0.
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It is routine to see that the circuits (
Dn
)
n∈N

can be chosen in AC0. Moreover, for every t ∈ {0, 1}n

Dn(t) = 1

⇐⇒ for some s ∈ {0, 1}∗: t = 1num(s) and

C2·num(s)c,|M∗|

(〈
12·num(s)c ,M∗

〉)
= 1

by (C2)⇐⇒ for some s ∈ {0, 1}∗: t = 1num(s) and M∗ accepts the
empty input tape in exactly 2 · num(s)c steps

by (4)⇐⇒ for some s ∈ {0, 1}∗: t = 1num(s) and s ∈ Q
⇐⇒ for some s ∈ {0, 1}∗: t = 1num(s) and 1num(s) ∈ un(Q)

⇐⇒ t ∈ un(Q).

In other words,
(
Dn)n∈N decides un(Q). Hence un(Q) ∈ AC0.

(ii) follows easily from the equivalence that for every n ∈ N and every NTM M

M accepts the empty input tape in at most n steps
⇐⇒ M accepts the empty input tape

in exactly n′ steps for some n′ ≤ n. 2

Remark 3.2. The reader might notice that in the proof of the direction from left to right in (i) all we need
is that for every fixed NTM M the problem

Instance: n ∈ N in unary.
Problem: Decide whether M has an accept

run on the empty input tape of ex-
actly n steps.

is in AC0. Or equivalently, we might say that p-HALT= is in nonuniform slicewise AC0. Hence, NE =
LINH if an only if nonuniform slicewise AC0 contains p-HALT=. In contrast, as noted in the Introduction,
this class trivially contains p-HALT.

4. The complexity of p-MC
(
FO(+,×)

)
In this section we prove Theorem 1.4. Some further preparations are in order.

Elementary extension. Recall that a structureM is an elementary extension of
(
N,+,×

)
if N ⊆M , and

if for every FO(+,×)-formulas ϕ(x̄) and n̄ ∈ N|x̄| we have(
N,+,×

)
|= ϕ(n̄) ⇐⇒ M |= ϕ(n̄). (5)

Furthermore, if N (M , thenM is a proper elementary extension of
(
N,+,×

)
. It is well known that such

anM exists.

Let ϕ(x̄) be a formula and u a variable not occurring in ϕ(x̄). Then the formula ϕ<u(x̄) is obtained
from ϕ(x̄) by replacing every quantifier ∃y and ∀y by the bounded one ∃y<u and ∀y<u.

Lemma 4.1. Let f : N → N be a computable function. Then there is a formula χf (x, y) satisfying the
following two properties.
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(i) For every n, b ∈ N

f(n) = b ⇐⇒
(
N,+,×

)
|= χf (n, b).

(ii) LetM be a proper elementary extensionM of
(
N,+,×

)
and a ∈ M \ N. Then for every n ∈ N

and every b ∈M with 3 b < a

f(n) = b ⇐⇒ M |= χ<af (n, b).

Proof: By Corollary 2.7, there is a quantifier-free formula ϕf (x, y, z̄) such for every n, b ∈ N

f(n) = b ⇐⇒
(
N,+,×

)
|= ∃z̄ ϕf (n, b, z̄). (6)

We define
χf (x, y) := ∃z̄ ϕf (x, y, z̄).

And hence (6) proves (i). Note with (5) this also implies thatM |= χf (n, f(n)) for every n ∈ N.

Since ϕf is quantifier-free, the formula ϕ<uf (x, y, z̄) is equivalent to ϕf (x, y, z̄) ∧ u = u. Therefore4

χ<uf (x, y) ≡ ∃z̄<u ϕf (x, y, z̄).

Let n ∈ N and b := f(n) ∈ N. Then (6) implies that
(
N,+,×

)
|= ϕf (n, b, m̄) for some m̄ ∈ N|z̄|. It

follows that

M |=ϕf (n, b, m̄) ∧ a = a, i.e., M |= ϕ<af (n, b, m̄).

ThusM |= ∃z̄<a ϕ<af (n, b, z̄).
Conversely, let n ∈ N and b ∈M with b < a andM |= ∃z̄<a ϕ<af (n, b, z̄). Thus

M |= ∃z̄ ϕf (n, b, z̄), i.e., M |= χf (n, b).

