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JEFFREY FINKELSTEIN

Boston University Graduate School of Arts and Sciences, 2017

Major Professor: Steven Homer, Ph.D., Professor of Computer Science

ABSTRACT

Computational complexity theory studies which computational problems can be

solved with limited access to resources. The past fifty years have seen a focus on

the relationship between intractable problems and efficient algorithms. However, the

relationship between inherently sequential problems and highly parallel algorithms

has not been as well studied. Are there efficient but inherently sequential problems

that admit some relaxed form of highly parallel algorithm? In this dissertation, we

develop the theory of structural complexity around this relationship for three common

types of computational problems.

Specifically, we show tradeoffs between time, nondeterminism, and parallelizability.

By clearly defining the notions and complexity classes that capture our intuition

for parallelizable and sequential problems, we create a comprehensive framework

for rigorously proving parallelizability and non-parallelizability of computational

problems. This framework provides the means to prove whether otherwise tractable

problems can be effectively parallelized, a need highlighted by the current growth of

multiprocessor systems. The views adopted by this dissertation—alternate approaches

to solving sequential problems using approximation, limited nondeterminism, and

parameterization—can be applied practically throughout computer science.
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Chapter 1

Introduction

S ince parallel computing is again becoming a topic of interest in computer

science, it is important to revisit the theoretical foundations of highly parallel

computing. In theoretical computer science, computational complexity studies what

problems can be solved when facing limited access to resources. With parallelism as

the resource of interest, computational complexity has already classified numerous

computational problems as either “inherently sequential” or “parallelizable”. Inherently

sequential computational problems, unlike parallizable problems, see no significant

speedup when run on highly parallel computers.

Computational problems can be further classified into three types: decision prob-

lems, optimization problems, and parameterized problems. Decision problems are

of the form “Does object x have property P?” Decision problems lead to the other

two kinds of problems by modifying either the solution space or the resource usage

bounds. Optimization problems generalize decision problems by allowing a search for

a good solution among many candidates. Parameterized problems generalize decision

problems by allowing resource bounds to depend on a parameter of the problem
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instance instead of simply the size. The study of the computational complexity of

both optimization problems and parameterized problems provides a more detailed

view than the study of decision problems alone.

Just as there are efficient approximations for intractable optimization problems, so

too are there efficient and highly parallel approximations for optimization problems

that are tractable but inherently sequential. For example, the problem of computing

the optimal vector in a positive linear program—a problem relevant to distributed flow

control within a network of routers—is inherently sequential, but a vector very close

to the optimal one can be computed quickly in parallel. Similarly, just as there are

fixed-parameter tractable algorithms for some intractable problems, so too are there

fixed-parameter parallel algorithms for some sequential parameterized problems. For

example, the problem of evaluating a Boolean circuit on a given input is inherently

sequential, but the circuit can be evaluated quickly in parallel when the depth of the

circuit is considered a parameter of the problem. These facts, which require proofs,

give practicioners the confidence that when faced with inherently sequential problems,

all hope is not lost.

Our guiding question is whether there are efficient but inherently sequential

problems that admit a “relaxed” highly parallel algorithm. For decision problems, are

there inherently sequential problems that can be solved by highly parallel algorithms

when augmented with a small amount of nondeterminism? For optimization problems,

are there inherently sequential problems that can be approximated by highly parallel

algorithms? For parameterized problems, are there inherently sequential problems

that can be solved by highly parallel algorithms under certain parameterizations?

We develop the theory of structural complexity for highly parallel algorithms

for tractable but inherently sequential problems in decision problems, optimization

problems, and parameterized problems. This area has not been well-studied, and when
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it has been studied, the results focus mostly on parallel algorithms for intractable

problems, not parallel algorithms for tractable sequential problems . This dissertation

proves the main theorems required for the study of the computational complexity of

parallelizable versus sequential computational problems and provides the motivation

and intuition to understand their significance and use.

There are three main chapters in this dissertation, each of which discusses a

different type of computational problem, namely decision problems, optimization

problems, and parameterized problems. Each chapter discusses the main approaches

to proving the limitations of highly parallel algorithms for tractable but inherently

sequential problems of the respective type. Further, we show how adding a limited

amount of nondeterminism to a highly parallel algorithm allows us to circumvent some

limitations of parallelism without requiring sequential computation.

In chapter 2, we discuss augmenting a highly parallel algorithm for decision

problems with a small amount of nondeterminism as the basis for a technique to prove

inapproximability of optimization problems. In chapter 3, we define and explore the

complexity classes associated with parallel approximation algorithms for inherently

sequential optimization problems. In chapter 4, we formalize the tradeoffs between

time, parallelism, and nondeterminism in parameterized problems and show some

connections with decision and optimization problems.

Our findings demonstrate that, under reasonable complexity theoretic assumptions,

there are inherently sequential problems that do not admit parallel algorithms, and even

parallel algorithms augmented with some additional resources or relaxed objectives.

Furthermore, under the assumption that NC 6= P, the fact that NNC[poly] = NP ([68])

but NNCO 6= NPO (Theorem 3.3.5) leads us to conclude that viewing a computational

problem as merely a decision problem is too coarse-grained an approach—it does

not give enough information about the computational complexity of the problem.
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The conjecture that paraWNC 6= paraWP if and only if NNC[ω(log n)] = NP[ω(log n)]

(Conjecture 4.5.2) supports this view as well, if the conjecture holds. This means that

considering the complexity of decision, both parameterized and unparameterized, and

of approximation independently is insufficient. Researchers and practicioners should

consider the complexity of verification in addition to the complexity of decision and

optimization.

This line of research, along with the fact that the complexity of solving a decision

problem seems to have little to with the approximability or parameterized complexity

of that problem, emphasizes the need to further determine the relative difficulty of

computational problems with respect to the complexity of decision, verification, and

approximation. Descriptive complexity seems like a promising way of unifying the

complexity analyses of the different kinds of computational problems explored here;

there are descriptive complexity characterizations for classes of decision problems

[44], classes of approximable optimization problems [51], and classes of parameterized

problems [35].
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Chapter 2

Decision problems

O ne of the major successes of the PCP theorem, a characterization of NP

as a class of computational problems that have probabilistically checkable

proof systems (with polynomial-time verifiers), is that it provides a route to proving

that approximating certain computationally intractable optimization problems is as

difficult as solving them exactly. The growth of multiprocessor systems in both general

purpose personal computing and large-scale big data computations highlights the

urgency of proving the analagous inapproximability (or approximability) of inherently

sequential optimization problems by highly parallel algorithms. However, there has

been little theoretical work toward proving parallel inapproximability. Unfortunately,

the techniques used to prove the original PCP theorem rely on the fact that NP can be

interpreted as the class of languages for which there is an efficient verification procedure

given a brief witness to language membership; no such obvious interpretation of P

exists.

If we consider the P-complete problems to be tractable but inherently sequential

and NC problems to be highly parallelizable, then our guiding question is whether
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there is a probabilistically checkable proof (PCP) characterization of P with NC

verifiers. Such a characterization would potentially provide a path to proving parallel

inapproximability. Indeed, this question was already on the minds of researchers such

as Luca Trevisan soon after the original proof of the PCP theorem.

An intriguing question is whether the known non-approximability results for

sequential algorithms can be improved when we restrict to NC algorithms

(under the assumption that P 6= NC). A possible way may be to devise

probabilistic proof systems for P more efficient that the currently known

proof systems for NP. Such a result would have a great independent

interest. However, it is not clear why proofs for P should be easier to check

than proofs for NP (they only appear to be easier to generate). [66]

As a first step towards characterizing probabilistic proof systems for P, this chapter

provides some initial structural complexity results for classes of probabilistically

checkable proof systems for nondeterministic NC circuit families

Perhaps P has proof systems that are easy to check in NC, but this remains

unclear. Instead, we consider proof systems for the class NNC[polylog], the class of

languages decidable by NC circuit families augmented with a polylogarithmic number of

nondeterministic gates. Other researchers such as Jonathan Buss and Judy Goldsmith

have had similar questions about classes like this.

The fundamental question remains whether there are problems in P that

can be computed more quickly with limited nondeterminism than without

it. [11]

We consider NNC[polylog] for two reasons. First, it is defined in such a way that it

explicitly has short proof systems which are easy to verify in parallel, just as NP is
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defined in such a way that it explicitly has short proof systems which are easy to

verify efficiently. Second, it, like P, lies between NC and NP.

Although our original intention was to show something like NNC[polylog] =

PCP[O(log log n), O(1)], our research reveals that proving such an equality is equiva-

lent to proving NNC[polylog] = NC, or in other words, that a polylogarithmic amount

of nondeterminism can be simulated deterministically by an NC circuit family. This

should be seen as evidence that such a result is unlikely; in fact, we show that such

a simulation implies a deterministic subexponential time algorithm for the Boolean

formula satisfiability problem! We are still, however, able to show that certain PCP

classes are contained in NNC[polylog].

2.1 History

In the 1990s, the PCP theorem by Arora, et al. [5], the culmination of a line of research

attempting to trade nondeterminism for randomness in nondeterministic polynomial-

time algorithms, provided a surprising new technique for verifying a mathematical

proof: as long as the proof is converted to a certain format, an algorithm using a small

amount of randomness can decide whether the proof is correct by examining a constant

number of bits of the proof. On top of this fascinating illustration of the power of

randomness in computation and mathematics, the PCP theorem provides a theoretical

basis for proving inapproximability of NP optimization problems by polynomial-time

algorithms. In 1991, Feige, et al. [33] used a generic gap-introducing reduction from

a probabilistically checkable proof system to the maximum clique problem to show

that the problem is hard to approximate by a polynomial-time algorithm. From there,

any approximation-preserving reduction (see chapter 3) from the maximum clique

problem to another optimization problem proves a similar level of inapproximability.
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Other researchers examined different settings of parameters for the PCP theorem.

For example, in 1996, Fotakis and Spirakis [36] provided a lower bound on the amount

of randomness needed when creating a PCP verifier for an NP problem. In 1998, Tre-

visan examined inapproximability by parallel algorithms instead of inapproximability

by polynomial-time algorithms for the linear programming problem [66].

The original proof of the PCP theorem is complicated and computational in nature.

Inspired by some techniques for constructing explicit constructions of expander graphs

like that of Reingold, Vadhan, and Wigderson [57], in 2007, Dinur provided a simpler

(and almost entirely combinatorial) proof of the PCP theorem [28]. More recent work

on proof systems has focused on practical real-world implementations in which the

prover and the verifier have some limited communication; see articles by Goldwasser,

Kalai, and Rothblum in 2008 [39], Setty et al. in 2012 [61], Setty et al. in 2012 [62],

Thaler et al. in 2012 [64], and Ben-Sasson et al. in 2013 [9].

Around the same time as the PCP theorem, Wolf studied the class of nondeter-

ministic highly parallel algorithms, NNC, and noted that a polylogarithmic amount of

nondeterminism was an “interesting” amount of nondeterminism, suggesting that such

a class may be incomparable with P [68]. The deterministic class NC, an abbreviation

of Nick’s Class in honor of Nick Pippenger, has been considered the class of decision

problems that admit highly parallel algorithms since the 1970s; for a more detailed

history of the study of parallel versus sequential computation, see [40, Section 1.3].

The complexity classes NNCk[logi n] were proven to have complete problems by Cai

and Chen in 1997 [15]. The study of limited nondeterminism for polynomial-time

algorithms was initiated in 1980 by Kintala and Fisher [49], and advanced by several

other researchers. Perhaps the most relevant to this dissertation are the articles by

Díaz and Torán in 1990 [26], Buss and Goldsmith in 1993 [11], and Cai and Chen in

1997 [15].
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2.2 Preliminaries

Throughout this chapter, log n denotes the base 2 logarithm of n. In the definitions

below, N denotes the set of non-negative integers and R denotes the set of real numbers.

Definition 2.2.1. For all functions f, g : N→ R, the function f is in the class O(g(n))

if there exist real numbers c and N such that for all natural numbers n we have n > N

implies f(n) ≤ c · g(n). If f(n) < c · g(n) then f(n) is in o(g(n)). If f(n) ≥ c · g(n)

then f(n) is in Ω(g(n)). If f(n) > c · g(n) then f(n) is in ω(g(n)).

We assume the reader knows the basic definitions from complexity theory, including

those of the complexity classes P, NP, DTIME, and DSPACE. We define the class

Lk by Lk = DSPACE(logk n) for all nonnegative integers k and the class polyL by

polyL = ∪k∈NDSPACE(logk n). We denote the class L1 by simply L. We define

the complexity class SUBEXP, the class of languages decidable by deterministic

“subexponential” time Turing machines, as

SUBEXP =
⋂
ε>0

DTIME(2nε)

and QP, the class of languages decidable by a deterministic “quasipolynomial” time

Turing machine, as

QP =
⋃
k∈N

DTIME(2logk n).

We will also be considering NCk, the class of languages decidable by a family of

logarithmic space uniform Boolean circuits of polynomial size, O(logk n) depth, and

unbounded fan-in. We will denote by NC the union of all the NCk classes. A language

in NCk can also be described as a language which admits an algorithm which uses a

polynomial number of processors running in O(logk n) time on a parallel random-access
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machine (PRAM). We describe NC algorithms using this paradigm.

Definition 2.2.2. A probabilistically checkable proof verifier (PCP verifier) is a

probabilistic Turing machine with sequential access to an input string x, sequential

access to a random string ρ, and nonadaptive random access to a proof string π.

Definition 2.2.3. Let r(n) and q(n) be bounded above by polynomials in n, and let

c(n) and s(n) be functions whose values are in the interval [0, 1]. A language L has a

(r(n), q(n), c(n), s(n))-PCP verifier if there exists a PCP verifier V such that V uses

at most r(n) bits of the random string ρ, makes at most q(n) nonadaptive queries to

bits of the proof π, and satisfies the following conditions.

1. If x ∈ L, then

∃π ∈ Σ∗ : Pr
ρ∈Σr(n)

[V (x, π; ρ) accepts] ≥ c(n).

2. If x /∈ L, then

∀π ∈ Σ∗ : Pr
ρ∈Σr(n)

[V (x, π; ρ) accepts] < s(n).

The value c(n) is the completeness and the value s(n) the soundness of the verifier.

In this chapter, we will consider only nonadaptive PCP verifiers. Since a (nonadap-

tive) (r(n), q(n), c(n), s(n))-PCP verifier can read at most 2r(n)q(n) locations of the

proof string with nonzero probability, we assume without loss of generality that the

proof provided to the verifier is of length at most 2r(n)q(n) [3, Remark 11.6]. (Note

that a verifier which uses q(n) adaptive random access queries to the proof string can

be simulated by a verifier which uses 2q(n) nonadaptive random access queries to the

proof string, so in the adaptive case, the proof string could be of length 2r(n)+q(n).)
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Definition 2.2.4. Let PCPCc(n),s(n) [r(n), q(n)] be the class of all languages L such

that L has a (r(n), q(n), c(n), s(n))-PCP verifier V computable by a C algorithm.

More generally, if F and G are classes of functions,

PCPCc(n),s(n) [F ,G] =
⋃

f∈F ,g∈G
PCPCc(n),s(n) [f(n), g(n)],

Since completeness 1 and soundness 1⁄2 are common parameters, and for the sake

of brevity, we write PCPC[r(n), q(n)] to denote PCPC1, 1
2

[r(n), q(n)], and PCPC[F ,G] to

denote PCPC1, 1
2

[F ,G].

Please notice that the complexity class given in the superscript in the above

definition does not denote an oracle; it merely describes the computational power of

the PCP verifier.

From the definition, we see immediately that

PCPCc(n),s(n) [O(r(n)), O(q(n))] =
⋃

a∈N,b∈N
PCPCc(n),s(n) [a · r(n), b · q(n)].

2.3 Probabilistically checkable proofs for nondeterministic circuits

We first provide a PCP characterization of NNC[polylog], then later we provide upper

and lower bounds for the randomness and query complexity parameters of such a PCP

verifier. The following theorem shows that a nondeterministic NC circuit can simulate

a PCP verifier and vice versa with the appropriate tradeoff in parameters.

Theorem 2.3.1. For all nonnegative integers q and r,

NNC[logq n] ⊆ PCPNC[r log log n,O(logq n)] ⊆ NNC[logq+r n].
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Proof. Let q and r be non-negative integers. The first inclusion, NNC[logq n] ⊆

PCPNC[r log log n,O(logq n)], follows immediately from the definitions. For the other

direction, suppose L ∈ PCPNC[r log log n, c logq n] for some constant c. Construct an

NNC machine M which proceeds as follows on input x of length n.

1. Guess a proof string π of length 2r log lognc logq n.

2. For each ρ of length r log log n in parallel simulate V (x, π; ρ).

3. Accept if and only if at least half of the simulations accept.

In the initial step, guessing a proof string requires O(logq+r n) bits. In the second

step, since V is an NC machine, a polylogarithmic number of parallel simulations of

V can be executed with only a polylogarithmic factor increase in size and no increase

in depth. In the final step, computing the majority of a polylogarithmic number of

bits can be done by an NC circuit. Therefore M is an NNC[logq+r n] machine. The

correctness of M follows from the completeness and soundness of V .

Choosing r = 1 yields

NNC[logq n] ⊆ PCPNC[log log n,O(logq n)] ⊆ NNC[logq+1 n].

On the other hand, allowing r and q to vary over the set of natural numbers proves

the equality of the two hierarchies.

Corollary 2.3.2. NNC[polylog] = PCPNC[O(log log n), polylog].

Next, consider the chain of inclusions

NNC[log n] ⊆ NNC[polylog] ⊆ NNC[poly].
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In fact, NC = NNC[log n] and NNC[poly] = NP [68], so we can rewrite this as

NC ⊆ NNC[polylog] ⊆ NP. (2.1)

We now wish to provide NC PCP characterizations for both NC and NP.

