4,341 research outputs found

    Separation of pulsar signals from noise with supervised machine learning algorithms

    Full text link
    We evaluate the performance of four different machine learning (ML) algorithms: an Artificial Neural Network Multi-Layer Perceptron (ANN MLP ), Adaboost, Gradient Boosting Classifier (GBC), XGBoost, for the separation of pulsars from radio frequency interference (RFI) and other sources of noise, using a dataset obtained from the post-processing of a pulsar search pi peline. This dataset was previously used for cross-validation of the SPINN-based machine learning engine, used for the reprocessing of HTRU-S survey data arXiv:1406.3627. We have used Synthetic Minority Over-sampling Technique (SMOTE) to deal with high class imbalance in the dataset. We report a variety of quality scores from all four of these algorithms on both the non-SMOTE and SMOTE datasets. For all the above ML methods, we report high accuracy and G-mean in both the non-SMOTE and SMOTE cases. We study the feature importances using Adaboost, GBC, and XGBoost and also from the minimum Redundancy Maximum Relevance approach to report algorithm-agnostic feature ranking. From these methods, we find that the signal to noise of the folded profile to be the best feature. We find that all the ML algorithms report FPRs about an order of magnitude lower than the corresponding FPRs obtained in arXiv:1406.3627, for the same recall value.Comment: 14 pages, 2 figures. Accepted for publication in Astronomy and Computin

    Multilevel Weighted Support Vector Machine for Classification on Healthcare Data with Missing Values

    Full text link
    This work is motivated by the needs of predictive analytics on healthcare data as represented by Electronic Medical Records. Such data is invariably problematic: noisy, with missing entries, with imbalance in classes of interests, leading to serious bias in predictive modeling. Since standard data mining methods often produce poor performance measures, we argue for development of specialized techniques of data-preprocessing and classification. In this paper, we propose a new method to simultaneously classify large datasets and reduce the effects of missing values. It is based on a multilevel framework of the cost-sensitive SVM and the expected maximization imputation method for missing values, which relies on iterated regression analyses. We compare classification results of multilevel SVM-based algorithms on public benchmark datasets with imbalanced classes and missing values as well as real data in health applications, and show that our multilevel SVM-based method produces fast, and more accurate and robust classification results.Comment: arXiv admin note: substantial text overlap with arXiv:1503.0625

    An Instance Selection Algorithm for Big Data in High imbalanced datasets based on LSH

    Full text link
    Training of Machine Learning (ML) models in real contexts often deals with big data sets and high-class imbalance samples where the class of interest is unrepresented (minority class). Practical solutions using classical ML models address the problem of large data sets using parallel/distributed implementations of training algorithms, approximate model-based solutions, or applying instance selection (IS) algorithms to eliminate redundant information. However, the combined problem of big and high imbalanced datasets has been less addressed. This work proposes three new methods for IS to be able to deal with large and imbalanced data sets. The proposed methods use Locality Sensitive Hashing (LSH) as a base clustering technique, and then three different sampling methods are applied on top of the clusters (or buckets) generated by LSH. The algorithms were developed in the Apache Spark framework, guaranteeing their scalability. The experiments carried out in three different datasets suggest that the proposed IS methods can improve the performance of a base ML model between 5% and 19% in terms of the geometric mean.Comment: 23 pages, 15 figure

    Meta-learning for dynamic tuning of active learning on stream classification

    Get PDF
    Supervised data stream learning depends on the incoming sample's true label to update a classifier's model. In real life, obtaining the ground truth for each instance is a challenging process; it is highly costly and time consuming. Active Learning has already bridged this gap by finding a reduced set of instances to support the creation of a reliable stream classifier. However, identifying a reduced number of informative instances to support a suitable classifier update and drift adaptation is very tricky. To better adapt to concept drifts using a reduced number of samples, we propose an online tuning of the Uncertainty Sampling threshold using a meta-learning approach. Our approach exploits statistical meta-features from adaptive windows to meta-recommend a suitable threshold to address the trade-off between the number of labelling queries and high accuracy. Experiments exposed that the proposed approach provides the best trade-off between accuracy and query reduction by dynamic tuning the uncertainty threshold using lightweight meta-features

    A systematic review of data quality issues in knowledge discovery tasks

    Get PDF
    Hay un gran crecimiento en el volumen de datos porque las organizaciones capturan permanentemente la cantidad colectiva de datos para lograr un mejor proceso de toma de decisiones. El desafío mas fundamental es la exploración de los grandes volúmenes de datos y la extracción de conocimiento útil para futuras acciones por medio de tareas para el descubrimiento del conocimiento; sin embargo, muchos datos presentan mala calidad. Presentamos una revisión sistemática de los asuntos de calidad de datos en las áreas del descubrimiento de conocimiento y un estudio de caso aplicado a la enfermedad agrícola conocida como la roya del café.Large volume of data is growing because the organizations are continuously capturing the collective amount of data for better decision-making process. The most fundamental challenge is to explore the large volumes of data and extract useful knowledge for future actions through knowledge discovery tasks, nevertheless many data has poor quality. We presented a systematic review of the data quality issues in knowledge discovery tasks and a case study applied to agricultural disease named coffee rust
    corecore