As we have already seen thatM |= χf (n, f(n)), so if b 6= f(n), thenM satisfies

∃y1∃y2

(
y1 6= y2 ∧ χf (x, y1) ∧ χf (x, y2)

)
.

By (5), also
(
N,+,×

)
satisfies this sentence. But this contradicts (6), as f(n) is unique. 2

Let n ∈ N. It is easy to write a formula ψn(x) such that for every elementary extensionM of
(
N,+,×

)
and b ∈M

M |= ψn(b) ⇐⇒ b = n.

Then for every formula ϕ(x, ȳ) we use ϕ(n, ȳ) to denote the formula

∃x
(
ψn(x) ∧ ϕ(x, ȳ)

)
.

Hence, for every b̄ ∈M |ȳ| we have the equivalence

M |= ϕ(n, b̄) ⇐⇒ M |= ϕ(n, b̄).

Moreover, ifM is a proper elementary extension, a ∈M \ N, and b̄ < a,5 then

M |= ϕ<a(n, b̄) ⇐⇒ M |= ϕ<a(n, b̄). (7)

3The natural order < on N can be FO-defined in
(
N,+,×

)
by the formula ϕ<(x, y) = ∃z x+z+1 = y. Thus ϕ< also defines

an order on M , which is an extension of <. For simplicity we denote this order again by <.
4∃z̄<u means ∃z0<u . . . ∃zk−1<u, where z̄ = z0 . . . zk−1.
5b̄ < a is understood as bi < a for every i ∈ [k], where b̄ = b0, . . . , bk−1.
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Interpretation. Let τ and τ ′ be two vocabularies with τ =
{
R0, . . . , Rm−1, c1, . . . , c`−1

}
, where each

Ri is an ri-ary relation symbol, and each ci is a constant. An FO-interpretation I of τ in τ ′ of width w
consists of FO[τ ′]-formulas

ϕuni(x̄), ϕR0

(
x̄0, . . . , x̄r1−1

)
,

. . . , ϕRm−1

(
x̄0, . . . , x̄rm−1

)
, ϕc0(x̄), . . . , ϕc`−1

(x̄),

where all tuples x̄, x̄0, . . . , x̄rm−1 have length w. In a τ ′-structure A the interpretation I induces the
τ -structure AI with universe

AI :=
{
ā ∈ A`

∣∣ A |= ϕuni(ā)
}
6= ∅,

with

RA
I

i :=
{

(ā0, . . . ,āri−1) ∈ (AI)ri∣∣ A |= ϕRi
(ā0, . . . , āri−1)

}
,

and with
cA
I

i := ā where ā is the unique element in AI with A |= ϕci [ā].

In case the set defining AI is empty, or there are more than one tuple ā satisfying ϕci , then the structure
AI is undefined.

The following is standard.

Lemma 4.2. Let I be an interpretation of τ in τ ′. Then for every FO[τ ]-sentence ϕ there is an FO[τ ′]-
sentence ϕI such that for all τ ′-structures A such that AI is defined we have

AI |= ϕ ⇐⇒ A |= ϕI .

Among others, the next lemma implies that for every fixed d ≥ 1 the string structures S
(
1n

d)
can be in-

terpreted in the string structures S(1n). Its proof can be founded in [22, Appendix] and in [7, Lemma 10.5].

Lemma 4.3. For every d ∈ N there is an interpretation Id of width d such that for every n ≥ 2 the
structure

(
[n],+,×

)Id is defined and isomorphic to
(
[nd],+,×

)
.

Let n ≥ 2. It is often very useful to consider the BIT predicate, a binary relation, on the arithmetical
structures

(
[n],+,×

)
. That is

BIT [n] =
{

(i, j) ∈ [n]2
∣∣ the j-th bit

of the binary expansion of i is 1
}
.

We omit the superscript [n] in case it is clear from the context. It turns out that the BIT predicate is
definable in FO(+,×).

Proposition 4.4.
[
cf. [22, Theorem 3.2]

]
There is a formula ϕ(x, y) such that for every n ≥ 2 and

i, j ∈ [n] (
[n],+,×

)
|= ϕ(i, j) ⇐⇒ (i, j) ∈ BIT .

Now we are ready to prove Theorem 1.4, which for the reader’s convenience is repeated below.

