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Abstract—In the Big Data era, scalability is an essential char-
acteristic of machine learning algorithms. Most data discovery
algorithms apply a feature selection (FS) method as a crucial
preprocessing step. The main objective of FS is to select a subset
of informative features in such a way that the discriminating
power will be kept. Unluckily, most traditional feature selection
algorithm is not scalable, which is a significant weakness in coping
with big datasets. This paper proposes a distributed and Scalable
Global Mutual Information-based feature selection framework
called SGMI to deal with large-scale datasets.

The framework first generates a similarity matrix to represent-
ing dependency among all features. To this aim, the joint values
histograms of paired columns are generated in a scalable way and
a single pass. Next, based on these histograms, the dependency
criterion elements, including individual and joint entropies, are
extracted independently. Finally, the SGMI framework applies
an optimization method to make feature rankings based on
the similarity matrix. In this paper, three popular optimization
methods, Quadratic Programming (QP), Spectral Relaxation
(SR), and Truncated Power (TP), are plugged into the proposed
framework. Consequently, three scalable FS methods, called
SGMI-QP, SGMI-SR, SGMI-TP, will be produced. The exper-
imental studies are performed on four balanced and imbalanced
large-scale datasets. Then, the empirical outcomes are compared
with a distributed feature selection method, DiRelief, and the
original version of the produced methods.

The experimental results illustrate that (i) all produced meth-
ods are scalable and have a lower execution time than their
traditional version and DiRelief method. (ii) SGMI-QP has a
lower execution time than the two others. (iii) There is no
significant difference among produced methods outcomes on
experimental balanced big datasets. (iv) Generally, SGMI-SR
produces better results to cope with big datasets than SGMI-QP,
SGMI-TP, and DiRelief.

Index Terms—Scalable Feature Selection, Distributed Feature
Selection, Mutual Information, Large-Scale Dataset

I. INTRODUCTION

Data is growing in the whole world at an unprecedented

rate, which has been estimated that 2.5 exabytes of data are

generated per day [1]. Such voluminous data, which has a wide

variety, high complexity, and high speed generating rate, is

known as Big Data. This data includes valuable knowledge and

insights, and thus prestigious companies and organizations try

to find new ways to acquire these insights. However, traditional

data discovery algorithms have been designed to cope with

small or medium datasets, loaded into a single machine, and

computed in a centralized environment. Nevertheless, in the

Big Data era, in which there is no interruption in increasing

data size, these algorithms do not scale properly. Therefore

distributed and scalable learning algorithms have become

essential.

Feature selection (FS) is a dimensionality reduction tech-

nique that is known as an essential preprocessing technique

applied in various applications such as machine learning,

data mining, and pattern recognition [2]–[6]. This technique

has two major objects: simultaneously selecting the more

informative features and discarding redundant features [7].

These purposes would be more eligible when a large-scale

dataset needs to be processed because reducing feature space

size will shrink the computation cost of the data mining

algorithm.

According to dependency on a classification model, FS al-

gorithms can be categorized into three groups: wrapper meth-

ods [8], [9], embedded methods [10], and filter methods [11].

Filter methods only rest on data’s statistical properties, and

since they are independent of any learning model, they pre-

vent incurring a high computational cost and provide more

generality than two other categories [12]. These advantages

cause most proposed FS algorithms to cope with large-scale

datasets be related to the filter category [13].

From another standpoint, according to the final result, FS

methods can be organized into two groups: feature subset

selection (FSS) methods and feature ranking (FR) methods.

FSS methods search for a subset of informative features that

provide a proper predictive capability approximately equal to

the original features set. Meanwhile, FR methods rank the

features based on some criteria such that more informative

features will be inserted at the top of the final ranking [14].

During the last decade, mutual information (MI) is a well-

known measure for evaluating the dependency between at-

tributes, and it has been utilized by FS algorithms vastly. These

algorithms have increased attention over the years because

they are efficient and easy-used methods, and their theoretical

background returns to the information theory [15].

The state-of-the-art MI-based feature selection methods

belong to the filter category, and they can be categorized into

two subgroups, (i) Greedy Feature Selector (ii) Global Feature

Selector [16]
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The greedy approach can lead to a suboptimal result,

whereas it is conventional in published MI-based FS methods.

In this approach, the selected features can not be removed in

later stages. On the opposite, the global approach applies a

global optimization method such that it causes to gain a better

performance potentially by considering the interaction among

all features concurrently.

Global MI-based FS methods need a similarity matrix

representing non-linear dependencies among all features and

dependencies among features and class labels. However, pro-

ducing the similarity matrix is a slow step in these methods,

especially when the number of instances dominates the number

of features. Moreover, once a given dataset is distributed

in data nodes upon a distributed file system, producing the

similarity matrix can be more time-consuming because it is

necessary to transfer intermediate results among network links,

known as the communication cost. Consequently, computing

the similarity matrix forms a significant portion of the FS

method execution time, and it overwhelms the time of features

ranking.

Apache Spark is a well-known data analysis and machine

learning framework for processing large-scale datasets. This

framework applies MapReduce (MR) [17] as a standard

paradigm for distributed processing [18]. Also, it applies an

efficient data abstraction named resilient distributed dataset

(RDD) and provides a fast execution environment for memory-

based algorithms, which are common in the data analysis

scope. The researchers have paid attention to this framework

in recent years [19]–[22]. The proposed framework is imple-

mented based on the Apache Spark computing model, whereas

there is no tight dependency.