In [36], the authors prove that P = PCPP[O(log log n), O(1)] (implicitly; they state

only that NP = PCPP[O(log log n), O(1)] if and only if P = NP). The same proof

techniques can be used in the NC setting with essentially no changes. (The idea of

the proof is to simulate O(log log n) bits of randomness with log log n+O(1) bits by

making a random walk of an appropriate length on a fully explicit constant degree

expander graph.) This yields the following PCP characterization of NC.

Theorem 2.3.3. NC = PCPNC[O(log log n), O(1)].

As a generalization of the result of [36], we know NP = PCPP[o(log n), o(log n)]

if and only if P = NP [4, 33]. Unfortunately, the obvious strategy for translat-

ing that proof to the NC setting fails. The proof would have shown that NP =

PCPNCk [o( log logn
logk n

), O(1)] if and only if NC = NP, but this is already proven by Theo-

rem 2.3.3 and the fact that log logn
logk n

≤ log log n.

We also know the following strengthening of the original PCP theorem; the proof

of this theorem is in section 2.5.

Theorem 2.3.4. PCPNC[O(log n), O(1)] = NP.

From Equation 2.1, Theorem 2.3.3, and Theorem 2.3.4, we have the two equivalent

inclusion chains NC ⊆ NNC[polylog] ⊆ NP and

PCP[O(log log n), O(1)] ⊆ PCP[O(log log n), polylog] ⊆ PCP[O(log n), O(1)],
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where the PCP verifier is an NC machine. If we can provide evidence that NC 6=

NNC[polylog] and that NNC[polylog] 6= NP, we can conclude that the corresponding

PCP classes are also likely distinct. This theorem, adapted from [26, Theorem 1]

(therein attributed to R. Beigel), provides that evidence. Each of the two conclusions

in this theorem implies that the exponential time hypothesis is false. Furthermore, in

the latter case, the conclusion implies that EXP = NEXP.

Theorem 2.3.5.

1. If NC = NNC[polylog], then NP ⊆ SUBEXP.

2. If NNC[polylog] = NP, then NP ⊆ QP.

Proof. If NNC[polylog] = NP, then

NP = NNC[polylog]

⊆ DSPACE(polylog) by [68]

⊆ DTIME(2polylog) by exhaustive search

= QP by definition.

Now suppose NC = NNC[polylog]. Since FSat, the Boolean formula satisfiability

problem, is complete for NP under deterministic polynomial-time many-one reductions,

it suffices to show a deterministic subexponential time algorithm for FSat.

The proof uses a padding argument. First we observe that there is an NNC1(n)

machine, call it M , that decides FSat: given a Boolean formula φ, guess a satisfying

assignment to φ (of length O(n)) and evaluate the formula (Boolean formula evaluation

is in NC1 [12]). Let ε be an arbitrarily small positive constant, and define L, the
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padded version of FSat, as

L =
{
φ#1P

∣∣∣φ ∈ FSat and P = 2nε − (n+ 1)
}
,

where n = |φ|. We claim L is in NNC[log
1
ε n] by the following machine, Mj . On input

φ′, check that φ′ is in the format φ#1P , then accept if and only if M accepts φ. The

correctness of this algorithm follows from the correctness of M , so it remains to check

the size and depth of the circuit for Mj, and the amount of nondeterminism used.

Checking that x′ is in the correct format can be performed (deterministically)

by an NC1 circuit by computing the conjunction of all the bits after the # symbol.

Observe now that |x′| = 2nε , so n = log
1
ε |x′|. The amount of nondeterminism used by

Mj is the same as the amount used by M , which is O(n), or O(log
1
ε |x′|). The size of

M is polynomial in n, which is polylogarithmic in |x′|, and hence polynomial in the

length of the input x′. The depth of M is O(log n), which is O(log log
1
ε |x′|), or simply

O(log log |x′|). We conclude that the size of Mj is polynomial in |x′|, the depth of Mj

is logarithmic in |x′|, and Mj uses O(log
1
ε |x′|) bits of nondeterminism. Hence L is in

NNC[log
1
ε n].

By hypothesis, L is also in NC. Let Mi be the NC machine that decides it. We

claim that we can now construct a subexponential time algorithm for FSat on inputs

φ of length n.

1. Let φ′ = φ#1P , where P = 2nε − (n+ 1).

2. Accept if and only if Mi accepts φ′.

The correctness of this algorithm follows immediately from the correctness of Mi. The

first step can be performed by a deterministic algorithm running in time 2nε . The

second step can be performed by an NC machine. Since NC ⊆ P, and 2nε is greater
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than any polynomial for sufficiently large n, the first step is the bottleneck in this

algorithm. Therefore, this algorithm for FSat can be implemented by a deterministic

algorithm running in O(2nε) time for arbitrarily small ε.

As mentioned above, NC = NNC[log n] and NP = NNC[poly], so the two items in

this theorem can be restated as follows.

1. If NNC[log n] = NNC[polylog], then NP ⊆ SUBEXP.

2. If NNC[polylog] = NNC[poly], then NP ⊆ QP.

The first item indicates that a simulation of a polylogarithmic number of bits of

nondeterminism by only a logarithmic number of bits is unlikely. The second item

indicates that a simulation of a polynomial number of bits of nondeterminism by

only a polylogarithmic number of bits is unlikely. The consequences of the latter

simulation are more extreme (a simulation of NP in quasipolynomial time as opposed

to a simulation of NP in subexponential time).

Substituting the PCP characterizations of each nondeterministic NC complexity

class in the previous theorem provides evidence against the simulation of certain

resources in probabilistically checkable proof systems.

Corollary 2.3.6.

1. If PCPNC[O(log log n), O(1)] = PCPNC[O(log log n), polylog], then

NP ⊆ SUBEXP.

2. If PCPNC[O(log log n), polylog] = PCPNC[O(log n), O(1)], then NP ⊆ QP.

The first part of this corollary provides evidence that for certain classes of com-

putational problems, an NC PCP verifier cannot reduce the number of necessary

queries. (However, it could still be the case that for some fixed positive integer k, we
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have PCPNC[O(log log n), O(1)] = PCPNC[O(log log n), O(logk n)]; see Conjecture 2.3.7

below.) The second part provides evidence that for certain classes of computational

problems, a verifier cannot reduce randomness in exchange for an increase in the

number of necessary queries. Contrast this with [36, Corollary 10] which states that

PCPNC[O(logk log n), O(logd log n)] ⊆ PCPNC[O(log log n), O(logd+k−1 log n)]

(the result is proven for polynomial-time verifiers, but it holds for NC verifiers as well).

This yields the equality

PCPNC[poly(log log n), poly(log log n)] = PCPNC[O(log log n), poly(log log n)],

which provides an even more severe collapse, assuming the following conjecture.

Conjecture 2.3.7. PCPNC[O(log log n), O(log n)] = PCPNC[O(log log n), O(1)].

This is a scaled down version (that is, scaled from a P verifier down to an NC

verifier) of some of the results of the research which led to the original PCP theorem.

If this conjecture holds, then poly(log log n) randomness and a logarithmic number of

queries to the proof can be simulated deterministically.

Theorem 2.3.8. If Conjecture 2.3.7 holds, then PCPNC[poly(log log n), O(log n)] =

NC.

Proof. Combining Conjecture 2.3.7 with the fact that O(logα log n) ⊆ O(log n) for all
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nonnegative integers α, we have

NC ⊆ PCPNC[poly(log log n), poly(log log n)]

⊆ PCPNC[O(log log n), poly(log log n)]

⊆ PCPNC[O(log log n), O(log n)]

⊆ PCPNC[O(log log n), O(1)]

⊆ NC.

Now we return to our original goal, finding a PCP characterization of P. The

classes P and NNC[polylog] are conjectured incomparable [68]. Using the results

above, this conjecture implies that P and PCPNC[O(log log n), polylog] are incomparable.

Theorem 2.3.9 shows the negative consequences of a PCP characterization for P.

Theorem 2.3.9.

1. If P ⊆ PCPNC[O(log log n), polylog] then P ( polyL.

2. If polyL ( P then PCPNC[O(log log n), polylog] ( P.

Proof. These implications are a consequence of three facts.

1. PCPNC[O(log log n), polylog] ⊆ NNC[polylog] (Corollary 2.3.2).

2. NNC[polylog] ⊆ polyL ([68, Corollary 3.2]).

3. P 6= polyL ([10, Theorem 3.10]).

Although P 6= polyL, whether one is a strict subset of the other remains unknown;

the two are conjectured to be incomparable [45, Section 2.5.1]. If P ( polyL, then

P ( QP (by exhaustive search over the quasipolynomial number of configurations of

the polyL machine). If polyL ( P, then L ( L2 ( · · · ( polyL ( P.
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2.4 Inapproximability from PCPs

Consider the maximum high degree subgraph problem ([2]): given an undirected graph

G find the largest integer d such that G has a vertex-induced subgraph of minimum

degree d. This is a relaxation of the maximum clique problem, in which the minimum

degree of the induced subgraph S is required to be at least |S| − 1. There is a simple

polynomial-time algorithm that outputs optimal solutions for this problem: repeatedly

remove vertices of degree less than d from the graph. The subgraph that remains has

minimum degree d; for more information, see [40, Problem A.2.7].

We know that the clique problem is inapproximable via a gap-introducing reduction

from an arbitrary probabilistically checkable proof system [33]. It would be satisfying

to use a similar reduction to provide a gap-introducing reduction from our restricted

PCPs to the maximum high degree subgraph problem. However, research in this

direction failed to reveal such a reduction.

2.5 Probabilistically checkable proofs for nondeterministic polynomial

time

One method of showing PCPNC[O(log n), O(1)] = NP is to revisit a proof of the PCP

theorem and ensure that all computation can be performed by an NC PCP verifier

without affecting the correctness of the proof. We will consider Dinur’s proof of the

PCP theorem [28], which reduces the problem of proving PCPP[O(log n), O(1)] = NP

to the problem of showing 1
2
-gap q-CSP is hard for NP. Meir observes that although

we would like a verifier running in polylogarithmic time, Dinur’s proof requires O(log n)

iterations of a polynomial-time procedure, which yields a polynomial-time procedure

[54, Section 1.2.1]. We show that a closer look reveals that parallel polylogarithmic

time is indeed possible without any new machinery.
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The proof provides a gap-introducing reduction from an arbitrary NP problem to

a constraint satisfaction problem. Let us first define the notion of a combinatorial

constraint and when a constraint is satisfied.

Definition 2.5.1 ([28, Definition 1.1]). Let V be a finite set of variables, defined by

V = {x1, x2, . . . , xn}, let Γ be a finite alphabet, and let q be a natural number. A

q-ary constraint is a q + 1 tuple, (C, i1, i2, . . . , iq), where C ⊆ Γq and each ik is the

index of a variable in V . Here, C is considered the set of “acceptable” values for the

variables and each ik is the index of a variable whose assigned value will be checked

against C.

An assignment is a function a : V → Γ. An assignment satisfies a constraint if

(a(vi1), a(vi2), . . . , a(viq)) ∈ C.

A natural question for a given set of constraints is whether there is an assignment

to the variables that simultaneously satisfies all the constraints. A related problem

asks the same question but given the guarantee that either all the constraints are

satisfied or few of the constraints are satisfied, regardless of the assignment.

Definition 2.5.2 (q-CSP).
Instance: finite alphabet Γ with |Γ| > 1, finite set of variables

V , finite set of q-ary constraints D.

Question: Are all constraints in D satisfiable?

Definition 2.5.3 (1
2
-gap q-CSP).

Instance: finite alphabet Γ with |Γ| > 1, finite set of variables V ,

finite set of q-ary constraints D with the restriction

that for any assignment, either all constraints are

satisfied or fewer than half are.

Question: Are all constraints in D satisfiable?
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In the special case in which q = 2, that is, all constraints are binary, we may

interpret an instance of the constraint satisfaction problem as an undirected graph

with vertex set V and an edge labeled C between vertices vi and vj for each (C, i, j)

in D. We call such a graph a constraint graph and we consider the size of this graph

to be |V |+ |E| where V is the set of vertices (equivalently, variables) and E is the set

of edges.

Lemma 2.5.4. If there is a positive integer q such that 1
2
-gap q-CSP is hard for NP

under NC many-one reductions, then PCPNC[O(log n), O(1)] = NP.

Proof. One inclusion in the conclusion of the theorem is true unconditionally, following

from the PCP theorem [5]. For the other inclusion, let L be a language in NP. By

hypothesis there is a many-one reduction computable in NC from L to 1
2
-gap q-CSP.

We construct the PCP verifier as follows.

1. Compute the reduction to produce a set of constraints.

2. Use O(log n) random bits to choose a constraint uniformly at random.

3. Check that the constraint is satisfied by querying the proof string at the appro-

priate locations (the locations corresponding to the q variables in the constraint).

The first step is computable in NC by hypothesis. The second step uses O(log n)

bits of randomness and a constant number of parallel steps. In the third step, q

processors, working in parallel, each read the index of a variable given in the chosen

constraint, then retrieve the value of that variable given in the proof string; this takes

at most O(log n) parallel time. Verifying that the constraint is satisfied by these values

is just the problem of checking q set membership queries in parallel, which again can

be done in O(log n) time (a loose upper bound). The overall number of processors in
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this algorithm is polynomial and the overall parallel time is polylogarithmic, thus this

an NC algorithm.

It remains to show that the algorithm is correct. If x ∈ L then all constraints

are satisfiable, so there exists an assignment such that the verifier will accept on all

random choices of the constraint. If x /∈ L then fewer than half of the constraints are

satisfiable, so for any assignment the probability that the verifier will select a satisfied

constraint is less than half. Therefore we have shown a correct PCP verifier with the

appropriate parameters for an arbitrary language in NP.

Now we examine Dinur’s proof that 1
2
-gap q-CSP is hard for NP [28]. That proof

shows that the problem is hard under polynomial-time many-one reductions, but we

show here that it is in fact hard under NC many-one reductions. First, we claim

without proof that q-CSP is hard for NP under NC many-one reductions (because the

standard polynomial-time many-one reductions showing that it is NP-complete are

in fact computable in logarithmic space). Next, consider (the high-level description

of) the polynomial-time many-one reduction from q-CSP to 1
2
-gap q-CSP: given

constraint graph G0 as input, compute and output GO(logn), where Gi+1 = P((X(Gi))t)

and t ∈ O(1). Here, X is a preprocessing function, the exponent t denotes a constant

number of constraint graph powering operations, and P denotes an assignment testing

composition function. If each of these three functions is computable by an NC algorithm,

then Gi+1 can be computed from Gi by an NC algorithm, and hence so can GO(logn)

from G0. We will consider each of the three functions below.

The preprocessing function X requires a mildly explicit construction of a constant

degree expander. The standard definition of mildly explicit is that a representation of

the graph (for example, its adjacency matrix) is computable in time polynomial in

the number of vertices in the graph; for comparison, in a fully explicit expander, the
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ith neighbor of vertex v can be computed in time polynomial in the size of the binary

representation of v, that is, polynomial in log n where n is the number of nodes in

the graph. We will refer to graphs which meet these definitions as polynomial-time

mildly explicit and polynomial-time fully explicit. Since we are constructing an NC

algorithm, we will require the representation of the graph to be computable by an NC

algorithm. More formally, we require an NC mildly explicit graph, that is, a graph for

which a representation can be computed by an NC algorithm with respect to input

n, the number of nodes of the graph. Fortunately, a polynomial-time fully explicit

expander implies an NC mildly explicit expander, a new implication that may be of

independent interest when constructing constant-degree expanders in parallel.

Proposition 2.5.5. Suppose G is a d-regular expander graph. If G is polynomial-time

fully explicit, then it is NC mildly explicit.

Proof. Suppose G is polynomial-time fully explicit, so there exists an algorithm that

computes the ith neighbor of v in time polynomial in log n. Let f(v, i) denote this

algorithm. The following NC algorithm computes the adjacency list of G given the

number of nodes n: for each vertex v in parallel and each index i less than d in parallel

add f(v, i) to the list corresponding to v. This algorithm can be computed with

dn processors, which is polynomial in n. Since the f(v, i) can be computed in time

polynomial in log n, the running time for each parallel processor is also polynomial

in log n. Therefore we have presented an NC algorithm which correctly computes a

representation of the graph G.

This proposition allows us to replace any polynomial-time fully explicit expander

with an NC mildly explicit one. Dinur’s proof only requires only polynomial-time

mildly explicit expanders, but replacing that requirement with fully explicit ones
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harms neither the correctness nor the efficiency of the construction. Polynomial-time

fully explicit constant degree expander graphs exist; see [57], for example.

Now, let us return to the preprocessing function X, which is defined in two parts,

[28, Definition 4.1] and [28, Definition 4.2]. In the first part, each vertex v is replaced

by an NC mildly explicit d-regular expander on deg(v) vertices in which the constraints

on the edges of the expander are the equality constraint. In the second part, a constant

number of self-loops along with the edges of a d′-regular NC mildly explicit expander

on n vertices are added to the graph with null constraints on the added edges. Both

of these parts are computable by an NC algorithm; note that the size of the output

graph in each case is linear in the size of the input graph, so a linear number of

processors will suffice (with an additional multiplicative factor of a polynomial number

of processors when constructing the expander graphs). We conclude the following.

Lemma 2.5.6. The preprocessing function X is computable by an NC algorithm.

Constraint graph powering, defined in [28, Section 1.2], is the standard graph

powering operation with an additional operation on the alphabet and the set of

constraints. Graph powering can be viewed as a generalization of computing the

transitive closure of a graph; it computes not only whether there is a path joining two

nodes but also the number of paths joining them. Graph powering can be performed

by computing the appropriate power of the adjacency matrix of the graph. This can

be computed in NC because matrix multiplication is in NC, and a constant number of

matrix multiplications remains in NC. If the alphabet is of constant size, the power

graph also has an alphabet of constant size, and each of the constraints becomes a

new constraint of constant size (see [28, Section 1.2] for the constraint construction).