Theorem 4.5. p-MC
(
FO(+,×)

)
/∈ para-AC0.

Proof: Towards a contradiction, let us assume that p-MC
(
FO(+,×)

)
∈ para-AC0. By Proposition 2.2 (iii)

and Theorem 2.3, there is an increasing computable function h : N→ N and an FO-sentence sat such that
for every n ∈ N and ϕ ∈ FO(+,×) with n ≥ h(num(ϕ)) we have(

[n],+,×
)
|= ϕ ⇐⇒ S

(
〈1n, ϕ〉

)
|= sat.

11



Then, using Lemma 4.3 and Proposition 4.4 it is routine to define an FO(+,×)-formula form-sat(x) such
that

S
(
〈1n, ϕ〉

)
|= sat ⇐⇒

(
[n],+,×

)
|= form-sat

(
num(ϕ)

)
for n ≥ h(num(ϕ)) ≥ num(ϕ).

By definition, form-sat<u(x) is obtained from form-sat(x) by replacing every quantifier occurrence of
the form ∀z and ∃z by ∀z<u and ∃z< u. Thus(

[n],+,×
)
|= form-sat

(
num(ϕ)

)
⇐⇒

(
N,+,×

)
|= form-sat<n

(
num(ϕ)

)
for every FO(+,×)-sentence ϕ and every n ≥ 1.

Since h : N→ N is computable, Corollary 2.7 implies that there is a formula h-bound(x, y) such that

n ≥ h(num(ϕ)) ⇐⇒
(
N,+,×

)
|= h-bound

(
num(ϕ), n

)
for every n ∈ N and every FO(+,×)-sentence ϕ.

Combining all the above together, for every FO(+,×)-sentence ϕ we obtain a sentence

h-satϕ := ∀u
(
h-bound(num(ϕ), u)

→
(
ϕ<u ↔ form-sat<u(num(ϕ))

))
.

Thereby,
(
N,+,×

)
|= h-satϕ.

Now letM be a proper elementary extension of
(
N,+,×

)
and a ∈M \N. In particular,M |= n < a

for every n ∈ N. As a consequence, for every ϕ

M |= h-bound
(
num(ϕ), a

)
.

By our definition of h-satϕ,
(
N,+,×

)
|= h-satϕ, and by (5)

M |=
(
ϕ<a ↔ form-sat<a(num(ϕ))

)
. (8)

As stated in [21, proof of Proposition 3] this contradicts Tarski’s undefinability of truth. We include the
details as they are omitted in [21].

It is clear that the function which for every FO(+,×)-formula ϕ(x) maps num(ϕ) to

num(ϕ(num(ϕ)))

is computable. So by Lemma 4.1, there is a formula sub(x, y) with the following properties.

(S1) Let ϕ(x) be an FO(+,×)-formula and n ∈ N. Then(
N,+,×

)
|= sub

(
num(ϕ), n

)
⇐⇒ n = num(ϕ(num(ϕ))).

(S2) For every formula ϕ(x) and every b ∈M with b < a we have

M |= sub<a(num(ϕ), b)

⇐⇒ b = num(ϕ(num(ϕ))).

Let θ := χ(num(χ)), where

χ(x) = ∀y
(
sub(x, y)→ ¬form-sat(y)

)
12



and note
num(θ) = num(χ(num(χ))). (9)

Then we can deduce

M |= θ<a

⇐⇒ M |= ∀y<a
(
sub<a(num(χ), y)→ ¬form-sat<a(y)

)(
by (7)

)
⇐⇒ M |=

(
sub<a(num(χ), b)→ ¬form-sat<a(b)

)
for all b ∈M with b < a

⇐⇒ M |= ¬form-sat<a(num(θ))
(
by (S2) and (9)

)
⇐⇒ M |= ¬θ<a

(
by (8)

)
.

This is the desired contradiction. 2

5. The provability of MRDP and LINH vs. NE

Definition 5.1. A set of FO(+,×)-sentences T is often called a theory. A theory T is true if(
N,+,×

)
|= ϕ

for every ϕ ∈ T . T is Π1 if every sentence in T is of the form ∀x̄ψ(x̄) where ψ is a ∆0-formula.