In this paper, a Scalable Global Mutual Information-based

feature selection framework, called SGMI henceforth, is pro-

posed to cope with large-scale datasets in the distributed

environment. To generate the similarity matrix, the SGMI

computes joint values histograms of all paired columns in a

distributed way. Next, based on these joint histograms, the re-

quired components of the similarity matrix, including entropies

and mutual information, will be extracted. The advantages

of this method are; first, the dependency between all paired

columns is computed in various worker nodes independently;

second, the similarity matrix is generated in a single pass.

Finally, three optimization methods, Quadratic Programming

(QP), Spectral Relaxation (SR), and Truncated Power (TP), are

plugged in the framework, whereas each arbitrary optimization

method for ranking features can be applied. Consequently,

three algorithms, SGMI-QP, SGMI-SR, and SGMI-TP, are

produced by relying on the proposed framework.

For assessing the SGMI framework’s performance, three

produced algorithms are executed over a real cluster of com-

puters and on four large-scale and high-dimensional datasets,

two balanced and two imbalanced. Then toward performing

a more profound study, empirical outcomes are confronted

with the traditional version of the produced algorithms and a

distributed feature ranking algorithm DiRelief [20]. The main

contributions with this work are as follows:

• Enriching feature ranking methods in large-scale machine
learning libraries such MLIB, a well-known library based

on Apache Spark. In this case, a distributed and scalable

global MI-based feature ranking framework is proposed,

which is currently under-explored.

• Redesigning the classical feature ranking methods to
solve their scalability issue and generating the similarity

matrix in a distributed way and a single pass, a compu-

tation bottleneck.

• Analyzing the time complexity and scalability parameters
of the proposed framework.

The rest of this paper is structured as follows. A short

overview of related works is presented in section II. The details

of global MI-based feature selection methods are described in

section III. In section IV, the main idea of the SGMI frame-

work and three produced methods are explained extensively.

The experimental study will be explained in section V. Finally,

section VI exposes concluding notes and prominent issues for

future works.

II. RELATED WORKS

In this section, some papers are investigated in which a

feature selection algorithm was presented in a distributed

approach, and experiments were performed to deal with large-

scale datasets.

Peralta et al. [23] introduced a feature selection algorithm

based on the genetic algorithm to cope with big data datasets

in 2015. The proposed method utilizes binary-coded vectors

as initial offsprings that represent selected features. At the

first step, the proposed method executes the genetic algorithm

in each data partition and generates the intermediate result

independently. Then, the proposed method aggregates the

intermediate results at the second step to produce the final

weight vector by applying the arithmetic mean.

Eiras et al.performed a comparative study between ap-

proaches, multithreading through the Weka and paralleliza-

tion by the Apache Spark, to cope with big datasets. In

this study, four well-known feature selection algorithms are

investigated, and the two measures, including the execution

time and the speed-up, are considered. The authors concluded

that the algorithms implemented based on the Apache Spark

parallelization have significantly better execution times than

those implemented based on the multithreading approach [24].

Ramirez et al.proposed an FS method called fast-mRMR,

a distributed version of the traditional FS method mRMR in

2016. This method was implemented on the Apache Spark in

dealing with large-scale datasets. Experiments were performed

on three big datasets, and the speed-up measure was investi-

gated. The results depicted that the proposed method has a

proper speed-up [19].

Dagida et al.proposed two FS methods based on the rough

set theory in two separate papers [25], [26]. The first method

is a rough set theory-based FS method adapted to the Apache

Spark computing model, and it is called dRST.In this method,

the space of the original features is partitioned randomly.

The second method, named LSH-dRST, applies the Locality
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Sensitive Hashing (LSH) to put similar features into the same

buckets. Then these buckets are mapped to data partitions to

make possible appropriately splitting of the universe. Accord-

ing to experiments, the authors said that the second method is

more reliable and scalable than the first.

Mendoza et al.introduced an FS method called DiReliefF

in 2018 [20], and It is a distributed version of the traditional

and well-known FS algorithm ReliefF.First, the experimental

studies are carried out on four big datasets, and the memory

consumption and execution time a re investigated. Then, a

comparison between the proposed method and the classical

version of ReliefF is performed. The empirical results illustrate

that the proposed method has proper scalability and can handle

large-scale datasets efficiently.

Mendoza et al.published their second work based on the

classical Correlation-based Feature Selection (CFS) method,

and they proposed the horizontally and vertically distributed

versions of this traditional method labeled DiCFS-hp, DiCFS-

vp [12]. For the experimental study, four big datasets utilized

in their previous work are considered, and a comparison

between proposed methods and non-distributed CFS was per-

formed. The results depict that the proposed methods have

better execution time and scalability in comparison with the

classical version of CFS.

Ramirez et al.published their later paper in which an

information-theory-based feature selection framework is pro-

posed in confronting large-scale datasets [27]. According to

the authors’ claim, the proposed framework can be applied for

most information-theory-based feature selection methods. In

experiments, the distributed version of traditional mRMR con-

fronts four large-scale datasets, and then measures including

execution time and Area Under Curve (AUC) are considered.