Each of the constraints (which is the same as the number of edges) can be written by

a distinct processor in parallel constant time. We conclude the following.
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Lemma 2.5.7. For each positive integer k and each positive integer d, computing the

kth power of a d-regular constraint graph can be performed by an NC algorithm.

The assignment testing composition [28, Definition 5.1] consists of two parts. In

the first part, each constraint is transformed into a Boolean circuit of constant size.

In the second part, each circuit constructed in this way is provided as input to a

computable assignment tester function (which we know exists [28, Theorem 5.1]), and

the output graph is the union of the output of all the assignment testers. Since the size

of the input to the assignment tester is constant, the assignment tester need only be

computable. Hence, each constraint can be processed this way, in parallel, in constant

time with respect to the size of the input graph.

Lemma 2.5.8. The assignment testing composition is computable by an NC algorithm.

Since the preprocessing function, constraint graph powering, and assignment testing

composition are all computable by an NC algorithm, we conclude the following.

Lemma 2.5.9. There is a positive integer q such that 1
2
-gap q-CSP is hard for NP

under NC many-one reductions.

Theorem 2.3.4, restated here, follows immediately from Lemma 2.5.4 and the

hardness of the 1
2
-gap q-CSP problem Lemma 2.5.9. Therefore we have shown that

any decision problem with a polynomial-time verification procedure can be transformed

into a probabilistically checkable proof system with a highly parallel verifier using a

small amount of randomness and constant query complexity.

Theorem 2.3.4. PCPNC[O(log n), O(1)] = NP.
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Chapter 3

Optimization problems

M any natural computational problems can be expressed as optimiza-

tion problems, allowing for a more refined analysis of the computational

complexity of the problem. Much research has focused on efficient approximations

of intractable optimization problems, with little work done to understand highly

parallel approximations for tractable but otherwise inherently sequential optimization

problems. Our task is to define the complexity classes associated with this notion and

determine whether there are inherently sequential optimization problems that admit

parallel approximations as well as whether there are sequential problems for which

no parallel approximation exists. This chapter provides these complexity theoretic

foundations.

Under reasonable complexity-theoretic assumptions, we prove that NNCO ( NPO

(Theorem 3.3.5) and PO ∩ NNCO ( PO (Theorem 3.4.7). Furthermore, we prove

that the hierarchies of classes of optimization problems approximable in parallel are

strict (Theorem 3.5.2 and Theorem 3.5.3). Finally, we propose three candidate

complete problems that we conjecture complete for the class of efficiently solvable but
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constant-factor parallel approximable optimization problems.

These findings provide evidence that viewing computational problems through

the lens of optimization provides a finer-grained understanding of their complexity,

since NNC[poly] = NP but NNCO ( NPO (under the appropriate assumptions).

Also, the strictness of the hierarchy intersecting PO demonstrates that there are

efficiently solvable problems of various levels of parallel approximability. Analagous to

the hardness of approximation results for intractable problems, in some cases even

approximating a solution is inherently sequential.

Altogether, this chapter reinforces the idea that the complexity of verifying a

solution is an important factor in consider the overall computational complexity of an

optimization problem.

3.1 History

The study of the computational complexity of NP optimization problems has existed

since at least the early 1970s with Johnson [46] giving the first definitions of polynomial-

time approximation algorithms. The definitions we use are inspired by those in the

1999 book Complexity and Approximation by Ausiello et al., which contains more

detailed notes on the history of the computational complexity of NP optimization

problems. Our study of optimization problems approximable by algorithms more

restrictive than polynomial-time algorithms is guided by a 2007 article by Tantau [63]

in which the author defines approximability and completeness for logarithmic-space

optimization problems. NC approximations for NP-hard optimization problems have

been studied by Hunt et al. in 1998 [43]. Although a class called NCX has been used

to represent the class of optimization problems with NC constant-factor approximation

algorithms, for example in a 1995 article by Serna and Xhafa [59] or the 1997 book
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Paradigms for fast parallel approximability by Díaz et al. [27], its implicit definition

requires only that the feasibility of a solution can be verified in polynomial time. This

differs from our definition of ApxNCO, which requires that the solution be verifiable

in NC.

After the definition of complexity classes based on approximability of NP opti-

mization problems, the natural next task was to define completeness, which requires

an appropriate notion of reducibility. A 1997 survey paper by Crescenzi [21] defines

at least nine distinct types of polynomial-time approximation-preserving reductions,

each of which serves its own purpose in relating the approximability of optimization

problems. Articles by Ausiello, D’Atri, and Protasi [6] and Orponen and Manila [55]

provided the first proof that the maximum weighted satisfiability problem is complete

for NPO; this guides our proofs in section 3.3 and section 3.4 below. The first proof

of an APX-complete problem comes from Crescenzi and Protasi in 1991 [23] and a

proof for more natural complete problems come from Khanna et al. in 1999 [48] and

Crescenzi and Trevisan in 2000 [22].

3.2 Definitions

Throughout this chapter, Σ = {0, 1} and inputs and outputs are encoded in binary.

The set of all finite strings is denoted Σ∗, and for each x ∈ Σ∗, we denote the length of

x by |x|. We denote the set of all polynomials by poly and the set of all polylogarithmic

functions by polylog. The set of integers is denoted Z, the set of rationals Q, and their

positive subsets Z+ and Q+. The natural numbers, defined as Z+ ∪ {0}, is denoted N.

Vectors are formatted in bold face, like x. The all-ones vector is denoted 1.
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3.2.1 Optimization problems and approximation algorithms

We adapt the definitions of [63] from L approximability to NC approximability.

Definition 3.2.1 ([7]). An optimization problem is a four-tuple, (I, S,m, t), where

the set I ⊆ Σ∗ is called the instance set, the set S ⊆ I × Σ∗ is called the solution

relation, the function m : S → Z+ is called the measure function, and t ∈ {min,max}

is called the type of the optimization.

An optimization problem in which the measure function has rational values can be

transformed into one in which the measure function has integer values [7, page 23].

Definition 3.2.2 ([63]). Let P be an optimization problem, so P = (I, S,m, t), and

let x ∈ I.

1. Let S(x) = {y ∈ Σ∗ | (x, y) ∈ S}; we call this the solutions for x.

2. Define m∗(x) by

m∗(x) =


min {m(x, y) | y ∈ S(x)} if t = min

max {m(x, y) | y ∈ S(x)} if t = max

for all x ∈ Σ∗; we call this the optimal measure for x. Let m∗(x) be undefined if

S(x) = ∅.

3. Let S∗(x) = {y ∈ Σ∗ |m(x, y) = m∗(x)}; we call this the set of optimal solutions

for x.

4. Let R(x, y) = max
(
m(x,y)

m∗(x)
, m

∗(x)

m(x,y)

)
; we call this the performance ratio of the

solution y.

5. Let P∃ = {x ∈ Σ∗ |S(x) 6= ∅}; we call this the existence problem.
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6. Let

Popt< = {(x, z) ∈ P∃ × N | ∃y ∈ Σ∗ : m(x, y) < z}

and

Popt> = {(x, z) ∈ P∃ × N | ∃y ∈ Σ∗ : m(x, y) > z} ;

we call these the budget problems.

7. Let f : Σ∗ → Σ∗. We say f produces solutions for P if for all x ∈ P∃ we have

f(x) ∈ S(x). We say f produces optimal solutions for P if for all x ∈ P∃ we

have f(x) ∈ S∗(x).

The performance ratio R(x, y) is a number in the interval [1,∞). The closer R(x, y)

is to 1, the better the solution y is for x, and the closer R(x, y) to ∞, the worse the

solution.

Definition 3.2.3. Let P be an optimization problem, let r : N → Q+, and let

f : I → Σ∗. We say f is an r-approximator for P if it produces solutions for P and

R(x, f(x)) ≤ r(|x|) for all x ∈ P∃.

If r is the constant function with value δ, we simply say f is a δ-approximator for

P .

Definition 3.2.4. Let P be an optimization problem and let f : I × N → Σ∗. We

say f is an approximation scheme for P if for all x ∈ P∃ and all positive integers k we

have f(x, k) ∈ S(x) and R(x, f(x, k)) ≤ 1 + 1
k
.

3.2.2 Classes of optimization problems

The study of efficient approximations for intractable problems begins with the following

definition of NP optimization problems. We will adapt this definition to explore efficient

and highly parallel approximations for inherently sequential problems.
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Definition 3.2.5. The complexity class NPO is the class of all optimization problems

(I, S,m, t) such that the following conditions hold.

1. The instance set I is decidable by a deterministic polynomial-time Turing

machine.

2. The solution relation S is decidable by a deterministic polynomial-time Turing

machine and is polynomially bounded (that is, the length of y is bounded by a

polynomial in the length of x for all (x, y) ∈ S).

3. The measure function m is computable by a deterministic polynomial-time

Turing machine.

The second condition is the most important in this definition; it is the analog of

polynomial-time verifiability in NP.

Definition 3.2.6. The complexity class PO is the subclass of NPO in which for each

optimization problem P there exists a function f in FP that produces optimal solutions

for P .

We now wish to translate these definitions to the setting of efficient and highly

parallel verifiability. In order to take advantage of results and techniques from the

study of NPO and PO, we will start by considering a model of computation in which we

allow highly parallel computation access to a polynomial amount of nondeterminism.

First we define the necessary circuit classes, then we define the corresponding classes

of optimization problems.

Definition 3.2.7.

1. NC is the class of decision problems decidable by a logarithmic space uniform

family of Boolean circuits with polynomial size, polylogarithmic depth, and

fan-in two.
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2. FNC is the class of functions f computable by an NC circuit in which the output

of the circuit is (the binary encoding of) f(x).

3. NNC[f(n)] is the class of languages computable by a logarithmic space uniform

NC circuit family augmented with O(f(n)) nondeterministic gates for each input

length n [68]. A nondeterministic gate takes no inputs and yields a single

(nondeterministic) output bit.

If F is a class of functions, then NNC[F ] = ⋃
f∈F NNC[f(n)].

NNC[poly], also known as GC(poly,NC) [15] , is an unusual class which may warrant

some further explanation. NC has the same relationship to NNC[poly] as P does to NP

(thus an equivalent definition of NNC[poly] is one in which each language has an efficient

and highly parallel verification procedure; as in the definition of NPO in Definition 3.2.5,

it is this formulation which we use when defining NNCO in Definition 3.2.8). Wolf

[68] notes that NNC[log n] = NC and NNC[poly] = NP, and suggests that NNC[polylog]

may be an interesting intermediary class, possibly incomparable with P. Cai and

Chen [15] prove that for each natural number k and i, there is a complete problem for

NNCk
[
logi n

]
under logarithmic space many-one reductions.

Definition 3.2.8. The complexity class NNCO[poly] is the class of all optimization

problems (I, S,m, t) such that the following conditions hold.

1. The instance set I is decidable by an NC circuit family.

2. The solution relation S is decidable by an NC circuit family and is polynomially

bounded (that is, the length of y is bounded by a polynomial in the length of x

for all (x, y) ∈ S).

3. The measure function m is computable by an FNC circuit family.
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For the sake of brevity, we write NNCO instead of NNCO[poly].

We can now proceed to define classes of approximable optimization problems

contained in NNCO. Our guide for these definitions is the hierarchy of polynomial-

time approximation classes between NPO and PO, namely APX, PTAS, and FPTAS.

Definition 3.2.9. Suppose P is an optimization problem in NNCO.

1. P ∈ ApxNCO if there is an r-approximator in FNC for P , where r(n) ∈ O(1) for

all n ∈ N.

2. P ∈ NCAS if there is an approximation scheme f for P such that fk ∈ FNC for

each k ∈ N, where fk(x) = f(x, k) for all x ∈ Σ∗.

3. P ∈ FNCAS if there is an approximation scheme f for P such that f ∈ FNC in

the sense that the size of the circuit is polynomial in both |x| and k and the

depth of the circuit is polylogarithmic in both |x| and k.

4. P ∈ NCO if there is a function f in FNC that produces optimal solutions for P .

For the NC approximation classes defined above, it is crucial that the solution

relation is verifiable in NC. In all previous works (for example, [27, 59]), the implicit

definition of, say, NCX, which corresponds to our class ApxNCO, requires only that

the solution relation is verifiable in polynomial time. This important distinction does

not seem to have been addressed before.

Each of the classes in Definition 3.2.9 includes the one defined below it. This chain

of inclusions provides a hierarchy that classifies approximability of problems in NNCO,

and hence in NPO,

NCO ⊆ FNCAS ⊆ NCAS ⊆ ApxNCO ⊆ NNCO.
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However, our intention is to determine the approximability of optimization prob-

lems corresponding to P-complete decision problems, not those corresponding to

NP-complete decision problems. Therefore we consider the classes PO ∩ NNCO,

PO ∩ ApxNCO, etc. in order to more accurately capture the notion of highly parallel

approximability of inherently sequential problems,

NCO ⊆ PO ∩ FNCAS ⊆ PO ∩ NCAS ⊆ PO ∩ ApxNCO ⊆ PO.

The instance set, solution relation, and measure function of optimization problems

in these classes are computable in NC, and furthermore, there is a polynomial-time

algorithm that produces optimal solutions.

3.2.3 Reductions among approximation problems

There are many reductions for approximation problems; nine of them are defined

in a survey paper by Crescenzi [21], and there are more defined elsewhere. We

will use a logarithmic space-bounded version of the “AP reduction”, considered by

approximation experts to be a reasonable reduction to use when constructing complete

problems [21, Section 2] [7, Section 8.6]. Although the original definition is from [25,

Definition 9] (a preliminary version of [24, Definition 2.5]), the definition here is from

[7, Definition 8.3].

Definition 3.2.10. [7, Definition 8.3] Let P and Q be optimization problems in

NNCO, with P = (IP , SP ,mp, tP ) and Q = (IQ, SQ,mQ, tQ). We say P AP reduces to

Q and write P ≤LAP Q if there are functions f and g and a constant α ∈ R ∩ [1,∞)

such that

1. for all x ∈ IP and all r ∈ Q ∩ (1,∞), we have f(x, r) ∈ IQ,
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2. for all x ∈ IP and all r ∈ Q ∩ (1,∞), if SP (x) 6= ∅ then SQ(f(x, r)) 6= ∅,

3. for all x ∈ IP , all r ∈ Q ∩ (1,∞), and all y ∈ SQ(f(x, r)), we have g(x, y, r) ∈

SP (x),

4. f and g are computable in logarithmic space for any fixed r, and

5. for all x ∈ IP , all r > 1, and all y ∈ SQ(f(x, r)),

RQ(f(x, r), y) ≤ r =⇒ RP (x, g(x, y, r)) ≤ 1 + α(r − 1).

For a class C of optimization problems, we say a problem Q is hard for C if for all

problems P in C there is a logarithmic space AP reduction from P to Q. If furthermore

Q is in C we say Q is complete for C.

3.3 Completeness in classes of inapproximable problems

This section shows that Maximum Variable-Weighted Satisfiability is complete

for NNCO and Maximum Weighted Circuit Satisfiability is complete for

NPO. Furthermore, the latter problem is not in NNCO unless NC = P. Thus

there are optimization problems whose corresponding budget problems are of equal

computational complexity—they are both NP-complete—but whose solution relations

are of different computational complexity, under reasonable complexity theoretic

assumptions.

The difference in the verification complexity between circuit and formula satisfia-

bility problems appears also in chapter 4; compare these optimization problems with

the parameterized problems p-FSat and p-CSat.
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Definition 3.3.1 (Maximum Variable-Weighted Satisfiability).
Instance: Boolean formula φ on variables x1, . . . , xn, weights in

Q+ for each variable w1, . . . , wn.

Solution: assignment α to the variables that satisfies φ.

Measure: max(1,Σn
i=1α(xi)wi).

Type: maximization.

Definition 3.3.2 (Maximum Weighted Circuit Satisfiability).
Instance: Boolean circuit C with inputs x1, . . . , xn, weights in

Q+ for each input w1, . . . , wn.

Solution: assignment α such that C(α(x1), . . . , α(xn)) = 1.

Measure: max(1,Σn
i=1α(xi)wi).

Type: maximization.

Theorem 3.3.3. Maximum Variable-Weighted Satisfiability is complete for

NNCO under logarithmic space AP reductions.

Proof. This problem is complete for the class of maximization problems in NPO under

polynomial-time AP reductions [55, Theorem 3.1]. A close inspection reveals that the

functions of the reduction can be computed in logarithmic space. There is furthermore

a polynomial-time AP reduction from the Minimum Variable-Weighted Satisfi-

ability problem, which is complete for the class of all minimization problems in NPO,

to Maximum Variable-Weighted Satisfiability [7, Theorem 8.4], and a close

inspection of the reduction reveals that it can also be implemented in logarithmic

space. Thus this problem is complete for NPO under logarithmic space AP reductions.

Next, we show that Maximum Variable-Weighted Satisfiability is in NNCO.

The measure function is computable in FNC because the basic arithmetic operations

and summation are both computable in FNC. The solution set is decidable in NC
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because Boolean formula evaluation is computable in NC [12]. Since NNCO ⊆ NPO

we conclude that the problem is complete for NNCO.

By converting a Boolean formula into its equivalent Boolean circuit, we get the

following corollary.

Corollary 3.3.4. Maximum Weighted Circuit Satisfiability is complete for

NPO under logarithmic space AP reductions.

An initial version of this theorem was suggested in [41].

Theorem 3.3.5. NNCO = NPO if and only if NC = P.

Proof. NNCO ⊆ NPO by definition. If NC = P, then NNCO = NPO by definition. If

NNCO = NPO, then Maximum Weighted Circuit Satisfiability is in NNCO,

thus there is an NC algorithm that decides its solution relation. Its solution relation

is precisely the Circuit Value problem, which is P-complete [40, Problem A.1.1].

An NC algorithm for a P-complete decision problem implies NC = P.

Contrast this with the fact that NNC[poly] = NP [68, Theorem 2.2] (and in fact,

NNC1[poly] = NP). So the classes of decision problems are equal whereas the classes

of corresponding optimization problems are not, unless NC = P.