Theorem 5.2 (Parikh [20]). Let T be a Π1-theory and ϕ(x̄, ȳ) a ∆0-formula with T ` ∀x̄∃ȳ ϕ(x̄, ȳ). Then
there is a polynomial p(x̄) with natural coefficients such that

T ` ∀x̄∃ȳ<p(x̄) ϕ(x̄, ȳ).

It is well known
(
see, e.g., [15]

)
that there is a ∆0-formula exp(x, y) such that for every n,m ∈ N(

N,+,×
)
|= exp(n,m) ⇐⇒ 2n = m.

Again for simplicity we identify the formula exp(x, y) with 2x = y.

Definition 5.3. Let T be a theory. We say that T proves MRDP if for every ∆0-formula ϕ(x̄) there are
two polynomials p(x̄, ȳ) and q(x̄, ȳ) with natural coefficients such that

T ` ∀x̄
(
ϕ(x̄)↔ ∃ȳ p(x̄, ȳ) = q(x̄, ȳ)

)
.

As mentioned in the Introduction, Gaifman and Dimitracopoulos showed that I∆0 + ∀x∃y exp(x, y)
proves MRDP. Additionally they observed [15, p.204] that the existential quantifier ∃ȳ can be bounded by
22p(x̄)

for some polynomial p(x̄) (depending on ϕ). As noted by Wilkie [?] this bound could be improved
to p(x̄) if MRDP would be provable in I∆0 alone

(
by Parikh’s theorem 5.2

)
. In this case LINH equals

nondeterministic linear time NLIN and thus NE 6⊆ LINH by the nondeterministic time hierarchy theorem.
Theorem 1.3 derives this conclusion from a weaker provability assumption, defined next.

Definition 5.4. Let T be a theory. We say that T proves MRDP for small numbers if for every k ∈ N
and every ∆0-formula ϕ(x̄) = ϕ(x0, . . . , xk−1) there are two polynomials p(x̄, ȳ) and q(x̄, ȳ) with natural
coefficients such that

T ` ∀x̄
((∧

i∈[k] ∃y 2xi = y
)

→
(
ϕ(x̄)↔ ∃ȳ p(x̄, ȳ) = q(x̄, ȳ)

))
.
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Intuitively, provability of MRDP for small numbers, say in I∆0, seems to be much weaker than prov-
ability in I∆0. Indeed, I∆0 proves MRDP for small numbers if I∆0+∀x∃y

(
f(x) = y

)
proves MRDP for

some subexponential f .6 It is asked in [15, p.188] whether this holds for f(x) = xlog x or f(x) = xlog log x

etc.
We prove the following slightly more general version of Theorem 1.3.

Theorem 5.5. Let T be a true Π1-theory. Moreover, assume that T is recursively enumerable. If T proves
MRDP for small numbers, then NE 6⊆ LINH.

The proof uses the following two lemmas, both easy to show.

Lemma 5.6. The problem

Instance: A polynomial p(x) and n ∈ N.
Problem: Output p(n).

can be computed in time (
|p|+ log n

)O(1)
,

where we encode p by a list of its natural coefficients, and |p| is the length of this encoding. (As conse-
quences, the degree of p is bounded by O(|p|), and any coefficient in p is bounded by O(2|p|)).

Lemma 5.7. The following functions are all computable by AC0-circuit families.

(i) (x, y) 7→ 〈x, y〉, 〈x, y〉 7→ x, 〈x, y〉 7→ y, where x, y ∈ {0, 1}∗.

(ii) x 7→ num(x) for x ∈ {0, 1}∗.

(iii) 1n 7→ n for n ∈ N, that is, mapping every unary n to its binary expansion.

(iv) The mapping (n, x) 7→ 1n, where n ∈ N and x ∈ {0, 1}∗ with n ≤ |x|O(1).

Proof of Theorem 5.5: Assume that both T proves MRDP for small numbers and NE ⊆ LINH. Our goal
is to derive a contradiction to Theorem 1.4. To that end, let n ≥ 2 and ϕ be an FO(+,×)-sentence, i.e.,(
1n, ϕ

)
is an instance of the problem p-MC

(
FO(+,×)

)
. Then for the ∆0-formula ϕ<x, we have(

[n],+,×
)
|= ϕ ⇐⇒

(
N,+,×

)
|= ϕ<n. (10)

Claim 1. There are polynomials pϕ(x, ȳ), qϕ(x, ȳ), and uϕ(x, z) such that

T ` ∀x∀z
(

2x = z →(
ϕ<x ↔ ∃ȳ<uϕ(x, z) pϕ(x, ȳ) = qϕ(x, ȳ)

))
.