Finally, the authors concluded that their method could handle

ultra-high dimensional large-scale datasets.

Soheili et al.proposed a scalable quadratic programming

feature selection method called DQPFS [28], which requires

seeking the whole dataset in three passes. The authors com-

pared the introduced method and the non-distributed version

of QPFS [29] as the empirical study. The experimental results

depict that the proposed method has a lower execution time

and comparable accuracy than its classical version.

To summarize, in the literature, some feature selection

methods have been proposed for distributed environments;

however, to the best of our knowledge, there is no research

to proposed a general distributed and scalable framework for

covering most global MI-based feature selection methods as

proposed in this paper.

III. GLOBAL MI-BASED FEATURE SELECTION

Most FS methods, which apply the MI, consider two major

concepts, relevancy , and redundancy , such that the former is
useful and the latter is a harmful factor. An FS algorithm tries

to find a subset of features in such a manner that the selected

features have the least redundancy among themselves and the

most relevancy with the class label at the same time. Given a

dataset with a set of features X = {X1, . . . , Xd}, and a class

label C, the FS algorithm maximizes equation (1), and as the
final result, S is a set of selected features.

max
Xi∈X\S

{Rel (Xi)− Red (Xi|S)} (1)

The Minimum Redundancy Maximum Relevance (MRMR)

framework [30] is a well-known FS method that defines

relevancy and redundancy based on MI as equations (2)

and (3), respectively. These definitions reveal that the MRMR

framework utilizes a greedy approach for selecting an individ-

ual feature in each iteration in such a manner that the objective

in (1) be maximized. Therefore, this method can be lead to

a suboptimal result, due to a feature selected in an earlier

stage cannot be removed at a later stage [15]. Note that, in

equations (2) and (3), the I (·) refers to the MI.

Rel(Xi) � I (Xi;C) (2)

Red(Xi |S) �
1

|S|
∑
Xj∈S

I (Xi;Xj) (3)

As mentioned before, the MRMR applies an incremental

approach, but its idea can be represented as a general global

feature subset selection problem as (4). It is noticeable that

in (4), the k refers to the number of selected features, and
also, the α is a weight factor used to balance two components
relevancy and redundancy .

FSSMI : max
S⊂X

|S|=k

⎧⎪⎪⎨
⎪⎪⎩
∑
Xi∈S

I (Xi;C)− α
∑

Xi,Xj∈S

i�=j

I (Xi;Xj)

⎫⎪⎪⎬
⎪⎪⎭ (4)

As the first attempt to solve this problem, the Quadratic

Program Feature Selection (QPFS) [18] algorithm is pro-

posed. This method reformulates equation (4) as quadratic

programming with linear constraints, which is presented in (5).

In (5), Q is a symmetric positive semidefinite matrix, and

F is a d-dimensional vector with non-negative entries. After

solving (5), the weight of features is determined as another

d-dimensional vector w. The QPFS is convex quadratic pro-
gramming, and there are polynomial time published algorithms

to provide an optimal global solution. The matrix Q represents
the redundancy among features such that Qii = H (Xi),
Qij = I (Xi;Xj) , i �= j, and H (·) refers to the entropy
function. Also, the vector F represents the relevancy among

features and class label such that Fi = I (Xi;C).

QP: min
w

{
αwTQw − wTF

}
s.t.

d∑
i=1

wi = 1, wi ≥ 0 (5)

Moreover, the global feature subset selection was proposed

as another equation (6) based on Conditional Mutual Infor-

mation (CMI) [15]. This equation is redefined in the form of

a quadratic integer programming problem as equation (7). As

an advantage, this equation needs no improvised parameters,

43



including the balancing and convexification parameters. How-

ever, as a disadvantage, this equation is more complex and has

more computation cost than the previous version, and applying

a more complex similarity matrix will not lead to better

outcomes necessarily. This fact is illustrated in Section V-B1.

FSSCMI : max
S⊂X

|S|=k

⎧⎨
⎩
∑
Xi∈S

I (Xi;C) +
∑

Xi,Xj∈S

I (Xi;C|Xj)

⎫⎬
⎭ (6)

QIPCMI : max
w

{
wTQw

}
s.t. w ∈ {0, 1}d , ‖w‖ =

√
k (7)

In equation (7), the Q is a hessian matrix that integrates both
the concept of relevancy and total redundancy such that Qii =
I (Xi;C) and Qij = 1

2 {I (Xi;C|Xj) + I (Xj ;C|Xi)} , i �=
j. In literature, for solving equation (7), some methods are
proposed, such as Spectral Relaxation (SRFS), Semidefinite

Programming (SDFS), Truncated Power Method (TPFS), and

Low-Rank Bilinear Approximation (LRFS). Nevertheless, pro-

foundly investigating these methods is beyond this paper’s

objective, and their details can be found in [15], [16].

Generally, the complexity of these global MI-based feature

selection methods includes two components, the complexity

of the making similarity matrix and the complexity of fea-

tures ranking. The similarity matrix complexity in traditional

methods is O
(
nd2

)
, in which n refers to the number of

instances and d refers to the number of columns. Also, their
ranking features complexities are different and noted in the

third column of Table I. Note that when the number of

instances is so larger than the number of features (n� d),
the total complexity of these traditional methods is equal to

the similarity matrix complexity. The summarization of these

methods and their time complexities are presented in Table I.