3.4 Completeness in classes of polynomial-time solvable problems

This section shows results nearly analogous to those in the previous section, but in the

intersection of both NPO and NNCO with PO. The results here show completeness

with respect to maximization problems only; we conjecture that both of the problems

defined below are also complete with respect to minimization problems.
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Definition 3.4.1 (Maximum Double Circuit Value).
Instance: two Boolean circuits C1 and C2, binary string x.

Solution: binary string y such that C1(x) = y and |x| + |y|

equals the number of inputs to C2.

Measure: max(1, C2(x, y)).

Type: maximization.

In this problem, the Boolean circuits may output binary strings of polynomial

length interpreted as non-negative integers. This problem is constructed so that

the circuit C1 can simulate an algorithm that produces an optimal solution for an

optimization problem and the circuit C2 can simulate an algorithm that outputs the

measure of a solution for that problem. Also, each input has exactly one solution, so

this problem is quite artificial.

Definition 3.4.2 (Linear Programming).
Instance: m× n integer matrix A, integer vector b of length m,

integer vector c of length n.

Solution: non-negative rational vector x of length n such that

Ax ≤ b.

Measure: max(1, cᵀx).

Type: maximization.

Theorem 3.4.3. Maximum Double Circuit Value is complete for the class of

maximization problems in PO under logarithmic space AP reductions.

Proof. Since Circuit Value is in P, both the solution and the measure function

are computable in polynomial time. Therefore Maximum Double Circuit Value

is in PO. Our goal is now to exhibit an AP reduction from any language in PO to

Maximum Double Circuit Value. For the sake of brevity, suppose Maximum

Double Circuit Value is defined by (IC , SC ,mC ,max).
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Let P be a maximization problem in PO, where P = (IP , SP ,mP ,max). Let x be

an element of IP . Suppose E is the deterministic polynomial-time Turing machine

that produces optimal solutions for P . Define f by f(x) = (CE, Cm, x) for all x ∈ IP ,

where CE is the Boolean circuit of polynomial size that simulates the action of E on

input x and Cm is the circuit that simulates mP on inputs x and E(x). These circuits

exist and are computable from x in logarithmic space [52]. Define g by g(x, y) = y for

all strings x and all y in SC(f(x)). Let α = 1.

Now, for any x ∈ IP and any y ∈ SC(f(x)), we have

mP (x, g(x, y)) = mP (x, y) = Cm(x, y) = mC((CE, Cm, x), y) = mC(f(x), y).

Since these measures are equal for all instances x and solutions y, we have shown that

(f, g, α) is a logarithmic space AP reduction from P to Maximum Double Circuit

Value.

Theorem 3.4.4. Linear Programming is complete for PO under logarithmic space

AP reductions.

Proof. Linear Programming is in PO by the ellipsoid algorithm [47]. We reduce

Maximum Double Circuit Value to Linear Programming. The reduction is

essentially the same as the reduction from Circuit Value to Linear Programming

given (implicitly) in the hint beneath [40, Problem A.4.1]. We repeat it here for the

sake of completeness.

Define the instance transducer f as follows. Suppose (C1, C2, x) is an instance of

Maximum Double Circuit Value, and let x = x1 · · ·xn. For each of the circuits

C1 and C2, the transducer f adds the following inequalities to the linear program.

1. For each bit of x, represent a 1 bit at index i by xi = 1 and a 0 bit by xi = 0.
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2. Represent a not gate, g = ¬h, by the equation g = 1 − h and the inequality

0 ≤ g ≤ 1.

3. Represent an and gate, g = h1 ∧ h2, by the inequalities g ≤ h1, g ≤ h2,

h1 + h2 − 1 ≤ g, and 0 ≤ g ≤ 1.

4. Represent an or gate, g = h1∨h2, by the inequalities h1 ≤ g, h2 ≤ g, g ≤ h1+h2,

and 0 ≤ g ≤ 1.

Suppose y1, . . . , ys are the variables corresponding to the output gates of C1, and

suppose µt, . . . , µ1 are the variables corresponding to the output gates of C2, numbered

from least significant bit to most significant bit (that is, right-to-left). The components

of the object function c are assigned to be 2i where the component corresponds to

the variable µi and 0 everywhere else. The function f is computable in logarithmic

space because the transformation can proceed gatewise, requiring only a logarithmic

number of bits to record the index of the current gate. Suppose x is a solution to

f((C1, C2, x)), that is, an assignment to the variables described above that satisfies

all the inequalities. Define the solution transducer g by g((C1, C2, x),x) = y, where

y = y1 · · · ys. This is also computable in logarithmic space by finding the index, in

binary, of the necessary gates y1, . . . , ys. Let α = 1.

By structural induction on the gates of the circuits we see that a gate has value

1 on input x if and only if the solution vector x has a value 1 in the corresponding

component, and x must be a vector over {0, 1}. Since the linear program correctly
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simulates the circuits, we see that

mA((C1, C2, x), g((C1, C2, x),x)) = mA((C1, C2, x), y)

= C2(x, y)

= µt · · ·µ1

= Σt
i=12iµi

= mB(f((C1, C2, x)),x),

where mA is the measure function for Maximum Double Circuit Value and mB

is the measure function for Linear Programming. Since these measures are equal,

we have shown that (f, g, α) is a logarithmic space AP reduction from Maximum

Double Circuit Value to Linear Programming. Since the former is complete

for the class of maximization problems in PO, so is Linear Programming.

The reduction in the proof of Theorem 3.4.4 is more evidence that approximability

is not closely related to the complexity of verification. Although Maximum Double

Circuit Value is not in PO ∩ NNCO unless NC = P (because its solution relation

is P-complete), Linear Programming is not only in PO but also in NNCO, since

matrix multiplication is in NC. This yields the following corollaries.

Corollary 3.4.5. PO ∩ NNCO is not closed under logarithmic space AP reductions

unless NC = P.

Corollary 3.4.6. Linear Programming is complete for the class of maximization

problems in PO ∩ NNCO under logarithmic space AP reductions.

An equivalence analogous to that of Theorem 3.3.5 also holds in the intersection

with PO.
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Theorem 3.4.7. PO ∩ NNCO = PO if and only if NC = P.

Proof. PO ∩ NNCO ⊆ PO by definition. If NC = P, then PO ∩ NNCO = PO by

definition. If PO ∩ NNCO = PO, then Maximum Double Circuit Value is in

PO ∩ NNCO, thus there is an NC algorithm that decides its solution relation. Its

solution relation is a generalization of the Circuit Value problem, which is P-

complete (as long as the length of the output y remains polynomial in the length of

the input, this generalization remains P-complete). An NC algorithm for a P-complete

decision problem implies NC = P.

3.5 Hierarchies

The classes of approximable optimization problems are also likely distinct; this is

well-known for polynomial-time approximability.

Theorem 3.5.1 ([7, Exercise 8.1]). If P 6= NP then

PO ( PTAS ( ApxPO ( NPO.

A natural analog holds for NC approximation classes.

Theorem 3.5.2. If NC 6= NP then NCO ( NCAS ( ApxNCO ( NNCO.

Proof. We begin by showing that ApxNCO = NNCO implies NC = NNC[poly], and

hence NC = NP. Let L be a decision problem complete for NNC[poly] under logarithmic

space many-one reductions (for example, Satisfiability). Suppose SL is the relation

decidable in NC and p is the polynomial such that x ∈ L if and only if there is a

string y of length p(|x|) such that (x, y) ∈ SL for all strings x. Define the optimization
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problem P by P = (I, S,m, t), where

I = Σ∗,

S = {(x, y) | |y| ≤ p(|x|)} ,

m(x, y) =


1 if (x, y) ∈ SL,

0 otherwise, and

t = max .

(Technically, the measure function must be positive; we can overcome this by translating

the measure function up by some positive value.) Since SL is in NC, the measure

function m is in FNC. The sets I and S are trivially in NC, and S is polynomially

bounded, so P is in NNC[poly]. By hypothesis P is also in ApxNCO, so there is an

NC computable function A that is an r-approximator for P , for some constant r ≥ 1.

Assume without loss of generality that A enters a special state, call it ⊥, if x has no

solution in SL.

Suppose x is a string that has a solution in SL. Then m∗(x) = 1 and thus

m(x,A(x)) ≥ 1
r
> 0. Define a new algorithm D that, on input x, accepts if and only

if m(x,A(x)) > 0. If x has a solution, then m(x,A(x)) > 0, otherwise A will output

⊥ and D will reject. Furthermore, D is computable by an NC circuit because both A

and m are. Therefore D is an NC circuit that decides L, so NC = NNC[poly].

If NCAS = ApxNCO we can use a similar argument with m(x, y) = 1
r
in the second

case to produce NC = NP. This technique does not seem to work when attempting to

prove NCO = NCAS implies NC = NP. Instead we consider Maximum Independent

Set for Planar Graphs; this problem is in NCAS [27, Theorem 5.2.1], and its

budget problem is NP-complete [38]. Therefore an exact NC algorithm for it implies
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NC = NP.

As a corollary to this theorem, since Maximum Variable-Weighted Satisfi-

ability is complete for the class NNCO under logarithmic space AP reductions, it

admits no NC approximation algorithm unless NC = NP.

Theorem 3.5.3. If NC 6= P then

NCO ( PO ∩ NCAS ( PO ∩ ApxNCO ( PO ∩ NNCO ( PO.

Proof. From Theorem 3.4.7, we know that PO ∩ NNCO = PO implies NC = P. If

either PO ∩ NCAS = PO ∩ ApxNCO or PO ∩ ApxNCO = PO ∩ NNCO, we can use the

same technique as in Theorem 3.5.2. Instead of a problem complete for NNC[poly],

use a problem complete for P (which is a subset of NNC[poly] anyway). Then the

optimization problem P is in PO, but an NC approximation algorithm for it implies

an NC algorithm for the decision problem L, and therefore NC = P.

Suppose now that NCO = PO∩NCAS. Consider Positive Linear Programming,

the restriction of Linear Programming to only non-negative inputs. This problem

is in PO (because it is a restriction of Linear Programming) and in NCAS [53].

However, its budget problem remains P-complete [67]. If NCO = PO ∩ NCAS, then

there is an NC algorithm that solves this P-complete problem exactly, and hence

NC = P.

A similar proof shows that, for example, PO ∩ ApxNCO = ApxNCO if and only

if P = NP. It can be extended to PO ∩ NCAS as well. Compare this theorem with

Theorem 3.4.7.

Theorem 3.5.4. PO ∩ ApxNCO = ApxNCO if and only if P = NP.
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Proof. The equation PO∩ApxNCO = ApxNCO is equivalent to the inclusion ApxNCO ⊆

PO. For the reverse implication, P = NP implies PO = NPO by definition, and

therefore ApxNCO ⊆ NNCO ⊆ NPO = PO. For the forward implication, the problem

Maximum k-CNF Satisfiability problem is in ApxNCO by [7, Theorem 8.6]. By

hypothesis, it is now in PO as well. Since its budget problem is NP-complete, we

conclude that P = NP.

Since Linear Programming is complete for the class of maximization problems

in PO∩NNCO under logarithmic space AP reductions, it admits no NC approximation

algorithm unless NC = P. This result suggests an explanation for the fact that

r-approximating Linear Programming for any r ≥ 1 is P-complete [27, Theo-

rem 8.2.7], and further, the fact that any NC approximation algorithm for Linear

Programming implies NC = P [27, Theorem 8.2.8]: Corollary 3.4.6, Theorem 3.5.3,

and the fact that AP reductions compose imply that any highly parallel approximation

for Linear Programming necessitates NC = P.

The hierarchy theorem also provides a simple proof of a result of [27] (although

they do not define ApxNCO in the same way).

Corollary 3.5.5 ([27, Theorem 8.2.9]). ApxNCO = ApxPO if and only if NC = P.

Proof. If NC = P then ApxNCO = ApxPO by definition. If ApxPO ⊆ ApxNCO then

PO ⊆ NNCO, and hence PO ∩ NNCO = PO. By Theorem 3.5.3, we conclude that

NC = P.

This result is true if we replace the first equality with NCAS = PTAS, or, indeed,

any equality that implies PO ⊆ NNCO.

45



3.6 Completeness in classes of approximable problems

In order to construct an optimization problem complete for, say, PO ∩ ApxNCO, we

need to use either

1. an analog of the PCP theorem with NC verifiers for polynomial-time decision

problems, or

2. a canonical, “universal” complete problem for PO ∩ ApxNCO.

These are the only two known ways for showing completeness in constant-factor

approximation classes. The first approach is difficult to apply because it is not obvious

how to construct a PCP for a deterministic time complexity class (PO). See chapter 2

for more information on that approach. The second approach is difficult to apply

because although this technique has worked in the past for constructing a complete

problem for ApxPO [23, Lemma 2], it is not clear how to guarantee a polynomial-time

computable function that produces optimal solutions for such a problem.

However, we know what a problem complete for PO ∩ ApxNCO should look like.

It should be exactly solvable in polynomial time and admit an NC approximation

algorithm. It should also have threshold behavior in the following sense. If the problem

were approximable for all r > 1, then it would be in NCAS. If the problem were not

approximable for any r ≥ 1, then it would not even be in ApxNCO. Therefore there

should be some constant r0 such that the problem is approximable for all r ∈ (r0,∞)

and not approximable for all r ∈ (1, r0).

3.6.1 High weight subgraph problems

There is in fact a family of maximization problems that has these properties: Induced

Subgraph of High Weight for Linear Extremal Properties [27, Chapter 3].
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A concrete example of a maximization problem in this family is Maximum High

Degree Subgraph. In the definition below, the degree of a graph G, denoted deg(G),

is defined by deg(G) = minv∈V (G) deg(v).

Definition 3.6.1 (Maximum High Degree Subgraph).
Instance: undirected graph G.

Solution: vertex-induced subgraph H.

Measure: deg(H).

Type: maximization.

This problem is exactly solvable in polynomial time, has an r-approximator in FNC

for all r ∈ (2,∞) and has no r-approximator in FNC for all r ∈ (1, 2) unless NC = P

[2]. (The existence or non-existence of a 2-approximator seems to remain unknown.)

We suspect this family of problems is complete for PO ∩ ApxNCO under logarithmic

space AP reductions.

Conjecture 3.6.2. Maximum High Degree Subgraph is complete for the class

of maximization problems in PO ∩ ApxNCO under logarithmic space AP reductions.

3.6.2 Restrictions of linear programming

Although Linear Programming is P-complete and admits no NC approximation

algorithm, Positive Linear Programming, the restriction of Linear Program-

ming to inputs in which all entries of A, b, and c are non-negative, admits a NC

approximation scheme [53], even though the corresponding budget problem remains

P-complete [67, Theorem 4]. These results beg the question “is there some restriction

of Linear Programming less strict than Positive Linear Programming that

exhibits the properties of a complete problem for PO ∩ ApxNCO as defined above?”

If we relax the non-negativity requirement and allow a small number of equality
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constraints that can be violated by a small amount, then there is still an NC ap-

proximation scheme [67, Theorem 5.2]. On the other hand, if we have even just one

equality constraint and don’t allow the equality violations, the problem becomes hard

to approximate again (to within a constant factor) [31, Theorem 3.1] [67, Remark 2].

Similarly, if we allow A to have negative entries, the problem is hard to approximate

[30, Corollary 2]. The (γ, κ) form of Linear Programming is hard to approximate

[30, Proposition 1]; the k-normal form reduces to Positive Linear Programming

and so has an approximation scheme [65, Theorem 2].

There remains one candidate restriction that may have the properties we seek, the

Linear Programming with Triplets problem. An instance of this maximization

problem comprises m× n Boolean matrices A(1), A(2), and A(3), non-negative rational

vectors b(1) and b(2) of length m, a non-negative rational vector c of length n, and a

set of triples of indices T ⊆ {1, . . . , n}3 satisfying two conditions. First, there is at

least one non-zero entry in each row of A(1) and each row of A(2). Second, there is a

constant γ ∈ (1,∞) such that M∗ ≤ γM for all measures M of this instance, where

M∗ is the optimal measure of the instance. A valid solution is a pair of non-negative

rational vectors x and f of length n such that for all (i, j, k) ∈ T ,

xk + (1− fi) ≤ 1

xk + (1− fj) ≤ 1

fk + fi + fj ≤ 2,
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as well as

A(1)x = b(1)

A(2)x + A(3)f = b(2)

x ≤ 1

f ≤ 1

The measure is max(1, cᵀf).

Although this optimization problem is not approximable within 2nε

nε+1
for any

positive ε unless NC = P [60, Corollary 1], we know the value of the optimal measure

of an instance to within a multiplicative factor of γ.

Conjecture 3.6.3. Linear Programming with Triplets is complete for the

class of maximization problems in PO∩ApxNCO under logarithmic space AP reductions.

3.6.3 Linear program for high degree subgraph

Is there a way to relax the high degree subgraph problem to make it easier to work with?

Perhaps we can consider a linear programming relaxation of Maximum High Degree

Subgraph and show that such a restriction is more approximable than Linear

Programming but less approximable than Positive Linear Programming.

Suppose the vertices of a graph G are identified with the integers {1, . . . , n}. We

can represent a subgraph H of a graph as a subset of the vertices, and if the graph

has n vertices, this can be an indicator vector x of length n. Since we also want to

maximize the minimum degree of the chosen subgraph, we introduce a new variable

d that has a value between 0 and n that will be bounded above by the degree of

each vertex. We want the constraints to reflect that if a vertex is in the subgraph,
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then the degree of that vertex (with respect to the subgraph) is at least d, and if a

vertex is not in the subgraph then we don’t care about its degree. In other words,

we want “if xi = 1 then deg(i) ≥ d”, where deg(i) = Σn
j=1aijxj and aij is the entry at

row i, column j in the adjacency matrix of the graph. Equivalently, we want “xi 6= 1

or deg(i) ≥ d”, or more specifically, “xi < 1 or deg(i) ≥ d”. We can combine the two

inequalities to get a single constraint “xi + d ≤ 1 + deg(xi)”. However, as stated above

we want this constraint to be always satisfied if xi = 0 (that is, when the vertex i is

not in the subgraph H); in this form, that is not always true.