Moreover, pϕ(x, ȳ), qϕ(x, ȳ), and uϕ(x, z) can be computed from ϕ.

Proof of the claim: Since T proves MRDP for small numbers and ϕ<x ∈ ∆0, there are polynomials
pϕ(x, ȳ) and qϕ(x, ȳ) such that

T ` ∀x∀z
(

2x = z →(
ϕ<x ↔ ∃ȳ pϕ(x, ȳ) = qϕ(x, ȳ)

))
. (11)

6i.e., for any n ∈ N, there exists an m ∈ N such that I∆0 proves that ∀x≥m fn(x) ≤ 2x. Here, fn(x) denotes the value
f(f(· · · f︸ ︷︷ ︸

n times

(x) · · · )).
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This shows that for any polynomial u(x, z) with natural coefficients we have

T ` ∀x∀z
(

2x = z

→
(
∃ȳ<u(x, z) pϕ(x, ȳ) = qϕ(x, ȳ)→ ϕ<x

))
. (12)

Next, observe that the sentence

∀x∀z
(

2x = z →
(
ϕ<x → ∃ȳ pϕ(x, ȳ) = qϕ(x, ȳ)

))
is equivalent to

∀x∀z∃ȳ
(
¬2x = z ∨ ¬ϕ<x ∨ pϕ(x, ȳ) = qϕ(x, ȳ)

)
︸ ︷︷ ︸

a ∆0-formula

.

Thus by Theorem 5.2 and (11) there is a polynomial uϕ(u, z) with natural coefficients such that

T ` ∀x∀z∃ȳ<uϕ(x, z)(
¬2x = z ∨ ¬ϕ<x ∨ pϕ(x, ȳ) = qϕ(x, ȳ)

)
,

i.e.,

T ` ∀x∀z
(

2x = z →(
ϕ<x → ∃ȳ<uϕ(x, z) pϕ(x, ȳ) = qϕ(x, ȳ)

))
.

Together with (12)

T ` ∀x∀z
(

2x = z →(
ϕ<x ↔ ∃ȳ<uϕ(x, z) pϕ(x, ȳ) = qϕ(x, ȳ)

))
.

Since T is recursively enumerable, we conclude that pϕ, qϕ, and uϕ all can be computed from ϕ by the
Completeness Theorem. a
Claim 2. There is a computable function f : N → N and an NTM M such that for every n ≥ 2 and
FO(+,×)-formula ϕ the machine M decides whether

(
[n],+,×

)
|= ϕ in time

f(|ϕ|) · nO(1).

Proof of the claim: By Claim 1 we can compute from ϕ three polynomials pϕ, qϕ, and uϕ such that(
N,+,×

)
satisfies

∀x∀z
(

2x = z →
(
ϕ<x ↔ ∃ȳ<uϕ(x, z)

pϕ(x, ȳ) = qϕ(x, ȳ)
))
. (13)

Let
s := uϕ

(
n, 2n

)
.

Then by (10) and (13) we conclude that
(
[n],+,×

)
|= ϕ if and only if there is some m̄ ∈ [s]

|ȳ| such that

pϕ(n, m̄) = qϕ(n, m̄).

By first guessing m̄, Lemma 5.6 implies that all these can be tested in nondeterministic time(
|uϕ|+ |pϕ|+ |qϕ|+ n

)O(1)
.

This proves the claim. a
Without loss of generality, we choose the function f : N → N in Claim 2 to be time constructible and

f(n) ≥ 2n for every n ∈ N. It follows that the following classical problem Q is in NE.
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Q
Instance: n ≥ 2 in binary and ϕ ∈ FO(+,×) with

n ≥ f(|ϕ|).
Problem: Decide whether

(
[n],+,×

)
|= ϕ.

Since NE = LINH by assumption, Q ∈ LINH, and thus

un(Q) =
{

1num(〈n,ϕ〉)
∣∣∣ n ≥ f(|ϕ|) and

(
[n],+,×

)
|= ϕ

}
is in AC0 by Proposition 2.1 (iii).