As mentioned before, in confronting a large-scale dataset,

generating the similarity matrix takes a large portion of the

total execution time. Hence, in this paper, a global MI-based

feature selection framework is proposed that generates the

similarity matrix in a scalable way. Moreover, It can utilize

each method listed in Table I for ranking features as a global

optimization method.

IV. SGMI FRAMEWORK

In this section, the proposed framework is explained com-

prehensively. As mentioned before, the SGMI is a distributed

and scalable feature selection framework such that it tries to

find a feature ranking as a global optimum solution upon

an MI-based similarity matrix. However, the execution time

of generating the similarity matrix overwhelmed the total

execution time, particularly once the dataset is distributed in

several data nodes. In this situation, calculating dependency

among features needs to transfer data among network links,

which is significantly time-consuming. Therefore, generating

the similarity matrix is a bottleneck to confront a large-scale

dataset. Thus, the matrix must be computed in a distributed

and scalable approach.

A. Similarity Matrix in Theory

As mentioned in section III, the similarity matrix could be

generated based on the MI or CMI, defined by (8), and (9),

such that H (·) refers to entropy. The entropy of a given
histogram of values F = {f0, . . . , fb} is computed as (10)
such that n =

∑b
i=0 fi. It worth mentioning that b refers to the

number of unique values in a nominal feature. In other words, b
refers to the number of bins applied to discretizing continuous

features. According to equations (8) to (10), generating the

similarity matrix could be reduced to generating histograms

of values.

I (Xi;Xj) = H (Xi) +H (Xj)−H (Xi, Xj) (8)

I (Xi;C|Xj) = H (Xi, Xj) +H (Xj , C)

−H (Xi, Xj , C)−H (Xj)
(9)

H (F) = −
b∑

i=0

(
fi
n
× log

fi
n

)
s.t. fi �= 0 (10)

The noticeable point is that computing the individual en-

tropy and joint entropy would be feasible by generating the

joint value histogram vector. Therefore, if the joint value

histogram of two featuresXi andXj is represented as a square

matrix F ∈ N
b×b such that fi,j is equal to the frequency

of joint values (xi, xj), the joint and individual entropies
will be computed based on equations (11) to (13). Therefore,

acquiring the joint value histogram of two features, the MI

measure between them can be computed in a single pass.

H (Xi;Xj) � H (Fxy)

s.t. Fxy = {fi,j ∈ F | ∀i, j ∈ {0, . . . , b}}
(11)

H (Xi) � H (Fx) s.t. Fx =

⎧⎨
⎩

b∑
j=0

fi,j ∈ F | ∀i ∈ {0, . . . , b}

⎫⎬
⎭ (12)

H (Xj) � H (Fy)

s.t.Fy =

{
b∑

i=0

fi,j ∈ F | ∀j ∈ {0, . . . , b}
}

(13)

Assuming that the joint value histogram of three arbitrary

columns Xi, Xj , C represented as a cube F ∈ N
b×b×b

such that fi,j,k is equal to the frequency of joint values

(xi, xj , ck), the joint and individual entropies can be com-
puted as equations (14) to (17). Therefore, acquiring the joint

value histogram of three columns, the CMI measure can be

computed in a single pass.

H (Xi;Xj ;C) � H (Fxyz)

s.t. Fxyz = {fi,j,k ∈ F | ∀i, j, k ∈ {0, . . . b}}
(14)

H (Xi, Xj) � H (Fxy)

s.t. Fxy =

{
b∑

k=0

fi,j,k ∈ F | ∀i, j ∈ {0 . . . b}
}

(15)
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TABLE I: The summarization of ranker methods applied to solve the global feature selection problem.

Global FSS Method
Complexity

Similarity Definition
Ranking Similarity

FSSMI QPFS O
(
d3

)
O

(
nd2

) Qii=H(Xi)

Qij=I(Xi;Xj), i�=j

FSSCMI

SRFS O
(
d2

)

O
(
nd2

) Qii=I(Xi;C)

Qij=
1
2{I(Xi;C|Xj)+I(Xj ;C|Xi)},i �=j

SDFS O
(
d4.5

)
TPFS O

(
td2

)

LRFS O
(
n(k+1)

)

t is number of iteration, k is number of approximate rank

H (Xj , C) � H (Fyz)

s.t. Fyz =

{
b∑

i=0

fi,j,k ∈ F | ∀j, k ∈ {0 . . . b}
}

(16)

H (Xj) � H (Fy)

s.t. Fy =

{
b∑

i=0

b∑
k=0

fi,j,k ∈ F | ∀j ∈ {0, . . . b}
}

(17)

According to this section’s equations, generating the sim-

ilarity matrix will be feasible by generating the required

joint histograms. This solution has two prominent advantages

firstly, generating joint histograms in a single pass instead of

exploring data partitions multiple times; secondly, computing

the required individual and joint entropies in various worker

nodes independently instead of transferring computation cost

to the master node. Note, the joint value histogram vectors

include lots of zero values because most combinations of joint

values do not occur, especially when the three columns are

considered; hence histograms are presented as sparse vectors.