We can assume without loss of generality that d, the minimum degree of H, will

always be less than or equal to n− 1 (since a graph without self-loops cannot have a

vertex of degree n anyway). Thus we can ensure the constraint is always satisfied if we

modify it so that xi = 0 implies d is less than the right side, “nxi+d ≤ n+deg(xi)”. Now

if xi = 1 then d ≤ deg(xi) as required, and if xi = 0 then d ≤ n− 1 ≤ n ≤ n+ deg(xi)

is always satisfied.

There is one final restriction: we require a non-empty subgraph, so we want at

least one of the entries of x to be 1. Therefore, the proposed linear program is

maximize d

subject to nx + d1 ≤ n1 + Ax

1ᵀx > 0

0 ≤ x ≤ 1

0 ≤ d ≤ n− 1,

where A is the adjacency matrix of the graph G, n is the number of vertices in G, 0 is

the all zeros vector, 1 is the all ones vector, and ≤ for vectors denotes component-wise
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inequality. (If we restrict x and d to be integer-valued, then this is exactly the same

problem.)

Thus the instances of the HDS Linear Programming maximization problem

are an m × n Boolean matrix A, nonnegative rational vector c of length n, and a

nonnegative rational c0. The solution is a nonnegative rational vector x of length n and

rational d satisfying the linear inequalities above. The measure is max(1, cᵀx + c0d).

Conjecture 3.6.4. HDS Linear Programming is complete for PO ∩ ApxNCO

under logarithmic space AP reductions.

3.7 Syntactic characterization of ApxNCO

In [56], the authors introduce a wealth of problems which are complete under “L

reductions” for MaxSNP, the class of maximization problems in strict NP (SNP), which

is a syntactic characterization of a subclass of NP. Further work showed that the

closure of MaxSNP under≤PE reductions, denoted cl
(
MaxSNP,≤PE

)
, equals the subclass

of ApxPO with polynomially-bounded measures, denoted ApxPOpb [48, Theorem 1].

Since cl
(
ApxPOpb,≤PPTAS

)
= ApxPO [22], we conclude that cl

(
MaxSNP,≤PPTAS

)
=

ApxPO [48]. We also have cl
(
MaxSNP,≤PE

)
= cl

(
MaxNP,≤PE

)
[48, Theorem 2] and

Maximum Satisfiability is complete for MaxNP under ≤PE reductions.

We conjecture that using descriptive complexity theory, these findings can translate

to NC. For example, we know that FO[polylog] = NC [44, Theorem 5.2], which may

be used to construct a syntactic definition of ApxNCO. Such a definition may help to

construct a complete problem for ApxNCO using a different strategy than that of the

previous section.
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Chapter 4

Parameterized problems

A ccording to researchers Downey and Fellows in the introduction to [29],

“The future of algorithms is multivariate.” Their suggestion is to replace the

classical viewpoint of computational problems as univariate objects with a more

modern viewpoint of computational problems as multivariate objects. Understanding

the parameterization for a computational problem allows us to break algorithms for

the problem into parts and more easily identify the complexity of these parts.

In the world of parallel versus sequential computation, the right parameterization

of a problem that would classically be considered inherently sequential can yield a

highly parallel algorithm. Little work has been done to provide the framework for

proving parameterized parallelizability for classical inherently sequential computational

problems; previous work has mostly focused on parameterized tractability for classically

intractable computational problems. Practicioners should be able to take advantage

of parallelism where it exists, and this line of research may reveal a hidden capacity

for parallelism that was previously unknown.

With this need in mind, we undertake the first comprehensive examination of the
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definitions, supporting lemmas, and basic structural theorems about highly parallel

parameterized problems and inherently sequential parameterized problems; this chapter

provides such a framework.

Our work builds on the parameterized complexity theory framework that was origi-

nally intended to study the difference between tractable and intractable parameterized

problems. Among other things, we prove

• the existence of inherently sequential problems whose parameterized versions

are parallelizable (subsection 4.3.2),

• the existence of inherently sequential problems whose parameterized versions

are not parallelizable under a reasonable assumption (subsection 4.4.1),

• the existence of a hierarchy of complete problems interpolating between the

parameterized versions of the formula satisfiability problem and the circuit

satisfiability problem (subsection 4.5.3),

• an equivalence between parameterized parallel verifiability and classical limited

nondeterminism (subsection 4.5.4).

Altogether, these results demonstrates a strong relationship among the resources time,

nondeterminism, and parallelism. We hope this framework inspires researchers to look

more closely for paralellizable problems by considering parameterizations of classical

problems previously considered inherently sequential.

4.1 History

The study of parameterized complexity as a distinct named concept was initiated in a

series of articles by Downey and Fellows in the early 1990s; references can be found in

their 2013 book Fundamentals of Parameterized Complexity [29] or in the 2006 book
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by Flum and Grohe Parameterized Complexity Theory [35]. Much of our definitions,

notation, and concepts follow the view outlined in the latter book. The first formal

definition for a notion of fixed-parameter parallelizability seems to be in a 1998 article

by Cesati and Di Ianni [18]. That work inspired our complete problems for paraP in

subsection 4.4.1. Although much research has been done with respect to the class

paraP, we could not find any proof of the existence of a complete problem.

A generic para operator that can be applied to any complexity class was defined by

Flum and Grohe in 2003 [34]. In 2014, Elberfeld, Stockhusen, and Tantau explored

this generic operator in more detail [32], giving complete problems for a number of

parameterized complexity classes, including paraWNC1 (see Definition 4.5.1 for the

definition of this class). We follow their lead when proving complete problems for

paraWNCk in subsection 4.5.3 below. More recently, a 2015 preprint by Bannach,

Stockhusen, and Tantau [8] studies the parameterized depth of a circuit in more detail,

showing that depth f(k) is strictly more powerful than depth O(1).

The deterministic simulations of nondeterminism in the parameterized and decision

complexity classes appearing in Theorem 4.5.15 is inspired by similar theorems for

polynomial-time computations by Cai et al. in 1995 [16] and Cai and Chen in 1997

[14], from which we have refactored the main components of the proofs into distinct

lemmas.

4.2 Definitions

This section provides a brief introduction to the concepts necessary for studying

parameterized complexity theory specifically for classes of problems decidable by

families of Boolean circuits. For a more thorough review of the basics of computational

complexity theory, see for example [3]; for parameterized complexity theory, see [29]
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or [35].

Definition 4.2.1. A Boolean circuit, or simply a circuit, C, is a directed acyclic graph.

The size of a circuit, denoted size(C), is the number of vertices in the underlying

graph. The depth of a circuit, denoted depth(C), is the length of a longest path from

the root to a sink.

Definition 4.2.2. A function f is circuit-computable if there is a nonuniform family

of Boolean circuits {Cn}n∈N such that for each x we have f(x) = Cn(x), where n = |x|.

A language is circuit-decidable if it has a circuit-computable characteristic function.

We may also require that the size and depth of each circuit Cn in the family be

circuit-computable from just n, the length of the input. In this case, we say the

language is circuit-decidable with uniform size and depth.

Nonuniformity is required in Lemma 4.3.7, among other theorems, in which the size

of the input relative to the size of the parameter for an instance of the parameterized

problem selects which of two circuits to use; for more information, see the footnote in

the referenced lemma. However, it seems that all other theorems can be made uniform,

with reasonable restrictions on the complexity of the parameterization. It may be

possible to adapt some theorems in later sections to use uniform circuits, but we did

not pursue this.

Definition 4.2.3 (Decision problems and parameterized problems). A language is

a set of binary strings. A parameterization is a computable function κ from binary

strings to natural numbers. A parameterized problem is a pair (Q, κ), where Q is a

language and κ is a parameterization.

Definition 4.2.4 (Slices of parameterized problems). For each positive integer k and
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each parameterized problem (Q, κ), the kth slice of Q, denoted (Q, κ)k, is defined by

(Q, κ)k = {(x, k) |x ∈ Q and κ(x) = k}.

Definition 4.2.5 (NNCd and NCd). Let d be a natural number. A language Q is in

the class NNCd[b(n)] if there is a nondeterministic circuit family {Cn} such that for

each string x of length n,

• x ∈ Q if and only if Cn(x) = 1,

• size(Cn) ≤ nO(1),

• depth(Cn) ≤ O(logd n),

• nondet(Cn) ≤ b(n).

If b is the zero function, then the language is in the class NCd.

Here, the notion of “acceptance” for a circuit is a nondeterministic one: Cn(x) = 1

if and only if there is a binary string w of length b(n) such that Cn(x,w) = 1.

Throughout we will often assume without loss of generality that functions like

circuit size and depth bounds, nondeterministism bounds, and polynomials, are

increasing.

4.3 Fixed-parameter parallelizability

Classical computational complexity has a well-developed theory of parallel versus

sequential computation. Those computational problems that are P-complete are

inherently sequential, whereas those in the class NC admit highly parallel algorithms.

Even though they can be solved in polynomial time, adding more processors does not

provide any significant reduction in the time required to find a solution for P-complete
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problems. Can parameterization of problems that have traditionally been considered

inherently sequential afford us a new avenue for parallelization?

Specifically, we would like to determine whether there are problems that are inher-

ently sequential in the classical sense but parallelizable under some parameterization.

This section combines and adapts the definitions of parallelization from classical

complexity theory and the definitions of parameterized complexity theory for highly

parallel problems.

We provide the definition of paraNC, demonstrate the relationship between paraNC

and NC, and prove some sufficient conditions for membership in paraNC. These results

demonstrate that the idea of parameterized parallelizability is both meaningful and

interesting for seemingly inherently sequential problems. Subsequent sections will

examine the limits to parameterized parallel computation.

4.3.1 Definition of paraNC

The para “operator” defined in [34] applies generically to an arbitrary complexity class

as follows. If C is a class of decision problems, then paraC is the class of parameterized

problems (Q, κ) for which there is a decision problem L ∈ C and a computable function

f such that x in Q if and only if (x, 1f(κ(x))) ∈ L. When C = NC in particular, we get

the following equivalent definition.

Definition 4.3.1 (paraNCd). Let d be a natural number. A parameterized prob-

lem (Q, κ) is in the class paraNCd if there is a circuit-computable function f and a

nonuniform family {Cn,k} of bounded fan-in Boolean circuits such that for each string

x,

• x ∈ Q if and only if Cn,k(x) = 1, where n = |x| and k = κ(x),

• size(Cn,k) ≤ f(k)nO(1),
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• depth(Cn,k) ≤ f(k) +O(logd n).

If the depth of the circuit is instead bounded by f(k)O(logd n), the class is denoted

paraNCd↑, a superclass of paraNCd. If the circuits are of unbounded fan-in, the classes

are paraACd and paraACd↑, respectively. The class paraACd↑ was first defined in [8].

A subtle point is that the value of the parameter κ(x) must be non-constant but

also independent of the size of the instance x for the parameterized problem to be

interesting. First, if κ(x) were bounded above by a constant for each x, then the

parameter would be irrelevant and the problem would simply be in the standard

complexity class NCd. Thus depth O(logd n) and depth f(k) + logd n (as well as

f(k) logd n) are different. On the other hand, if κ(x) were bounded from below by

a nondecreasing, unbounded function of |x|, then the problem would be trivially in

paraAC0↑ by the technique of [35, Proposition 1.7]. Thus a formula like log2(kn), which

may appear in the analysis of certain simulations of parameterized complexity classes

(see Lemma 4.5.10, for example), becomes

log2(kn) = (log k + log n)2 = log2 k + log k log n+ log2 n ≤ log2 k + 2 log2 n,

and thus log2(kn) = f(k) +O(log2 n) for some computable function f .

4.3.2 Example problem in paraNC

Useful complexity classes are nonempty and have interesting natural problems, so in

an effort to show that paraNC has parameterized problems whose underlying decision

problems are P-complete, we consider parameterizations of the canonical P-complete

problem, the circuit evaluation problem. This section provides a non-degenerate

parameterization of the circuit evaluation problem that makes it parallelizable.

We provide a paraNC problem based on a P-complete problem with a degenerate
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parameterization (Theorem 4.3.2), one with a nondegenerate parameterization (Theo-

rem 4.3.3), and one based on an optimization problem (Theorem 4.3.4). (Contrast

these results with the parameterized vertex cover problem, which is in paraAC0 [8],

but whose underlying decision problem is NP-complete.) Thus paraNC does indeed

contain interesting problems and we can use these as the starting point for studying

the limits of parameterized parallelization.

We start by choosing Q to be a P-complete problem and κ to be the “degenerate”

parameterization function κ(x) = |x|. The circuit evaluation problem is the problem

of deciding whether, given a Boolean circuit and an input to that circuit, the output

of the circuit is 1.

Theorem 4.3.2. The circuit evaluation problem parameterized by the size of the

circuit is in paraNC and the underlying decision problem is P-complete.

Proof. The circuit evaluation problem is P-complete by [52]. Since the parameteriza-

tion is monotonically increasing with the size of the input, the problem is in paraNC

by the technique of [35, Proposition 1.7].

To find a non-degenerate example, we can parameterize the circuit evaluation

problem by depth instead of size.

Theorem 4.3.3. The circuit evaluation problem parameterized by the depth of the

circuit is in paraAC0↑ and the underlying decision problem is P-complete.

Proof. As stated in the proof of the previous theorem, the circuit evaluation problem

is P-complete. Evaluating the circuit C of size m and depth d on inputs x can be

performed by the depth-universal circuit U of [20]. The size of U is O(m) and the

depth is d, so there is a function f such that the size is bounded by f(d)mO(1) and

the depth by f(d). Therefore the circuit evaluation problem parameterized by circuit

depth is in paraAC0↑.
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For a problem with a standard parameterization derived from an optimization

problem (see Definition 4.3.12 below), consider the “depth of ones” problem. The

depth of ones problem is the problem of deciding, given a circuit, an input to the circuit,

and a positive integer k, whether a 1 appears at depth at least k when evaluating the

circuit on the input. The circuit evaluation problem is a special case of the depth

of ones problem if we choose k to be the depth of the circuit C. As an optimization

problem, the depth of ones problem is inapproximable up to any constant factor

by any NC circuit, unless NC = P [50]. Contrast this with the complexity of the

corresponding parameterized problem.

Theorem 4.3.4. The depth of ones problem parameterized by the depth parameter k

is in paraAC0↑ and the underlying decision problem is P-complete.

Proof. Computing the depth of ones in a circuit is P-complete [50] (see also [40,

Problem A.1.10]). The naïve algorithm for solving this problem is to take the subcircuit

consisting of all gates starting from the inputs and extending through layer k, evaluating

that (multi-output) circuit, then applying a single or gate to decide whether any of

the gates at layer k evaluated to one. For each gate at layer k, use an instance of

the depth-universal circuit to evaluate the single-output circuit induced by that gate.

This yields a circuit of depth O(k) and size f(k)mO(1) for some f , where m is the size

of the circuit given as input. Therefore this problem is in paraAC0↑.

4.3.3 Relationship between paraNC and NC

How do the parallelizable parameterized problems relate to classical parallelizable

computational problems? In order to determine the conditions under which a pa-

rameterized parallel algorithm implies a classical parallel algorithm (and vice versa),

we consolidate and adapt some results that appear scattered across several parame-
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terized complexity papers and books. This section provides a generic technique for

constructing a classical parallel algorithm from a parameterized one, and vice versa.

Specifically, we show two main lemmas. Lemma 4.3.7 shows how to construct a

parameterized parallel algorithm from a parameter-restricted reduction to a highly

parallel decision problem. Lemma 4.3.9 shows how to construct a classical parallel

algorithm for from a parameter-restricted reduction to a parameterized parallel problem.

These give explicit techniques for transforming a parameterized parallel algorithm

into a classical parallel algorith and vice versa. They will be used in later sections to

provide evidence against the collapse of larger complexity classes to paraNC.

We begin with a lemma that allows us to construct a function that behaves like

an upper bound on the inverse of another function.

Lemma 4.3.5. For each nondecreasing, unbounded, circuit-computable function i,

there is a function fi such that fi(i(n)) ≥ n for each n ≥ f(1). Furthermore, fi is

nondecreasing, unbounded, and circuit-computable. (We call fi the “upper inverse” of

i.)

Proof. Define fi by

fi(k) = max{n0 ∈ N | ∀n ≥ n0 : i(n) ≥ k}.

Since i is nondecreasing and unbounded, so is fi.

To compute fi, we use the fact that i is nondecreasing is unbounded. We know

that for each k there is a natural number nk such that for all n ≥ nk, we have i(n) ≥ k.

Thus the algorithm for computing fi takes k as input and performs a binary search on

i(1), . . . , i(nk) to determine the largest n such that i(n) ≥ k. There will be at most

log nk comparison subcircuits, each requiring a computation of i and a comparison
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with the integer k (in binary, say), so the overall depth of the circuit computing fi is

O(depth(i) log n log log k) and the size is O(size(i) log n log k).

Definition 4.3.6. Suppose d is a natural number, (Q, κ) is a parameterized problem,

and Q′ is a decision problem. There is a small parameter NCd many-one reduction

from (Q, κ) to Q′ if there is a nondecreasing, unbounded, circuit-computable function

i and an NCd family of circuits {Rn}n∈N such that for each string x of length n with

κ(x) ≤ i(n), we have x ∈ Q if and only if Rn(x) ∈ Q′.

This lemma essentially demonstrates that the closure of NC under small parameter

reductions is a subset of paraNC. We attempted to show that the closure equals

paraNC but were unable to do so.

Lemma 4.3.7. Suppose d is a natural number, (Q, κ) is a parameterized problem,

and Q′ is a decision problem. If Q is circuit-decidable with uniform size and depth, Q′

is in NCd, and there is a small parameter NCd many-one reduction from (Q, κ) to Q′,

then (Q, κ) is in paraNCd.