Observe that Lemma 5.7 implies that the mapping

〈1n, x〉 7→ 1num(〈n,x〉),

where n ∈ N and x ∈ {0, 1}∗ with n ≥ 2|x|, is computable in AC0. Thus,{
〈1n, ϕ〉

∣∣∣ n ≥ f(|ϕ|) and
(
[n],+,×

)
|= ϕ

}
is in AC0, too. Then Proposition 2.2 (iii) implies that

p-MC
(
FO(+,×)

)
∈ para-AC0,

which contradicts Theorem 1.4. 2

6. p-HALT and a universal AC0-easy set in NP

Recall that we can identify every natural number n ∈ N with the string of its binary expansion. And in case
n ≥ 2, it can be further identified with the string structure S(n). The next lemma is an easy consequence
of the definability of the BIT predicate in FO(+,×), i.e., Proposition 4.4.

Lemma 6.1. Let U ⊆ N. If
{
S(n)

∣∣ n ∈ U and n ≥ 2
}

is definable in FO(+,×,ONE ), then the class{
S(1n)

∣∣ n ∈ U and n ≥ 2
}

is also definable in FO(+,×,ONE ).

Lemma 6.2. Let f : N → N be a computable function. Then there is an increasing function h : N → N
that satisfies the following properties.

(i) h(n) ≥ f(n2) for every n ∈ N.

(ii) The mapping 1n 7→ 1h(n) can be computed in time h(n)O(1).

(iii) The class of string structures {
S
(
1h(n)

) ∣∣∣ n ≥ 2
}

is definable in FO(+,×,ONE ).

(iv) There is an FO(+,×,ONE )-formula ϕ(x) such that for every n ≥ 2 and a ∈ [h(n)]

S
(
1h(n)

)
|= ϕ(a) ⇐⇒ a = n.

Proof: Given a deterministic Turing machine M and an input s ∈ {0, 1}∗ we let wM,s be a binary string
encoding the computation of M on s. It is well known that the encoding can be chosen in such a way that:

(E1) The function s 7→ wM,s is computable in time |wM,x|O(1).
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(E2) The problem
{
〈s, wM,s〉

∣∣ s ∈ {0, 1}∗} is in AC0.

From (E2) it is straightforward to define an FO(+,×,ONE )-sentence compM by Theorem 2.3 such that
for every s, w ∈ {0, 1}∗

S(num(〈s, w〉)) |= compM ⇐⇒ w = wM,s (14)

Now let Mf be a Turing machine that computes the mapping 1n 7→ 1f(n). We consider the following
simple machine.

M(1n) // n ∈ N

1. for all 0 ≤ i ≤ n do
2. run the machine Mf on input 1i

2

.

Then we define the increasing function h : N→ N by

h(n) = num
(
〈1n, wM,1n〉

)
(15)

It should be clear that the string wMf ,1n2 encoding the computation of Mf on input 1n
2

has length at least
f(n2). Similarly, |wM,1n | ≥ f(n2). Thus h(n) ≥ f(n2) for every n ∈ N, i.e., (i) holds.

(ii) is also immediate by (E1). By (14) and our definition (15) of h the class{
S(h(n))

∣∣ n ≥ 2
}

is definable in FO(+,×,ONE ). Thus (iii) follows from Lemma 6.1.
Finally, on the structure S

(
1h(n)

)
we can first define the string of the binary expansion of h(n) using

the BIT predicate by Proposition 4.4. Then by (15) we can obtain the string 1n, from which n can be
defined using the BIT predicate again. 2

Theorem 6.3. Assume p-HALT ∈ para-AC0. Then there is an infinite set I ⊆ {0, 1}∗ such that for every
NP-problem Q ⊆ {0, 1}∗ we have Q ∩ I ∈ AC0.

Proof: Let us assume that p-HALT ∈ para-AC0. By Proposition 2.2 and Theorem 2.3 there is a computable
and increasing function f : N → N and an FO(+,×,ONE )-sentence ϕ such that for every 〈1n,M〉 with
n ≥ f(|M|)

S
(
〈1n,M〉

)
|= ϕ

⇐⇒ M accepts the empty input tape in at most n steps. (16)

Now let h : N→ N be the increasing function as stated in Lemma 6.2. In particular, there is a deterministic
Turing machine Mh and a constant c ≥ 1 such that on input 1m the machine Mh outputs the string 1h(m)

in time h(m)c. The desired set I is defined by

I :=
{

1h(m)
∣∣ m ≥ 2

}
.