B. Steps of SGMI Framework

As mentioned before, generating the similarity matrix is so

time-consuming that it is a computing bottleneck in a Global

MI-based FS method. The SGMI framework makes the simi-

larity matrix in a distributed and scalable way, and then one of

the optimization methods mentioned in Table I can be utilized

to ranking the features. The main procedure pseudocode of the

proposed framework implemented based on the Apache Spark

Computing Model is detailed by Algorithm 1.

In Algorithm 1, the DS refers to the given dataset with n
instances and d columns such that the class label is placed in
the last column. Moreover, the proposed framework utilizes

information theory. Hence continuous features are discretized

into certain bin buckets before entrancing the framework. The

number of bins is determined as the input parameter b. Input
parameter M refers to a feature ranking method listed in

Table I, and it is applied to the similarity matrix. As the
final result, the output parameter R refers to a ranking of

features.

As Fig. 1 depicts graphically, the SGMI framework has

five steps, and in the following, the details of these steps will

be explained extensively. Note that, Algorithm 1 and Fig. 1

describe generating similarity matrix based on the CMI.

The First Step, Transforming to Columnar Format:
To generate the similarity matrix, it needs to compute the

dependencies among features; hence each feature is fetched

Algorithm 1: SGMI- Main Procedure
Input : DS ∈ N

n×d
// the given dataset with d

columns

Input : b ∈ N // the maximum number of bins

Input : M // a method mentioned in TableI

Output: R // the feature ranking

1 DSc = TCF (DS) // applying Algorithm 2

2 histogram = DH (DSc , b) // applying Algorithm 3

3 entropies = DE (histogram) // applying Algorithm 5

4 nf = d− 1 // the number of features

5 similarity = new Matrix [nf ,nf ]
6 for i = 0 to nf do
7 for j = i to nf do
8 if i == j then
9 similarity [i, j] = I (Xi;Xd) // applying (8)

10 else
11 similarity [i, j] =

1
2
{I (Xi;Xd|Xj) + I (Xj ;Xd|Xi)}

// applying (9)

12 similarity [j, i] = similarity [i, j]
13 end
14 end
15 end
16 weights = M (similarity) // applying a ranker method

17 R = Order (weights, descending = T )
18 return R

multiple times. To decreasing features access time during gen-

erate similarity matrix, each data partition is transformed into

a columnar format such that each column is converted to a row.

Therefore, only reading a specific row is needed for reading

a feature in the new columnar format instead of seeking a

whole dataset. This idea was applied in [27] formerly, and

Algorithm 2 explains it. The output of Algorithm 2 is the

transformed dataset whose row number is equal to n′ = p× d
and whose column number is equal to d′ = n

p on average. Note

that variables n, p, and d respectively refer to the number of
instances, columns, and data-partitions of the given dataset,

respectively.

The Second Step, Joint Value Histogram: As mentioned
before, in section IV-A, the joint value histogram is needed for

computing the dependencies based on CMI among three arbi-

trary features. To this aim, each data partition is transformed

into collections of 〈key, value〉 such that the key refers to
indexes of features, and the value refers to the histogram
vector. After completing the first transformation of this step,

each data partition includes the partial histogram vectors.

Therefore, to make full histogram vectors, partial histogram

vectors with the same keys must be shuffled and merged. To
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Fig. 1: The scheme of the SGMI framework

Algorithm 2: TCF- Transform to the Columnar Format
Input : DS ∈ N

n×d
// the given dataset

Output: DSc ∈ N
n′×d′

// the columnar format of DS

// n′ will be equal to p × d

// d′ will be equal to n
p on average

// p is equal to the number of partition of DS

1 DSc = forall part ∈ DS do in parallel
2 d′ = part .length // the number of instances per

partition

3 partc = new Matrix [d, d′]
4 for i = 1 to d′ do
5 for j = 1 to d do
6 partc [j, i] = part [i, j]
7 end
8 end
9 partc

10 end
11 return DSc .persist

generate the similarity matrix based on the MI, computing

the full histogram vectors of two columns is needed, whereas

generating the similarity matrix based on the CMI needs

to compute three columns’ full histogram vectors. It worth

mentioning that the second step of Fig. 1 shows the histogram

vectors for computing the CMI. Algorithm 3 details this step.

In Algorithm 3, DS c refers to the given dataset in the columnar

format. The input parameter b refers to the maximum number
of bins in features, and it is passed to Algorithm 4. The

output of Algorithm 3 is a distributed collection of joint value

histograms.

The Third Step, Making Entropies: At the end of the
previous step, all data partitions are transformed into various

joint value histograms. In this step, according to the equa-

tions (14) to (17) are mentioned before, sub histograms extract

from each original histogram, then they are transformed into

the corresponding entropies. Note that computed entropies are

presented as a dictionary such that each entropy can be access

Algorithm 3: DH- Distributed Histogram
Input : DSc ∈ N

n′×d′
// the given dataset in

columnar format

Input : b ∈ N // the maximum number of bins

Output: histogram ∈ N
d2×b3

// d will be equal n′
p

1 partial =
2 forall partc ∈ DSc do in parallel
3 d = partc .length // the number of features

4 hist =
5 for i = 0 to d− 1 do
6 for j = i to d− 1 do
7 x = partc [i, :]
8 y = partc [j, :]
9 z = partc [d, :]

10 〈(i, j, k) ,Histogram (x, y, z, b)〉 // applying

Algorithm 4

11 end
12 end
13 end
14 histogram =

partial .reduceByKey {AggregateSparseVectors} // Full

Histogram

15 return histogram

by a triple key. Algorithm 5 details this step.