Proof. Let i be the function that defines the upper bound on the parameter, below

which there is an NCd many-one reduction from Q to Q′. Let {Rn} be the NCd circuit

family computing the reduction. The nonuniform family of circuits {An,k} that decides

(Q, κ) is defined by

An,k =


C1
n if i(n) < k

C2
n′ ◦Rn otherwise,

where {C1
n} is the family of circuits that decides Q with uniform size and depth, {C2

n}

is the family of NCd circuits that decides Q′, and n′ is the number of output bits of

Rn. The correctness of An,k follows from the correctness of the subsequent circuits.

The circuit family is necessarily nonuniform: the computation of i(n) and k and the
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comparison of the two decides nonuniformly which circuit to select when defining An,k.

If i(n) ≥ k, then the size and depth of the circuit are polynomial and polyloga-

rithmic in n, respectively, because the size and depth of C2
n′ and Rn are. For the case

when i(n) < k, consider the upper inverse fi of i guaranteed by Lemma 4.3.5. By

construction, n ≤ fi(i(n)) < fi(k). Now

size(An,k) = size(C1
n) = S(n) ≤ S(fi(k)),

depth(An,k) = depth(C1
n) = D(n) ≤ D(fi(k)),

where S and D are the (circuit-computable, nondecreasing) size and depth bounds

for the circuit family {C1
n}. Thus in either case, there is a sufficiently large circuit-

computable function f such that the size of An,k is bounded above by f(k)nO(1) and

the depth f(k) +O(logd n).

As an aside, let us consider the nonuniformity requirement in this lemma. All

subsequent theorems that require nonuniform circuits are nonuniform because they

rely on this lemma, and it is not clear whether this lemma can be made uniform.

Nonuniformity is necessary here, but only a single bit of nonuniform advice is required

to select the appropriate circuit for An,k, given the length n and the parameterization

k of the input. If the circuit An,k were implemented with a selector for i(n) < k and

both branches as subcircuits, then the overall depth of the circuit would be bounded

above by the larger of the depths of the two subcircuits. For large values of k, this

could be too great a depth to qualify as paraNC.

On the other hand, if the function i were computable by, for example, a deterministic

logarithmic space Turing machine, then we would be able to conclude that (Q, κ) is in

paraL-uniform paraNC (assuming we have an appropriate definition for such a class).

In this paper, i will not have that restriction, so we suggest considering parameterized
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uniformity in future research.

We continue with a corollary of the previous lemma. The following corollary

highlights the special case of the preceding lemma in which the reduction is the

identity function.

Corollary 4.3.8. Suppose (Q, κ) is a parameterized problem, d is a positive integer,

and i is an unbounded, nondecreasing, circuit-computable function. Let i(n)-Q denote

the problem of deciding, given x with κ(x) ≤ i(|x|), whether x ∈ Q. If i(n)-Q is in

NCd, then (Q, κ) is in paraNCd.

Proof. The identity function is a small parameter NCd many-one reduction from (Q, κ)

to i(n)-Q, thereby proving that Q is in paraNCd by the previous lemma.

This lemma shows that a many-one reduction to a fixed-parameter parallelizable

problem can sometimes induce a highly parallel algorithm, if the parameter functions

are bounded for the reduced instance.

Lemma 4.3.9. Suppose d is a positive integer, Q is a decision problem, and (Q′, κ′)

is a parameterized problem. Suppose there is an NCd many-one reduction from Q to

Q′, given by the circuit family {Rn}, and (Q′, κ′) is in paraNCd by a circuit family

{Cm,k} of size f(k)mO(1) and depth f(k) + O(logdm) on inputs of length m. If

f(κ′(Rn(x))) ≤ min(nO(1), O(logd n)), then Q is in NCd.

Proof. The circuit family that decides Q is {An}, defined by An = Cm,k ◦Rn, where

m is the size of the output of Rn and k = κ′(Rn(x)). Since size(Rn) = nO(1), we have

m = nO(1) as well. For correctness,

x ∈ Q ⇐⇒ Rn(x) ∈ Q′ ⇐⇒ Cm,k(Rn(x)) = 1.
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For size and depth bounds,

size(An) = size(Cm,k) + size(Rn)

= f(k)mO(1) + nO(1)

= f(k)nO(1) + nO(1)

= nO(1)nO(1) + nO(1)

= nO(1),

and

depth(An) = depth(Cm,k) + depth(Rn)

= f(k) +O(logdm) +O(logd n)

= f(k) +O(logd n) +O(logd n)

= f(k) +O(logd n)

= O(logd n) +O(logd n)

= O(logd n).

The following corollary highlights the special case of the preceding lemma in

which the decision problem of interest is a “bounded-parameter” version of the

decision problem underlying the fixed-parameter parallelizable problem; compare this

with Corollary 4.3.8. Below, a “nontrivial” parameterized problem is one in which

∅ ( Q ( {0, 1}∗.

Corollary 4.3.10. Suppose (Q, κ) is a nontrivial parameterized problem, d is a positive

integer, and i is an unbounded, nondecreasing, circuit-computable function. Let i(n)-Q

denote the problem of deciding, given x with κ(x) ≤ i(|x|), whether x ∈ Q. If (Q, κ)
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is in paraNCd by a circuit family {Cn,k} of size f(k)nO(1) and depth f(k) +O(logd n)

on inputs of length n and f(i(n)) ≤ min(nO(1), O(logd n)), then i(n)-Q is in NCd.

Proof. We will show a many-one reduction from the decision problem i(n)-Q to the

decision problem Q underlying the parameterized problem (Q, κ) that satisfies the

conditions of the previous lemma. The reduction {Rn} is defined as follows.

Rn(x) =


x if κ(x) ≤ i(n),

⊥ otherwise,

where ⊥ is an arbitrary string not in Q (which must exist because the problem is

nontrivial by hypothesis). As long as κ is computable by an NCd circuit family, then

so is Rn. (The computation of i(n) is captured by the nonuniformity of the circuit

family, so it does not affect the size or depth required by the circuit computing Rn.)

The reduction Rn is a correct many-one reduction. If x ∈ i(n)-Q, then κ(x) ≤ i(|x|)

and x ∈ Q, thus Rn(x) ∈ Q. If x /∈ i(n)-Q, then there are two cases. In the first,

κ(x) > i(|x|), in which case Rn(x) = ⊥, which is not in Q by construction. In the

second case, x /∈ Q so Rn(x) /∈ Q.

Finally, we consider the value of f(κ(Rn(x))). If κ(x) ≤ i(n), then by construction

f(κ(Rn(x)) ≤ f(κ(x)) ≤ f(i(n)) ≤ min(nO(1), O(logd n)).

On the other hand, if κ(x) > i(n), then κ(Rn(x)) = κ(⊥) = O(1), which is bounded

above by both nO(1) and O(logd n) for all but finitely many n. Thus we have shown that

f(κ(Rn(x))) satisfies the upper bound required by Lemma 4.3.9 and the conclusion,

i(n)-Q is in NCd, follows.
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4.3.4 Approximable optimization problems

Theorem 4.3.4 shows an inherently sequential optimization problem that becomes

parallelizable when parameterized. Let us explore the possibility of parameterized

parallel algorithms from optimization problems more generally. (This has been done

before only for efficient algorithm for intractable optimization problems.) We show

how a certain kind of approximation scheme for an optimization problem induces a

highly parallel algorithm for the standard parameterized problem derived from the

optimization problem. This section provides the necessary definitions and generic

theorems for this framework.

We prove that an approximation scheme with appropriate size and depth bounds

implies a paraNC algorithm (Theorem 4.3.18), and show how this applies to the

maximum flow problem under a derandomization assumption (Theorem 4.3.20). This

means that both existing and newly discovered approximation schemes for optimization

problems may present an alternate method of parallelization (via parameterization).

One thing we are unable to show in this section is an optimization problem whose

budget problem is P-complete and whose standard parameterization is in paraNC but

for which no ENCAS exists, so we postpone that for future work.

We start with the necessary definitions for optimization problems and approxima-

tion schemes. Some of these definitions appear in chapter 3, but we repeat them here

in a more concise form so that this section is self-contained.

Definition 4.3.11. An optimization problem O is a four-tuple (I, S,m, t), where I

is the set of instances, S is the set of pairs (x,w) where w is a solution for x, the

function m computes the measure (or objective value) for such a pair, and t is either

min or max.

Definition 4.3.12. The standard parameterization of a minimization problem O,
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denoted p-O, is (Q, κ), where Q = {(x, k) |m∗(x) ≤ k} and κ(x, k) = k. The

inequality is reversed for a maximization problem.

Definition 4.3.13. Suppose (I, S,m, t) is an optimization problem and (x, y) ∈ S.

The performance ratio of the solution y (with respect to x), denoted R(x, y), is defined

by

R(x, y) = max
(
m(x, y)
m∗(x) ,

m∗(x)
m(x, y)

)

The performance ratio R(x, y) is a number in the interval [1,∞). The closer R(x, y)

is to 1, the better the solution y is for x, and the closer R(x, y) to ∞, the worse the

solution.

Definition 4.3.14. An approximation scheme for an optimization problem is a

function A such that for all x and all positive integers k we have (x,A(x, k)) ∈ S and

R(x,A(x, k)) ≤ 1 + 1
k
.

An approximation scheme induces a family of functions, {Ak}k∈N, that form

progressively better approximations for the optimization problem. A problem is in

NCAS if it admits an approximation scheme whose slices are in NC. The problem is

in FNCAS if it admits an approximation scheme that is in NC with respect to both

inputs n and k.

Definition 4.3.15. Suppose O is an optimization problem with O = (I, S,m, t) with

I and S in NC and m in FNC. An optimization problem O is in NCAS if there is

an approximation scheme A for O such that for each k, we have Ak ∈ FNC, where

Ak(x) = A(x, k) for each x. The problem is in FNCAS if there is an approximation

scheme A for O such that A ∈ FNC (i.e. on both inputs).

These two complexity classes lead us to a natural interpolation using the ideas of

parameterized complexity theory. This definition is adapted from [35, Definition 1.31]
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Definition 4.3.16 (ENCAS). An optimization problem O is in ENCAS if there is a

circuit family {An,k} and a circuit-computable function f such that

• {An,k} is an approximation scheme for O,

• size(An,k) ≤ f(k)nO(1),

• depth(An,k) ≤ f(k) + logO(1) n.

When we consider k as a parameter, then ENCAS interpolates between FNCAS

and NCAS. If f(k) is polylogarithmic in n, then the definition yields FNCAS. If f(k)

is considered a fixed constant, then the definition yields NCAS.

Proposition 4.3.17. FNCAS ⊆ ENCAS ⊆ NCAS.

We can use an ENCAS algorithm to construct a paraNC algorithm for the stan-

dard parameterization of an optimization problem. The converse does not hold: as

a counterexample, the minimum vertex cover problem is not in ENCAS (since no

polynomial-time approximation algorithm with approximation ratio better than 7⁄6

exists [42, Theorem 8.1]) but the problem is in paraNC [8, Theorem 4.5]. This theorem

is an adaptation of [35, Theorem 1.32].

Theorem 4.3.18. Let O be an optimization problem. If O is in ENCAS, then p-O is

in paraNC.

Proof. Assume without loss of generality that O is a minimization problem; the proof

is similar if it is a maximization problem. Let {mn} be the NC circuit family that

computes the measure function. Let {An,k} be the circuit family such that

• R(x,An,k(x, k)) ≤ 1 + 1
k
for each x and k,

• size(An,k) ≤ f(k)nO(1),
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• depth(An,k) ≤ f(k) +O(logO(1) n),

for some circuit-computable function f . Define the circuit family {Cn,k} as

Cn,k(x, k) = 1 ⇐⇒ m(x,An,k+1(x, k + 1)) ≤ k,

so Cn,k outputs 1 if and only if the approximate solution corresponding to parameter

k + 1 measures less than k + 1. (The function m is really a circuit as well, chosen

from a family of circuits depending on the number of bits in its inputs.)

The size of Cn,k is O(size(m) + size(An,k+1)) and the depth is O(depth(m) +

depth(An,k+1). For some sufficiently large circuit-computable function f ′, the size and

depth bounds are f ′(k + 1)nO(1) and f ′(k + 1) +O(logO(1) n), respectively. It remains

to show correctness of Cn,k.

Let x be a string, let k be a natural number, and let y = An,k+1(x, k + 1). If

Cn,k = 1, then m(x, y) ≤ k, so m∗(k) ≤ k and therefore (x, k) ∈ p-O. For the converse,

if Cn,k = 0, then m(x, y) ≥ k + 1, so

m∗(x) ≥ m(x, y)
1 + 1

k+1

≥ k + 1
1 + 1

k+1

= (k + 1)2

k + 2 > k.

Thus (x, k) /∈ p-O. Therefore, we conclude that p-O is in paraNC.

Our goal now reduces to finding an optimization problem in ENCAS whose budget

problem is P-complete. We can provide one under a derandomization assumption.

Definition 4.3.19 (Maximum Flow).
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Instance: directed graph G, a natural number capacity ce for

each edge e, source node s, and target node t.

Solution: flow F , defined as a real number Fe for each edge

e such that Fe ≤ ce and at each vertex the total

in-flow is at least the total out-flow.

Measure: total in-flow at t.

Type: maximization.

Theorem 4.3.20. If NC = RNC, then the budget problem for Maximum Flow is

P-complete and the standard parameterization is in paraNC.

Proof. The budget problem for Maximum Flow is P-complete [40, Problem A.4.4].

The Maximum Flow problem is in randomized FNCAS [27, Theorem 4.5.2]. If

NC = RNC, then randomized FNCAS equals deterministic FNCAS. Thus, the problem

is in ENCAS, by Proposition 4.3.17. Finally, the standard parameterization is in

paraNC by Theorem 4.3.18.

4.4 Fixed-parameter tractability

In classical complexity, there are limits to parallel computation; for some computa-

tional problems, adding more processors does not help solve the problem significantly

more quickly. With the definition of parameterized parallel computation given in the

previous section, we now must ask whether there are similar limitations for parame-

terized problems. We adapt our understanding of classical complexity to answer this

question in the affirmative. This section demonstrates that under an appropriate pa-

rameterization, the natural inherently sequential classical problems become inherently

sequential parameterized problems.

The definition of paraP (also known as FPT) is analogous to that of paraNC. Unlike
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for paraNC, however, there are numerous examples of natural parameterized problems

in paraP; see the listing in [17], for example.

Definition 4.4.1. A parameterized problem (Q, κ) is in paraP if there is a deterministic

Turing machine M , a polynomial p, and a computable function f such that M decides

Q within f(κ(x))p(n) steps.

We prove the existence of paraP-complete problems, which are inherently sequential

parameterized problems. These problems are parameterized versions of the well-known

bounded halting problem for deterministic Turing machines and the Boolean circuit

evaluation problem. This means that there are parameterized problems for which

adding more processors provides no significant speedup in (parallel) time required to

find a solution. Contrast this parameterized inherent sequentiality with the highly

parallelizable parameterized versions of P-complete problems in the previous section.

In light of this, we recommend that researchers consider paraP-completeness when

determining membership of a parameterized problem in paraP.

4.4.1 Completeness in paraP

We define P-completeness so that problems that are P-complete are unlikely to see

a significant decrease in time complexity when parallelism is allowed, under the

assumption that NC 6= P. Let us define paraP-completeness similarly, so that paraP-

complete problems are unlikely to see a significant decrease in “parameterized” time

complexity when “parameterized” parallelism is allowed, under the assumption that

paraNC 6= paraP. We already know that each P-complete problem induces a paraP-

complete problem with a trivial parameterization [34, Proposition 14], however we

are interested in natural problems with non-trivial parameterizations. We prove the

existence of nontrivial inherently sequential parameterized problems that are not
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in paraNC (under the assumption paraNC 6= paraP) and whose underlying decision

problems are P-complete, complementing section 4.3, which proves the existence of

parameterized problems in paraNC whose underlying decision problems are P-complete.

Specifically, we show that parameterized versions of the circuit evaluation problem

and the bounded halting problem are paraP-complete This means that the classical

P-complete problems do in fact become paraP-complete, but it is important to choose

the correct parameterization (which is not obvious in some cases). Furthermore, this

complements the work of [32], in which the authors show complete problems for several

other parameterized complexity classes. These results provide fundamental limits to

parallelizability for parameterized problems.

We can really only say that our paraP-complete problems are inherently sequential

under the assumption that paraNC 6= paraP. This assumption is reasonable because it

is equivalent to the inequality NC 6= P.

Proposition 4.4.2. paraNC = paraP if and only if NC = P.

Proof. The proof is trivial if we use the definitions of the complexity class paraC

as the class of all parameterized problems (Q, κ) for which there is a language L

in the complexity class C such that x ∈ Q if and only if (x, 1f(κ(x))) ∈ L. See [34,

Proposition 8], for example.

Completeness is defined for paraP with respect to paraNC many-one reductions, in

order that a paraNC algorithm for any one paraP-complete problem implies a paraNC

algorithm for every paraP problem.

Definition 4.4.3 (paraP-completeness). A parameterized problem (Q, κ) is paraP-

hard if for each parameterized problem (R, λ), there is a paraNC many-one reduction

from (R, λ) to (Q, κ). If furthermore (Q, κ) is in paraP, then it is paraP-complete.
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Proposition 4.4.4. If a paraP-complete problem is in paraNC, then paraNC = paraP.

Proof. Follows from the downward closure of paraNC under paraNC many-one reduc-

tions.

The following problem is adapted from Short Deterministic Turing Machine

Computation in [17].

Definition 4.4.5 (p-Bounded Halting Problem, aka p-BHP).
Instance: deterministic Turing machine M , binary string x of

length n, positive integer t in unary, positive integer

c.

Parameter: t/nc

Question: Does M accept x within t steps?

