220,312 research outputs found

    Matching Is as Easy as the Decision Problem, in the NC Model

    Get PDF
    Is matching in NC, i.e., is there a deterministic fast parallel algorithm for it? This has been an outstanding open question in TCS for over three decades, ever since the discovery of randomized NC matching algorithms [KUW85, MVV87]. Over the last five years, the theoretical computer science community has launched a relentless attack on this question, leading to the discovery of several powerful ideas. We give what appears to be the culmination of this line of work: An NC algorithm for finding a minimum-weight perfect matching in a general graph with polynomially bounded edge weights, provided it is given an oracle for the decision problem. Consequently, for settling the main open problem, it suffices to obtain an NC algorithm for the decision problem. We believe this new fact has qualitatively changed the nature of this open problem. All known efficient matching algorithms for general graphs follow one of two approaches: given by Edmonds [Edm65] and Lov\'asz [Lov79]. Our oracle-based algorithm follows a new approach and uses many of the ideas discovered in the last five years. The difficulty of obtaining an NC perfect matching algorithm led researchers to study matching vis-a-vis clever relaxations of the class NC. In this vein, recently Goldwasser and Grossman [GG15] gave a pseudo-deterministic RNC algorithm for finding a perfect matching in a bipartite graph, i.e., an RNC algorithm with the additional requirement that on the same graph, it should return the same (i.e., unique) perfect matching for almost all choices of random bits. A corollary of our reduction is an analogous algorithm for general graphs.Comment: Appeared in ITCS 202

    Tele-autonomous control involving contacts: The applications of a high precision laser line range sensor

    Get PDF
    The object localization algorithm based on line-segment matching is presented. The method is very simple and computationally fast. In most cases, closed-form formulas are used to derive the solution. The method is also quite flexible, because only few surfaces (one or two) need to be accessed (sensed) to gather necessary range data. For example, if the line-segments are extracted from boundaries of a planar surface, only parameters of one surface and two of its boundaries need to be extracted, as compared with traditional point-surface matching or line-surface matching algorithms which need to access at least three surfaces in order to locate a planar object. Therefore, this method is especially suitable for applications when an object is surrounded by many other work pieces and most of the object is very difficult, is not impossible, to be measured; or when not all parts of the object can be reached. The theoretical ground on how to use line range sensor to located an object was laid. Much work has to be done in order to be really useful

    Optimal Gossip Algorithms for Exact and Approximate Quantile Computations

    Full text link
    This paper gives drastically faster gossip algorithms to compute exact and approximate quantiles. Gossip algorithms, which allow each node to contact a uniformly random other node in each round, have been intensely studied and been adopted in many applications due to their fast convergence and their robustness to failures. Kempe et al. [FOCS'03] gave gossip algorithms to compute important aggregate statistics if every node is given a value. In particular, they gave a beautiful O(logn+log1ϵ)O(\log n + \log \frac{1}{\epsilon}) round algorithm to ϵ\epsilon-approximate the sum of all values and an O(log2n)O(\log^2 n) round algorithm to compute the exact ϕ\phi-quantile, i.e., the the ϕn\lceil \phi n \rceil smallest value. We give an quadratically faster and in fact optimal gossip algorithm for the exact ϕ\phi-quantile problem which runs in O(logn)O(\log n) rounds. We furthermore show that one can achieve an exponential speedup if one allows for an ϵ\epsilon-approximation. We give an O(loglogn+log1ϵ)O(\log \log n + \log \frac{1}{\epsilon}) round gossip algorithm which computes a value of rank between ϕn\phi n and (ϕ+ϵ)n(\phi+\epsilon)n at every node.% for any 0ϕ10 \leq \phi \leq 1 and 0<ϵ<10 < \epsilon < 1. Our algorithms are extremely simple and very robust - they can be operated with the same running times even if every transmission fails with a, potentially different, constant probability. We also give a matching Ω(loglogn+log1ϵ)\Omega(\log \log n + \log \frac{1}{\epsilon}) lower bound which shows that our algorithm is optimal for all values of ϵ\epsilon
    corecore