The Fourth Step, Making Similarity Matrix: As men-
tioned before, the similarity matrix is symmetric, and it can

be produced based on MI or CMI according to Table I. Each

cell of the matrix is computed by utilizing entropies calcu-

lated in the preceding step and gathered in the master node.

Noteworthy that, depending on the applied measurement, the

similarity matrix cells are computed based on equations (14)

to (17). Lines 5 to 15 of Algorithm 1 explain how the similarity

matrix produce based on the CMI.

The Fifth Step, Ranking Feature: At the end of the
fourth step, the similarity matrix is placed on the driver node.

For ranking features, each optimization method mentioned in
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Algorithm 4: Histogram
Input : vec1 ∈ N

d′
// the first vector

Input : vec2 ∈ N
d′

// the second vector

Input : vec3 ∈ N
d′

// the third vector

Input : b ∈ N // the maximum number of bins

Output: sv // a sparse vector of the joint values

1 frequency = new Array[b, b, b]
2 for i = 0 to d′ do
3 v1 = vec1 [i ]
4 v2 = vec2 [i ]
5 v3 = vec3 [i ]
6 frequency [v1, v2, v3] +=1
7 end
8 sv = new SparseVector(frequency)
9 return sv

section IV-A can be applied. Indeed the optimization method

executes in the driver node without any dependency on other

data nodes. The outcome of the optimization method is a

weight vector such that the most informative feature has

the biggest value. Hence the feature weights are ordered

descendingly.

Algorithm 5: DE - Distributed Entropies

Input : histogram ∈ N
d2×b3

Output: entropies ∈ Dictionary[indexes, value]
// dictionary of entropies

1 forall (idxs, vec) ∈ histogram do in parallel
2 (i, j, k) = idxs
3 C = Xk

4 entropies [(i, j, k)] = H (Xi, Xj , C) // applying (14)

5 entropies [(i, j, nill)] = H (Xi, Xj) // applying (15)

6 entropies [(j, k, nill)] = H (Xj , C) // applying (16)

7 entropies [(j, nill, nill)] = H (Xj) // applying (17)

8 end
9 return dictionary.collect()

C. Time Complexity Analysis

As mentioned before, the complexity of the traditional

global MI-based feature selection has two components: the

complexity of the similarity matrix computing and the com-

plexity of features ranking. In confronting a big dataset, the

data has been split into different data partitions and distributed

in several data nodes. The proposed framework applies a dis-

tributed approach to making the similarity matrix, but its fea-

ture ranking method is run on a driver/master node locally. The

standard models of distributed computing typically assume that

local computation is free, and it is rooted in an assumption that

communication cost and data transferring among network links

dominate the execution time of the local computations. Thus in

this section, the complexity of the similarity matrix generated

in a distributed approach is investigated. In other words, the

complexity of the SGMI framework is a combination of the

complexity of three algorithms 2, 3, and 5.

Assuming the instance number of the given dataset is

depicted as n, and the number of data partitions is depicted
as p, thus each data partition includes n

p instances. Also,

assuming the number of worker nodes is depicted as w, the
number of data-partitions are processed by a worker node will

be equal to � p
w �, on average.

By assuming the column number of the given dataset

is depicted as d, the time complexity of Algorithm 2 is

equal to (18). The noticeable point is that the output of

this algorithm is a distributed dataset whose the numbers

of rows and columns are equal to n′ = p × d, d′ = n
p ,

respectively. Moreover, the time complexity of Algorithm 3

is equal to (19), when it receives the output of Algorithm 2

as an input parameter, and it can be reduced to (20). Also, the

time complexity of Algorithm 5 is equal to (21). Note that the

factor b is mentioned in section IV-B, and its value is much
smaller than n, usually.
As a summarized the complexity of the SGMI framework

is equal to (22). According to (22), the execution time of the

SGMI framework in increased by growing the size of datasets,

and also it decreased by increasing the number of worker

nodes.

Ttcf (n, d) = O
(
nd

w

)
(18)

Tdh (n
′, d′, b) = max

(
O

(
nd2

w

)
,O

(
d2b3

w

))

s.t n′ = p× d, d′ =
n

p

(19)

if n > b3 ⇒ Tdh (n
′, d′, b) = O

(
nd2

w

)
(20)

Tde (d, b) = O
(
d2b3

w

)
(21)

if n > b3 ⇒

Tsgmi (n, d, b) = max

(
O

(
nd

w

)
,O

(
nd2

w

)
,O

(
d2b3

w

))

= O
(
nd2

w

)
(22)

V. EXPERIMENTAL STUDY

The produced methods are executed on four large-scale

datasets for performing experimental studies, and then their

final results are gathered. Next, the results are applied to

reduce feature space, and then various classification Gaussian

Naive Bayes and Random Forest models are induced based on

the new feature space. Finally, the outcomes of the classifier

models are considered as the performance of the produced

methods. It is noteworthy that, for fitting classifier models

to the training dataset, the 5-fold cross-validation method is

applied. Moreover, the FS methods which applied information

theory need to discretize continuous features. To this aim, all

continuous features are quantized into ten bins such that the

width of bins is equal.