Theorem 4.4.6. p-BHP is paraP-complete.

Proof. The underlying decision problem is in P (by a standard simulation on the

deterministic universal Turing machine), so the parameterized problem is in paraP.

To show paraP-hardness, we use a generic reduction. Let (Q, κ) be an arbitrary

parameterized problem in paraP and let M be the deterministic Turing machine

that decides Q in time fM(k)nc for some (circuit-)computable function fM and some

positive integer c. The reduction is x 7→ (M,x, 1fM (k)nc , c). This is computable by

a (nonuniform) circuit family of constant depth and size f(k)nO(1), where f is a

circuit-computable function. The parameter of the reduced instance is fM(k)nc/nc, or

simply fM(k), which satisfies the parameter bound required by the definition of paraNC

many-one reduction. Therefore we conclude that p-BHP is paraP-complete.

The following problem is a modification of BS-BD-CVP from [18].
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Definition 4.4.7 (p-Small Circuit Evaluation, aka p-SCE).
Instance: Boolean circuit C on n inputs, binary string x of

length n, positive integer k, positive integer α, multi-

output Boolean circuit f with size and depth of C

at most f(k)nα.

Parameter: k

Question: Does C(x) = 1?

This theorem is related to [18, Corollary 2], where the authors prove that the

BS-BD-CVP problem is complete for the class PNC (a class that exists between

paraNC and paraP) under paraNC many-one reductions. While their reduction is a

generic reduction, ours is a reduction from the parameterized bounded halting problem.

Theorem 4.4.8. p-SCE is paraP-complete.

Proof. Membership in paraP is straightforward to prove: use the natural algorithm

for evaluating a circuit which can be performed in linear time with respect to the size

of the circuit. We must also compute f(k)nα and compare it with the size and depth

of the circuit C. Both of these are polynomial-time algorithms with respect to the

size of the input, and hence the problem is in paraP.

Now we prove paraP-hardness. The reduction from p-BHP is

(M,x, 1t, c) 7→ (CM , x, k, α, f),

where

• CM is the standard circuit of size O(t2) and depth O(t) simulating t steps of the

action of M on inputs of length n,

• x is copied directly from the input,
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• k = t/nc.

• α = 2c,

• f is the function x 7→ x2,

This reduction is computable in the appropriate size and depth bounds, and its

correctness follows from the correctness of the standard deterministic Turing machine-

to-circuit reduction. To check that the reduced instance is well-formed, let us verify

that the circuit CM meets the size and depth requirements. The size of CM is O(t2),

which is O(((t/nc)nc)2), or simply f(k)nα. Similarly the depth of CM is O(t), which

is smaller than O(t2), and thus bounded above by f(k)nα as well. (There are some

constants in the size and depth bounds that we have ignored, but those can be

incorporated into the definition of f .) Finally, the parameter in the original instance,

t/nc, is exactly the parameter of the reduced instance, so this reduction meets the

necessary paramater bound. Therefore we have shown a correct paraNC many-one

reduction from a paraP-complete problem.

As expected, if any of these paraP-complete problems are fixed-parameter paral-

lelizable, then paraNC = paraP.

It seems that most P-complete problems will end up being paraP-complete under

this notion of completeness. This doesn’t really help us distinguish between different

P-complete problems based on how fixed-parameter parallelizable they are. In the

next subsection, we try a different approach.

4.4.2 Parameterized complexity of efficient verification

There is a nice relationship between the circuit satisfiability (decision) problem and

the circuit evaluation problem: an algorithm for the latter is a verification procedure
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for the former, given a satisfying assignment. The relationship between these two

problems in particular reflect the general relationship between NP and P. Does the

same sort of relationship hold for the parameterized versions of these classes, paraWP

and paraP? We define a new parameterized complexity class to address this question.

We show that our parameterized complexity class, paraEP, the verification class

of paraWP, is a subclass of paraP. We are unable to show that is equal to paraP, so

our intuition does not yet match our definitions. What remains is to show a natural

problem in this class and to determine whether it equals paraP or not.

We start by considering the parameterized weighted circuit satisfiability and circuit

evaluation problems. A circuit is k-satisfiable if there is a satisfying assignment of

Hamming weight exactly k.

Definition 4.4.9 (p-Circuit k-Satisfiability, aka p-k-CSat).
Instance: Boolean circuit C, natural number k.

Parameter: k.

Question: Is C k-satisfiable?

The corresponding parameterized weighted circuit evaluation problem would then

be as follows. Let ‖x‖1 denote the Hamming weight (that is, the number of ones) in x.

Definition 4.4.10 (p-Circuit k-Evaluation, aka p-k-CE).
Instance: Boolean circuit C, binary string x, natural number

k.

Parameter: k.

Question: Does ‖x‖1 = k and C(x) = 1?

Enforcing that the Hamming weight of the string is exactly the parameter in

this way is a bit superfluous, since the Hamming weight of x can be computed

easily (in NC1 but not in AC0), but this problem is technically the “verification”
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problem corresponding to the satisfiability problem above. Instead, we use a slightly

more natural problem that remains equivalent to this one under paraNC1 many-one

reductions.

Definition 4.4.11 (p-Weighted Circuit Evaluation, aka p-WCE).
Instance: Boolean circuit C, binary string x.

Parameter: ‖x‖1.

Question: Does C(x) = 1?

In the setting of decision problems, we know that NP can be characterized as the

closure of the circuit satisfiability problem under polynomial-time many-one reductions,

NP = [Circuit Satisfiability]≤
P
m ,

and P as the closure of the circuit evaluation problem under NC1 many-one reductions,

P = [Circuit Evaluation]≤
NC1
m .

In the setting of parameterized problems, the class paraWP can be characterized

as the closure of the parameterized weighted circuit satisfiability problem under

fixed-parameter tractable many-one reductions,

paraWP = [p-k-CSat]≤
paraP
m .

Following the above pattern, we define a new class as the closure of the parameterized

weighted circuit evaluation problem under fixed-parameter parallelizable many-one

reductions,

paraEP = [p-WCE]≤
paraNC
m
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(“E” for evaluation).

Since the underlying decision problem, the problem of evaluating a circuit on a

given input, is in P, the parameterized problem p-WCE is trivially in paraP. Since

paraNC reductions compose, paraNC is a subset of paraP, and paraP is closed under

paraP reductions, we conclude that paraEP is a subset of paraP.

Theorem 4.4.12. paraEP ⊆ paraP.

Is paraEP = paraP? The standard simulation of a deterministic Turing machine

by a circuit, as in [52], for example, fails to provide a paraNC many-one reduction to

the parameterized weighted circuit evaluation problem, since the natural reduction

would be of the form x 7→ (C, x, ‖x‖1), but the parameter value ‖x‖1 is not necessarily

bounded by a function of κ(x). The same issue prevents us from showing that

paraNC ⊆ paraEP.

4.5 paraNC is to NC as paraWNC is to NNC

The previous section shows one way of proving that a problem is likely not parallelizable,

even in a parameterized sense: proving it complete for paraP. A highly parallel

algorithm for such a problem would imply that every problem that could be solved by a

fixed-parameter tractable algorithm could be solved by a fixed-parameter parallelizable

algorithm, a notion that violates our intuition about the nature of time. There is

another way of proving a problem unlikely to be fixed-parameter parallelizable, one

that relies on our intuition about the nature of nondeterminism. Our intuition is that

nondeterministic computation cannot be simulated deterministically by any algorithm

that is significantly more efficient than simply enumerating each possible branch of the

nondeterministic computation. We can use this intuition to provide evidence that an

entire family of weighted circuit satisfiability problems is unlikely to be parallelizable
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in a parameterized sense; this section formalizes this idea.

Specifically, Theorem 4.5.15 proves that NCd = NNCd[ω(log n)] is equivalent to

the corresponding collapse of the classes of parameterized problems. On the way to

proving this equivalence, we also prove that the parameterized versions of the natural

complete problems in NNCd[ω(log n)] are complete for the corresponding parameterized

complexity classes (Theorem 4.5.11). Before getting to those theorems, we of course

define the necessary parameterized complexity classes and provide some examples of

member problems. These complete problems and complexity class collapses validate

our intuition that the parameterized complexity classes behave like the classes of

problems decidable by algorithms augmented with limited nondeterminism. These

results complement similar equivalences from [35, Theorem 3.29] and [19, Theorem 15],

as discussed in subsection 4.5.4 below. We stop short of providing a general theorem

that supercedes all of these theorems.

4.5.1 Definition of paraWNC

The paraW “operator” defined in [32, Definition 3.1] applies generically to an arbitrary

complexity class as follows. If C is a class of decision problems, then paraWC is

the class of parameterized problems (Q, κ) for which there is a C machine M and

computable functions f and h such that x in Q if and only if there is a string w of

length h(κ(x)) log |x| such that M accepts on input (x, 1f(κ(x))) and nondetermistic

input w; access to the nondeterministic input is two-way. In a loose sense, for most

classes C, deterministic C is to nondeterministic C as paraC is to paraWC.

When C = NC in particular, we get the following equivalent definition.

Definition 4.5.1 (paraWNCd). Let d be a natural number. A parameterized problem

(Q, κ) is in the class paraWNCd if there are circuit-computable functions f and h, and
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a nondeterministic circuit family {Cn,k} such that for each string x,

• x ∈ Q if and only if Cn,k(x) = 1, where n = |x| and k = κ(x),

• size(Cn,k) ≤ f(k)nO(1),

• depth(Cn,k) ≤ f(k) + logd n,

• nondet(Cn,k) ≤ h(k) log n.

Proposition 4.4.2 already showed us that paraNC = paraP if and only if NC = P.

We conjecture that a similar equivalence holds for the nondeterministic versions of

these classes as well.

Conjecture 4.5.2. Suppose d is a positive integer. paraWNCd = paraWP if and

only if there is a nondecreasing, unbounded, circuit-computable function i such that

NNCd[i(n) log n] = NP[i(n) log n].

4.5.2 Example problems in paraWNC

What kind of problems are in the class paraWNC? Some problems in paraWNC1

are given in [32]; we provide a few more problems in each class paraWNCd. This

section exhibits parameterized problems that are in paraWNC1, paraWNC2, and, more

generally, paraWNCd for each positive integer d.

Specifically, we prove that the group rank problem is in paraWL, a subset of

paraWNC2. We also prove that the weighted NCd circuit satisfiability problem is in

paraWNCd and give an alternate proof that the weighted formula satisfiability problem

is in paraWNC1. Along with the membership of the weighted circuit satisfiability

problem in paraWP, we now have an example problem in each parameterized complexity
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class in the inclusion chain

paraWNC1 ⊆ paraWNC2 ⊆ · · · ⊆ paraWP.

Small generating set problems

The parameterized semigroup rank problem is in paraWNL [32, Theorem 3.12], which is

contained in paraWNC2. The group rank problem, a restricted version of the semigroup

rank problem, is useful in applications and generally lacks an efficient implementation,

so we would like to understand the parameterized complexity of that problem as

well. For example, at the time of this publication, the popular computational discrete

algebra software package gap [37] includes a function RankPGroup that computes

the rank of a p-group but lacks a function that computes the rank of a general finite

group.

Definition 4.5.3 (p-Group Rank).
Instance: finite group G given as a product table, positive

integer k.

Parameter: k.

Question: Does G have a generating set of cardinality k?

We show that the problem is in paraWL. Although we are unable to show that

the problem is in paraWNC1, membership in paraWL still implies membership in

paraWNC2, so for this problem, parameterized verification is considered highly parallel.

The high-level algorithm is quite simple: nondeterministically choose a subset and

verify that the subset generates each element of the group.

Theorem 4.5.4. p-Group Rank is in paraWL.

Proof. The Turing machine receives G and k as input and a subset S of k group
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elements as a witness. It loops over each element g in G and decides whether g ∈ 〈S〉.

The machine accepts exactly when all of the subgroup membership tests pass. Looping

over n elements uses O(log n) space. Deciding whether g is in 〈S〉 is the subgroup

membership problem, which is in SL, which in turn equals L. Thus the overall space

usage is O(log n). The size of the witness is k log n, and two-way access is required,

since we execute the subgroup membership procedure n times. We conclude that this

parameterized problem is in paraWL.

Weighted circuit satisfiability problems

We know that p-FSat is in paraWNC1 and that p-CSat is in paraWP. We would

like to show that there problems in each parameterized class paraWNCd between

paraWNC1 and paraWP. To this end, we interpolate between Boolean formulas and

Boolean circuits to construct parameterized weighted satisfiability problems. This

section demonstrates that interpolation and proves membership of each problem in

paraWNCd.

We show that the problem of deciding whether a logd n depth circuit is satisfiable

by an input of Hamming weight k is in paraWNCd when parameterized by k. These

are the first defined problems in these parameterized complexity classes. In a later

section, we will show that these problems are complete as well.

Let ‖x‖1 denote the Hamming weight (that is, the number of ones) of a binary

string. This problem is the restriction of p-CSat to bounded depth circuits, thus we

expect it to be of lower computational complexity.

Definition 4.5.5 (p-k-NCdCSat).
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Instance: Boolean circuit C on m inputs with depth logdm,

natural number k.

Parameter: k.

Question: Is there a binary string w such that ‖w‖1 = k and

C(x) = 1?

To prove membership in paraWNCd, we will use the following decoder function.

Since we will also later use its inverse, the encoder function, we define it here as well.

Definition 4.5.6. The encoder function, En : {0, 1}m → {0, 1}logm, is defined by

Em(x) =


i if x has exactly one 1 at index i

0logm otherwise.

for each binary string x of length m. The decoder function, Dm, is defined as the

inverse of the encoder function.

Lemma 4.5.7. For each natural number m, both the encoder and decoder functions

are computable by a circuit of size O(m) and depth O(logm).

Proof. This can be found in, for example, Lemmas 2.5.3 and 2.5.4 of [58].

This theorem is an adaptation of [15, Lemma 3.3].

Lemma 4.5.8. For each positive integer d, we have p-k-NCdCSat is in paraWNCd.

Proof. The algorithm will be composed of several subcircuits.

• Let U be the depth-universal circuit [20] for depth logdm.

• Let Dm,k be the function defined by Dm,k(w) = Dm(w1) ∨ · · · ∨Dm(wk), where

∨ denotes bitwise or for strings of length m, the binary string wi is the ith

block of w of size logm, and Dm is the decoder function (Definition 4.5.6).
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• Let ∆ be the function that takes k blocks of logm bits each as input and

evaluates to true exactly when each pair of blocks of size logm are distinct. For

example, if m = 4, then ∆(0101) = 0 but ∆(1011) = 1.

Define the nonuniform, nondeterministic NCd circuit family {Am,k} that decides

p-k-NCdCSat by

An,k((C, k), w) = U(C,Dm,k(w)) ∧∆(w).

In other words, An,k interprets its witness string w of length k logm as an encoding of

a string of length m containing exactly k ones (as enforced by ∆), then evaluates the

circuit C on that string.

This algorithm correctly decides the underlying decision problem. For each circuit

C of size n and each integer k,

(C, k) ∈ p-k-NCdCSat ⇐⇒ ∃x ∈ {0, 1}m : ‖x‖1 = k and C(x) = 1

⇐⇒ ∃w ∈ {0, 1}k logm : (C(Dm,k(w)) ∧∆(w)) = 1

⇐⇒ ∃w ∈ {0, 1}k logm : (U(C, (Dm,k(w))) ∧∆(w)) = 1

⇐⇒ ∃w ∈ {0, 1}k logm : An,k((C, k), w) = 1.

If we assume without loss of generality that m ≤ n (by padding with useless gates, for

example), then the number of nondeterministic bits used is less than k logm, which is

of the form h(k) log n.

For the size and depth bounds, we need to determine the size and depth of the

circuits for U , Dm,k, and ∆.

• The depth-universal circuit U has size mO(1) and depth O(logd n), which is

O(logdm) because we can assume without loss of generality that the size of C

is at least the number of its inputs.
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• Decoding a single block of size logm requires size O(m) and depth O(logm)

by Lemma 4.5.7. Decoding all k blocks of size logm requires k copies of that

subcircuit, along with an or tree for each of the m output bits. Thus the size of

Dm,k is O(km+m log k) and the depth O(logm+ log k).

• Comparing two binary strings of length logm for inequality requires O(logm)

size and O(log logm) depth. Comparing all
(
k
2

)
pairs of blocks and requiring

they are all distinct thus requires a circuit of size O(
(
k
2

)
logm) and depth

O(logm+ log k).

Hence the overall size of An,k is of the form f(k)mO(1) and the depth f(k) + logdm.

Since we can assume without loss of generality that m ≤ n, we get size and depth

bounds with the appropriate dependence on k and n.

Since we have shown a paraWNCd circuit family deciding p-k-NCdCSat, we con-

clude that the problem is in paraWNCd.

If we replace k with any function i(n) bounded above by a polynomial in n, we get

the (already known) membership of the underlying decision problem in NNCd[i(n) log n].

The weight k can be at most the number of inputs to the circuit, which is in turn at

most the size of the circuit, so a polynomial upper bound on k suffices to cover all

meaningful values of k.

Corollary 4.5.9 ([15]). Suppose d is a positive integer and i is a circuit-computable

function such that i(n) ≤ nO(1). Then the decision problem i(n)-NCd-CSat is in

nonuniform NNCd[i(n) log n].

Proof. The proof is similar to that of Lemma 4.5.8 with only one addition necessary to

the algorithm: deciding whether k ≤ i(n). To do this, add a single and gate whose first

input is An,k((C, k), w) and whose second input is the result of deciding the inequality
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k ≤ i(n). The computation of i(n) can be assumed part of the nonuniformity of the

circuit, at which point the comparison requires only logarithmic depth. (If we wish

the deciding circuit to be uniform, we can require that i(n) be computable in uniform

depth O(logd n).)