By Lemma 6.2 (iii), there is an FO(+,×,ONE )-sentence ϕI such that for every string s ∈ {0, 1}∗ with
|s| ≥ 2

S(s) ∈ I ⇐⇒ S(s) |= ϕI . (17)

Now let Q ⊆ {0, 1}∗ be a problem in NP. In particular, there is an NTM MQ and a constant d ≥ 1
such that on input s ∈ {0, 1}∗ the machine MQ decides whether s ∈ Q in time |s|d. Then for every m ≥ 2
we define the following nondeterministic Turing machine:
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MQ,h,m

1. run the machine Mh on 1m to output 1h(m)

2. run the machine MQ on 1h(m) to decide
whether 1h(m) ∈ Q, then accept and reject
accordingly.

Let
n := h(m)c + h(m)d.

The following equivalences are immediate.

1h(m) ∈ Q ⇐⇒ MQ,h,m accepts the empty input tape
⇐⇒ MQ,h,m accepts the empty input tape

in at most n steps. (18)

Also observe that the size of MQ,h,m is∣∣MQ,h,m

∣∣ = |Mh|+ |MQ|+m+ e.

for some constant e ∈ N. Hence, if m ≥ |Mh|+ |MQ|+ e ≥ 2, we have

n = h(m)c + h(m)d ≥ h(m) ≥ f(m2)

≥ f(|Mh|+ |MQ|+m+ e) = f(|MQ,h,m|).

Then (16) and (18) imply that

1h(m) ∈ Q ⇐⇒ S
(
〈1n,MQ,h,m〉

)
|= ϕ. (19)

On the other hand, using Lemma 6.2 (iv) it is easy to construct an interpretation I such that for every
m ∈ N

I
(
S
(
1h(m)

))
= S

(
〈1n,MQ,h,m〉

)
.

Thus by Lemma 4.2

S
(
〈1n,MQ,h,m〉

)
|= ϕ ⇐⇒ S

(
1h(m)

)
|= ϕI .

Combined with (17) and (19), for every string s ∈ {0, 1}∗ with |s| ≥ h(|Mh|+ |MQ|+ e)

S(s) |= ϕI ∧ ϕI

⇐⇒ s = 1h(m) for some m ≥ |Mh|+ |MQ|+ e and s ∈ Q,
i.e., s ∈ Q ∩ I.

Since there are only finitely many strings in Q∩ I with length smaller than h(|Mh|+ |MQ|+ e), the class{
S(s)

∣∣ s ∈ Q ∩ I}
is definable in FO(+,×,ONE ). So Theorem 2.3 implies that Q ∩ I is in AC0. 2

Proof of Theorem 1.5: Assume that p-HALT ∈ para-AC0 and an NP-problem Q ⊆ {0, 1}∗ is an AC0-bi-
immune set. Let I be the infinite set as stated in Theorem 6.3. Then either Q ∩ I or ({0, 1}∗ \ Q) ∩ I is
infinite. And by Theorem 6.3 they are both in AC0, which contradicts the AC0-bi-immunity of Q. 2

.
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7. Conclusions

Our initial goal was to prove unconditionally that p-HALT /∈ para-AC0, but without success after several
years’ attempt. The results of the current paper show why. On the positive side, p-HALT /∈ para-AC0

would lead to the separation of NE from LINH, a long standing open problem in complexity theory. On
the negative side, p-HALT ∈ para-AC0 implies that NP has no AC0-bi-immune set, which is also an open
question.

Since it is generally believed that p-HALT /∈ para-AC0, one could try to settle the conjecture NE 6⊆
LINH first. Here, we provide an approach using bounded arithmetic. In particular, we showed that if a true
Π1 theory of arithmetic can prove the MRDP theorem for small numbers, then LINH 6= NE. At the core
of our proof, it is a para-AC0 lower bound for the parameterized problem p-MC

(
FO(+,×)

)
, which might

be of some independent interest.
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