The performance of the produced methods is compared with

their traditional versions [15], [16], [18], and the DiRelief
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TABLE II: The properties of the experimental datasets

# Dataset name Instances Features Minor:Major Format Class

1 Alpha 500,000 500 (50:50) ASCII 2
2 OCR (sampled) 1,750,000 1156 (49:51) Binary 2
3 FD (sampled) 2,000,000 900 (90:10) Binary 2
4 ECBDL (sampled) 2,000,000 631 (98:2) ASCII 2

algorithm, which is published recently [20]. The DiRelief al-

gorithm is a distributed version of the popular ReliefF method,

and Mendoza published the source code in the Repository1.

The DiRelief algorithm requires two ad-hoc parameters, the

number of samples and neighbors, which both are appointed

to 20 in experiments. Note that feature ranking results of

the produced methods are equal to their traditional version;

therefore, the outcomes of classification models are equal as

well, whereas their execution-time and their speed-up will be

different from their traditional versions. For reproducibility

objectives, the SGMI framework code has been uploaded to a

repository2.

A. Datasets and Computer Cluster

Four popular large-scale datasets are utilized in experiments

that two first are balanced, and the rest are imbalanced. All

datasets have a high number of features and a high number

of instances such that the number of instances dominated the

number of features. The experimental datasets’ properties are

presented in Table II. The datasets are accessible in the Pascal3

and BDCOMP4 repositories.

The experimental study is performed upon a real computer

cluster with nine computing nodes. All nodes in the cluster

have two-core processors, 8 gigabytes RAM, and the Apache

Hadoop 2.7 and the Apache Spark 2.3 are installed on them.

B. Empirical Study

In a classification task, accuracy is a conventional criterion

for evaluating a prediction model. Nevertheless, it is not proper

to confront imbalanced datasets because minority classes have

negligible effects on overall accuracy. Consequently, the weak

performance of the minority class is dominated by the perfor-

mances of the majority classes. Therefore the Geometric Mean

(GM) Measurement is applied, and its detail is presented in the

next section. Further to the GM measure, the Execution Time

and The Speed-Up are considered in the experimental study.

In the following, the empirical results based on the mentioned

criteria are reported.

1) GM: The GM measurement aims to augment the ac-

curacy of the minority and majority classes simultaneously.

This measurement is presented based on two components,

sensitivity and specificity , such that they are computed based
on the confusion matrix. These measures are computed as:

GM =
√
sensitivity × specificity , sensitivity = TP

TP+FN ,

and specificity = TN
FP+TN . In these equations, TP , TN , FP ,

and FN are True Positive, True Negative, False Positive, and

False Negative, respectively.

1https://github.com/rauljosepalma/DiReliefF.
2https://github.com/Majid-Soheili/SGMI
3ftp://largescale.ml.tu-berlin.de/largescale/
4http://cruncher.ncl.ac.uk/bdcomp/
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Fig. 2: The GM measurement results for balanced and imbal-

anced datasets by applying the Naive Bayes classifier

Figures 2a, 2b, 3a, and 3b depict that all produced methods

have similar results by applying the different top selected

features number to confront experimental balanced and big

datasets based on the Naive Bayes and the Random Forest

classifiers. Furthermore, Figures 2c, 2d, 3c, and 3d illustrate

that in dealing with big imbalanced datasets, the SGMI-SR

method has better or comparable results than SGMI-QP, and

SGMI-TP, 20/24 of experimental.It worth mentioning that the
feature ranking results of produced methods are equal to their

classical version outcomes. As an instance, the outcomes of

the produced methods SGMI-QP and traditional QPFS are

thoroughly the same. Thus in Fig. 2 and Fig. 3, there is no

comparison among outcomes of the produced methods and

classical versions. Also, compared with DiRelief, the produced

algorithms have almost better results than DiReliefF.In detail,

the SGMI-QP, SGMI-SR, and SGMI-TP have better results in

36, 43, and 41 of 48 experimental, respectively.

As a result, Fig. 2 and Fig. 3 illustrate that applying

a more complex similarity matrix could not assure better

outcomes, especially to cope with balanced and big datasets,

whereas this matter could be more than justified in coping

with imbalanced and big datasets. This matter is mentioned

before in Section III.

2) Execution Time: The execution time of a distributed

algorithm is a critical characteristic to deal with large-scale

datasets. As mentioned before, owing to needing data transfer

among worker nodes and under network links, calculating the

similarity matrix takes a big portion of total execution time,

such that it overwhelmed the execution time of the feature

ranking method. In addition, the complexity of the dependency

criterion applied in the similarity matrix is another effective

factor in the execution time. Hence, the execution time of

the produced method SGMI-SR is longer than SGMI-QP
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Fig. 3: The GM measurement results for balanced and imbal-

anced datasets by applying the Random Forest classifier.

because it utilizes a complex and time-consuming relation to

compute the dependency among features. Also, the execution

times of SGMI-SR and SGMI-TP methods are almost equal

because both of them applied a similar relation to represent

the similarity matrix. Hence in Fig. 4, SGMI-TP is not

depicted because it would be placed behind the SGMI-SR line.