Weighted formula satisfiability problems

Lemma 4.5.8 demonstrates a parameterized highly parallel algorithm for certain

circuit satisfiability problems. This technique can be adapted to work for a simpler

computational model, Boolean formulas, as well. In fact, this provides an alternate

proof that parameterized weighted Boolean formula satisfiability problem, denoted

p-FSat, is in paraWNC1, implicit in [32, Theorem 3.6]. We adapt the components of

the algorithm from circuits to formulas.

Specifically, we show how to implement the decoder function of Definition 4.5.6 as

a Boolean formula, and how that can be used to decide whether a Boolean formula

has a satisfying assignment of a given weight. This is interesting because we have

used an algorithm designed for circuits on formulas in an unexpected way.

Lemma 4.5.10 ([32, Theorem 3.6]). p-FSat is in paraWNC1.

Proof. We adapt the “k log n trick” from circuit inputs to formula variables. This

requires a reimplementation of the decoder function of Definition 4.5.6 as a function

on Boolean variables. Similar to the proof of Lemma 4.5.8, the algorithm involves

composing a decoder and an algorithm for evaluating a Boolean formula, after nonde-

terministically choosing a witness. Again, we use some subcircuits:

• Let U be the NC1 algorithm for evaluating a Boolean formula [12, 13].

• Let Mi be the function on logm inputs that outputs the ith minterm of its input
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variables (for example, M4(w1, w2, w3) = w1 ∧ ¬w2 ∧ ¬w3). This function acts

like the decoder in Lemma 4.5.8.

• Let Rm,k(φ) be the function that replaces each instance of a variable xi in a

Boolean formula φ on m variables with ∨kj=1Mi(~vj), where ~vj denotes the jth

block of size logm in a tuple of k logm new variables v1, . . . , vk logm.

• Let ∆ be the function that takes k blocks of logm bits each as input and

evaluates to true exactly when each pair of blocks of size logm are distinct.

Define the nonuniform, nondeterministic NC1 circuit family {An,k} that decides p-FSat

by

An,k((φ, k), w) = U(Rm,k(φ), w) ∧∆(w).

In other words, An,k interprets its witness string w of length k logm as the encoding

of an assignment to the variables of φ in which exactly k variables are set to true,

then evaluates the formula φ with respect to the decoded assignment.

This algorithm correctly decides the weighted Boolean formula satisfiability problem.

Similar to the proof of Lemma 4.5.8, φ has a satisfying assignment of weight exactly

k if and only if φ′ has a satisfying assignment (of arbitrary weight). If we assume

without loss of generality that m ≤ n (by padding with tautological conjuncts, for

example), then the number of nondeterministic bits used is less than k logm, which is

of the form h(k) log n.

The algorithm also has the appropriate size and depth bounds. Since each minterm

is of size exactly logm and each variable xi is represented the disjunction of k such

minterms, the new formula φ′ is of size |φ|k logm, which is just nk logm.

• Each variable xi can be replaced in parallel, and within that replacement, each

disjunct Mi(~wj) can be replaced in parallel as well. The circuit that writes
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Mi(~wj) is a circuit of size O(logm) and depth O(logm) (for using the index i

as a selector in a multiplexer), so Rm,k can be implemented by a circuit of size

O(nk logm) and depth O(logm).

• The circuit U receives a formula of size O(nk logm) and an assignment of

length O(k logm). Since U is a circuit of size polynomial in its the size of its

input, its size is O((nk logm)c) for some constant c. Similarly, its depth is

O(logd(nk logm)).

• As in Lemma 4.5.8, the circuit for ∆ is of size O(
(
k
2

)
logm) and depth O(logm+

log k).

The overall size and depth of the circuit An,k are therefore of the form f(k)nO(1) and

f(k) +O(logd n), respectively.

At this point, we have shown a correct paraWNC1 algorithm for p-FSat.

The same proof works for the problems of deciding whether a circuit or a formula

has a satisfying assignment of weight at most k, as well (one could even remove the ∆

subcircuit entirely, but that is not necessary).

4.5.3 Completeness in paraWNC

We saw that the parameterized weighted Boolean formula satisfiability problem,

p-FSat, is in paraWNC1 in Lemma 4.5.10. In fact, it is complete for paraWNC1 under

paraFO many-one reductions [32, Theorem 3.6]. The parameterized weighted Boolean

circuit satisfiability problem, denoted p-CSat, is the same problem with Boolean

circuits instead of Boolean formulas; this problem is complete for paraWP under

paraFO many-one reductions by a similar proof. It makes sense to expect, then, that

for each positive integer d the parameterized problem p-k-NCdCSat may be complete
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for the class paraWNCd. We adapt the strategy used to prove completeness of p-CSat

to prove completeness of p-k-NCdCSat. This section describes the strategy and shows

how it applies to both p-k-NCdCSat and p-FSat.

Specifically, we use the strategy from [15, Theorem 3.6], which relies on the “k log n

trick” (see also [35, Corollary 3.13], or the origin [1]). There the authors prove only

that the decision problem underlying p-k-NCdCSat is complete for NNCd[k log n].

Now we have a full interpolation for the inclusion chain

paraWNC1 ⊆ paraWNC2 ⊆ · · · ⊆ paraWP,

via the chain of parameterized reductions between corresponding complete problems

p-FSat ≤ p-k-NC2CSat ≤ · · · ≤ p-CSat.

Whether the p-k-NCdCSat problems are complete under paraFO many-one reductions

remains open. In any case, as we will see in the next section (and repeatedly through-

out this paper), parameterized complexity and limited nondeterminism in decision

complexity are closely related.

Theorem 4.5.11. For each positive integer d, we have p-k-NCdCSat is complete for

paraWNCd under paraNC1 many-one reductions.

Proof. Membership in paraWNCd was proven in Lemma 4.5.8.

Suppose (Q, κ) is in paraWNCd, so there is a nonuniform NCd circuit family {Cn,k}

and circuit-computable functions f and h such that

• x ∈ Q if and only if Cn,k(x) = 1,

• size(Cn,k) ≤ f(k)nO(1),
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• depth(Cn,k) ≤ f(k) +O(logd n),

• nondet(Cn,k) ≤ h(k) log n.

On input x of length n, let Cx denote the circuit Cn,k with x hardcoded as its first n

inputs. Thus Cx is a circuit with h(k) log n inputs such that x ∈ Q if and only if Cx is

satisfiable. Let En,k denote the function defined by En,k(w) = En(w1) ◦ · · · ◦En(wh(k)),

where ◦ denotes string concatenation, En is the encoder function of Definition 4.5.6,

and wi is the ith block of size n in the string w, for each string w of length h(k)n.

The reduction is then x 7→ (C ′, h(k)), where C ′ = Cx ◦ En,k.

The circuit C ′ is of the correct form to be an input to p-k-NCdCSat. The size of

C ′ is

size(C ′) = size(En,k) + size(Cx)

≤ h(k) size(En) + f(k)nO(1)

≤ h(k)O(n) + f(k)nO(1)

and the depth

depth(C ′) = depth(En,k) + depth(Cx)

≤ depth(En) + (f(k) + logd n)

≤ O(log n) + f(k) + logd n

≤ f(k) +O(logd n).

The number of inputs to C ′ is h(k)n, so we need the size to be polynomial in h(k)n

and the depth to be logd(h(k)n). The size bound is satisfied if we choose h(k) so that

f(k) ≤ h(k) and the depth bound satisfied if we choose h(k) so that f(k) ≤ logd h(k),
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ignoring some constants that can be incorporated into the function h. We can choose

h this way without loss of generality, because choosing a larger h does not affect

membership of (Q, κ) in paraWNCd. (This does, however, cause the nondeterminism

upper bound of the problem (Q, κ) to be extremely loose and the dependence on k in

the size and depth bounds of C ′ to be extremely high, but it is technically sufficient.)

The reduction is a correct many-one reduction between the underlying decision

problems. Suppose x ∈ Q, so Cx is satisfiable. Since En is surjective, so is En,k, hence

there is a string w (of length h(k)n) such that C ′(w) = 1. Furthermore, the number

of ones in the string equals h(k), or in other words ‖w‖1 = h(k), since all preimages

of En,k satisfy this equality.1 Therefore, C ′ has a satisfying assignment of Hamming

weight exactly h(k). For the converse, suppose C ′ has a satisfying assignment w of

weight exactly h(k). Then there is a satisfying assignment of length h(k) log n for Cx,

namely En,k(w). Therefore, x is in Q.

The reduction is paraNC1-computable. The size of the circuit computing the

reduction is simply the size of the output, which is size(C ′)+size(hk), where hk denotes

the circuit computing h on inputs of size k. Both addends are of the form f ′(k)nO(1) for

some circuit-computable function f ′. The depth of the circuit computing the reduction

is dominated by the depth of the hk, which is bounded above by f ′(k) + log n for some

function f ′. Thus the size and depth requirements for the reduction are met. Finally,

if R denotes the reduction and κ′ denotes the parameterization for p-k-NCdCSat,

κ′(R(x)) ≤ κ′((C ′, h(κ(x)))) = h(κ(x)).

Since h is circuit-computable by hypothesis, the reduction meets the parameterization
1Technically, we need to guarantee the satisfying input to Cx has no all-zero blocks to make this

statement. For each parameterized problem (Q, κ) there is another equivalent problem that satisfies
such a requirement on the witnesses for Q with no change in complexity.
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bound.

Since we have shown a correct paraNC1 many-one reduction from an arbitrary

parameterized problem in paraWNCd to p-k-NCdCSat, we conclude that p-k-NCdCSat

is complete for the class.

As in Corollary 4.5.9, if we replace k with any function i(n) bounded above by a

polynomial in n, we get the (already known) completeness of the decision problem

i(n)-NCd-CSat in the complexity class NNCd[i(n) log n]. This is a slight improvement,

since [15, Theorem 3.6] proves that the problem of deciding whether a circuit has a

satisfying assignment of weight at most i(n) is complete for NNCd[i(n) log n] for all

d ≥ 2 under logarithmic space many-one reductions.

Corollary 4.5.12 ([15, Theorem 3.6]). Suppose d is a positive integer and i is a

circuit-computable function such that i(n) ≤ nO(1). Then i(n)-NCd-CSat is complete

for NNCd[i(n) log n] under nonuniform NC1 many-one reductions.

Proof. Membership was proven in Corollary 4.5.9. The proof of completeness is

identical to that of the previous theorem, replacing k with i(n). (If we wish to have

uniform completeness, we can require that i(n) be computable in uniform depth

O(log n).)

Finally, we extend [32, Corollary 3.7] using this new family of complete problems.

That theorem states that NC1 = P implies W[SAT] = W[P](= paraWP), where W[SAT]

is the closure of p-FSat under paraP many-one reductions and W[P] is the closure of

p-CSat. We wish to generalize this to allow for an interpolation between NC1 and

P. This connects a collapse in parameterized complexity classes to one in classical

complexity classes.
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Corollary 4.5.13. For each positive integer d, if NCd = P, then W[NCdSAT] =

W[P](= paraWP).

Proof. By definition, W[NCdSAT] is the closure of p-k-NCdCSat under paraP many-

one reductions and W[P] is the closure of p-CSat under paraP many-one reductions.

If NCd = P, then there is a paraP many-one reduction from p-CSat to p-k-NCdCSat

(because p-CSat is now in NCd). Thus every parameterized problem that reduces to

p-CSat also reduces to p-k-NCdCSat. We conclude that W[NCdSAT] = W[P].

4.5.4 Does paraNC equal paraWNC?

We now have complete problems in the parameterized complexity classes that are the

analogs of the nondeterministic NC hierarchy. With complete problems, the guiding

question now becomes whether a deterministic simulation of these nondeterministic

classes causes a complexity theoretic collapse elsewhere. We demonstrate how a

collapse in parameterized complexity classes is equivalent to a collapse in classical

complexity classes.

The main theorem in this section, Theorem 4.5.15, proves that paraNC = paraWNC

if and only if NC can deterministically simulate ω(log n) nondeterministic bits. Com-

pare it with the following similar theorems (here β indicates one-way access to the

witness as opposed to W, which indicates two-way access).

• paraP = paraWP if and only if P = NP[ω(log n)] [35, Theorem 3.29].

• paraL = paraβL if and only if L = NL[ω(log n)] [19, Theorem 15].

If you believe that nondeterminism is hard to simulate deterministically, then this

provides evidence that the parameterized complexity classes paraNC and paraWNC

are distinct. We conjecture that these theorems can be generalized to generic theorem

that subsumes all of them.
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This lemma is an adaptation of [35, Lemma 3.24]. It is the “opposite” of

Lemma 4.3.5.

Lemma 4.5.14. Suppose d is a positive integer. For each increasing and circuit-

computable function f , there is a function if,d such that

f(if,d(n)) ≤ min(n, logd n)

for each n ≥ f(1). Furthermore, if,d is nondecreasing, unbounded, and circuit-

computable. (We call if,d the “lower inverse” of f .)

Proof. Define if,d by

if,d(n) = max{j ∈ N | f(j) ≤ min(n, logd n)}.

For the boundary case where n is smaller than f(1), define if,d(n) = 1. It is straight-

forward to prove that this function is nondecreasing and unbounded. (The integer d

must be greater than zero to guarantee if,d is unbounded.)

To compute if,d, we use the fact that f is increasing to perform a binary search

on the values f(1), . . . , f(min(n, logd n)) to determine the largest j such that f(j) ≤

min(n, logd n). In the worst case, there will be at most log n comparison subcircuits,

each requiring a computation of f , so the overall depth of the circuit computing if,d is

O(depth(f) log n) and the size is O(size(f) log n).

This theorem is an adaptation of [35, Theorem 3.29].

Theorem 4.5.15. Suppose d is a positive integer. paraNCd = paraWNCd if and

only if there is a circuit-computable, nondecreasing, unbounded function i such that

NCd = NNCd[i(n) log n].
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Proof. First we prove the reverse implication. Assume NCd = NNCd[i(n) log n], for

some i. Since p-k-NCdCSat is complete for paraWNCd by Theorem 4.5.11, it suffices

to show that this problem is in paraNCd, which necessitates the claimed collapse. By

Corollary 4.5.12, the problem i(n)-NCd-CSat is in NNCd[i(n) log n], which means it

is also in NCd by assumption. If (Q, κ) denotes p-k-NCdCSat and i(n)-Q denotes

i(n)-NCd-CSat, then the former is in paraNCd by Corollary 4.3.8.

Now we prove the forward implication. Assume paraNCd = paraWNCd. By

Theorem 4.5.11, the parameterized problem p-k-NCdCSat is in paraWNCd, which

means it is also in paraNCd by assumption. Suppose the circuit family witnessing

its membership in paraNCd has size f(k)nO(1) and depth f(k) + logd n for some

circuit-computable function f . Assume without loss of generality that f is increasing.

Choose i to be the “lower inverse” function if,d guaranteed by Lemma 4.5.14. Since

i(n)-NCd-CSat is complete for NNCd[i(n) log n] by Corollary 4.5.12,it suffices to

show that this problem is in NCd, which necessitates the claimed collapse. If (Q, κ)

denotes p-k-NCdCSat and i(n)-Q denotes i(n)-NCd-CSat, then the latter is in NCd

by Corollary 4.3.10.

As expected, algorithms for complete problems are equivalent to collapsing classes.

Corollary 4.5.16. Suppose d is a positive integer. The following are equivalent.

1. p-k-NCdCSat is in paraNCd.

2. There is a circuit-computable, nondecreasing, unbounded function i such that

i(n)-NCd-CSat is in NCd.

3. paraNCd = paraWNCd.

4. There is a circuit-computable, nondecreasing, unbounded function i such that

NCd = NNCd[i(n) log n].
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The special case of Theorem 4.5.15 in which the function i is polylogarithmic in n

provides further evidence that NC 6= NNC[polylog]. This complements Theorem 2.3.5,

however this corollary applies only to nonuniform NC circuits.

Corollary 4.5.17. If NC = NNC[polylog], then paraNC = paraWNC.

4.5.5 Is paraWNC in paraP?

The previous section demonstrates that it is unlikely that paraWNC is contained in

paraNC. This leaves open the possibility that paraWNC is contained in a larger (but

still deterministic) class. By relaxing the collapses in Theorem 4.5.15, we show that it

is also unlikely that paraWNC is contained in paraP. However, the collapses in this

theorem are weaker. This is as we expect: a less efficient deterministic simulation of

nondeterminism causes less severe consequences in classical complexity theory. Though

we do not show it here, this idea can certainly be generalized as well.

Theorem 4.5.18. Suppose d is a positive integer. paraWNCd ⊆ paraP if and

only if there is a circuit-computable, nondecreasing, unbounded function i such that

NNCd[i(n) log n] ⊆ P.

Proof. The proof is identical to that of Theorem 4.5.15, replacing paraNCd and NCd

with paraP and P, respectively. It uses versions of Corollary 4.3.8 and Corollary 4.3.10

with similar changes.

An alternate approach to showing that paraWNCd ⊆ paraP is unlikely is to demon-

strate related collapses in parameterized complexity classes. We extend [32, Corol-

lary 3.8], which states that paraWNC1 ⊆ paraP if and only if paraP = W[SAT]. As

before, we wish to generalize this equivalence to allow for an interpolation between

NC1 and P.
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Theorem 4.5.19. Suppose d is a positive integer. paraWNCd ⊆ paraP if and only if

paraP = W[NCdSAT].

Proof. If paraWNCd ⊆ paraP, then p-k-NCdCSat is in paraP, so the closure of

p-k-NCdCSat under paraP many-one reductions is contained in the closure of paraP

under the same reductions, which is just paraP. Thus paraP = W[NCdSAT].

If paraP = W[NCdSAT], then every problem that reduces to p-k-NCdCSat un-

der paraP many-one reductions is in paraP. Since p-k-NCdCSat is complete for

paraWNCd under paraNCd many-one reductions, every problem in paraWNCd reduces

to p-k-NCdCSat under paraNCd many-one reductions, and hence under paraP many-

one reductions as well. Thus paraWNCd ⊆ paraP.
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