Moreover, Fig. 4 shows that the produced methods’ execution

time is significantly shorter than the execution of their classical

version in a single node with a single-core processor.

Another noticeable point is that the execution times of the

SGMI-QP and SGMI-SR are lower than the DiRelief in all

experiments as well. Note, some overheads such as the lineage

graph can cause increasing produced algorithms’ execution

time, especially once the participating worker nodes are few.

3) Speed-Up: In the speed-up study, the number of partic-
ipating executors increases while keeping the dataset size the

same. In the ideal case, the execution time should be decreased

linearly with increasing the number of executors. The speed-

up measure can reveal how the proposed algorithms’ execution

time will be decreased by adding the computing resource.

The speed-up would be calculated as Speed -Up = T (n,1)
T (n,w) .

Notice that in the equation, T (n,w) represents the algorithm’s
execution time such that n and w relate to the instance number
in the dataset and the number of participating worker nodes,

respectively.

As Fig. 5 illustrates, produced methods have proper speed-

up in all experimental datasets. However, the SGMI-SR has

a comparable or a little better speed-up than SGMI-QP.Their

speed-up decreases by increasing the number of participating

worker nodes because by raising the number of worker nodes,

communication costs will increase. As another point of view,

the speed-up of the SGMI-SR is similar to the DiRelief

algorithm, and both of them have more execution time than
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Fig. 4: A comparison among the execution time of the pro-

duced methods and their classical versions.

SGMI-QP, and it illustrates that when the computation cost

is high, increasing the number of worker nodes can be more

effective.
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Fig. 5: The speed-up of the produced methods.

VI. CONCLUSION

In this paper, a distributed and scalable global MI-based

feature selection framework, SGMI, is proposed. It firstly

generates the similarity matrix in a scalable way and a single
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pass. Next, it applies a feature ranking method to find a

globally optimal solution upon the similarity matrix.

The similarity matrix represents the dependency among

features simultaneously, and it can be computed based on

the MI or CMI such that the first one has less complexity

than the second one. In this paper, three optimization methods

are applied in the SGMI framework such that the first one

utilizes a MI similarity matrix and the rest of them use a CMI

similarity matrix. In this circumstance, three methods, SGMI-

QP, SGMI-SR, and SGMI-TP, are produced. As outcomes,

these methods generate a feature ranking with the intent that

informative features are placed on the top of the ranking.

The experimental studies are carried out on four big

datasets, two balanced and two imbalanced, upon a computer

cluster. Empirical results depict that generating the similarity

matrix is so time-consuming that it dominates the feature

ranking method’s execution time. Hence, a similarity matrix

that uses a more straightforward relation will have a lower

execution time. Furthermore, the empirical results depict that

SGMI-SR and SGMI-TP have similar execution times be-

cause using an equal similarity matrix. Moreover, the results

illustrate no significant difference among the performance of

produced methods to cope with balanced and big datasets,

whereas in confronting the imbalanced and big dataset, SGMI-

SR can potentially produce better results.

Compared with the DiRelief algorithm, produced algorithms

have lower execution times and almost better GM results in

confronting all experimental datasets.

REFERENCES

[1] G. Bello-Orgaz, J. J. Jung, and D. Camacho, “Social big data: Recent
achievements and new challenges,” Information Fusion, vol. 28, pp. 45
– 59, 2016.

[2] H. A. L. Thi, X. T. Vo, and T. P. Dinh, “Feature selection for linear
svms under uncertain data: Robust optimization based on difference of
convex functions algorithms,” Neural Netw., vol. 59, pp. 36–50, 2014.

[3] K.-J. Wang, K.-H. Chen, and M.-A. Angelia, “An improved artificial
immune recognition system with the opposite sign test for feature
selection,” Knowledge-Based Systems, vol. 71, pp. 126–145, 2014.

[4] R. H. W. Pinheiro, G. D. C. Cavalcanti, and T. I. Ren, “Data-driven
global-ranking local feature selection methods for text categorization,”
Expert Systems with Applications, vol. 42, no. 4, pp. 1941–1949, 2015.

[5] Y. Liu, K. Wei, K. Kirchhoff, Y. Song, and J. Bilmes, “Submodular fea-
ture selection for high-dimensional acoustic score spaces,” in 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing,
Conference Proceedings, pp. 7184–7188.

[6] S. Maldonado, R. Montoya, and R. Weber, “Advanced conjoint analysis
using feature selection via support vector machines,” European Journal
of Operational Research, vol. 241, no. 2, pp. 564–574, 2015.

[7] W.-Y. Deng, D. Liu, and Y.-Y. Dong, “Feature selection and classifica-
tion for high-dimensional incomplete multimodal data,” Mathematical
Problems in Engineering, vol. 2018, p. 9, 2018.

[8] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial Intelligence, vol. 97, no. 1, pp. 273–324, 1997.

[9] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset
selection problem,” in Machine learning: proceedings of the eleventh
international conference, 1994, Conference Proceedings, pp. 121–129.

[10] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection
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