81 research outputs found

    AN ADAPTIVE SAR IMAGE DESPECKLING ALGORITHM USING STATIONARY WAVELET TRANSFORM

    Get PDF
    In this paper, we present a Stationary Wavelet Transform (SWT) based method for the purpose of despeckling the Synthetic Aperture radar (SAR) images by applying a maximum a posteriori probability (MAP) condition to estimate the noise free wavelet coefficients. The solution of the MAP estimator is based on the assumption that the wavelet coefficients have a known distribution. Rayleigh distribution is used for modeling the speckle noise and Laplacian distribution for modeling the statistics of the noise free wavelet coefficients for the purpose of designing the MAP estimator. Rayleigh distribution is used for modeling the speckle noise since speckle noise can be well described by it. The parameters required for MAP estimator is determined by the technique used for parameter estimation after SWT. The experimental results show that the proposed despeckling algorithm efficiently removes speckle noise from the SAR images

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    Amplitude vs intensity Bayesian despeckling in the wavelet domain for SAR images

    Get PDF
    In this paper, the problem of despeckling SAR images when the input data is either an intensity or an amplitude signal is revisited. State-of-the-art despeckling methods based on Bayesian estimators in the wavelet domain, recently proposed in the literature, are taken into consideration. First, how these methods proposed for one format (e.g., intensity) can be adapted to the other format (e.g., amplitude) is investigated. Second, the performance of such algorithms in both cases is analyzed. Experimental results carried out on simulated speckled images and on true SAR data are presented and discussed in order to assess the best strategy. From these results, it can be observed that filtering in the amplitude domain yields better performances in terms of objective quality indexes, such as preservation of structural details, as well as in terms of visual inspection of the filtered SAR dat

    Contourlet Domain Image Modeling and its Applications in Watermarking and Denoising

    Get PDF
    Statistical image modeling in sparse domain has recently attracted a great deal of research interest. Contourlet transform as a two-dimensional transform with multiscale and multi-directional properties is known to effectively capture the smooth contours and geometrical structures in images. The objective of this thesis is to study the statistical properties of the contourlet coefficients of images and develop statistically-based image denoising and watermarking schemes. Through an experimental investigation, it is first established that the distributions of the contourlet subband coefficients of natural images are significantly non-Gaussian with heavy-tails and they can be best described by the heavy-tailed statistical distributions, such as the alpha-stable family of distributions. It is shown that the univariate members of this family are capable of accurately fitting the marginal distributions of the empirical data and that the bivariate members can accurately characterize the inter-scale dependencies of the contourlet coefficients of an image. Based on the modeling results, a new method in image denoising in the contourlet domain is proposed. The Bayesian maximum a posteriori and minimum mean absolute error estimators are developed to determine the noise-free contourlet coefficients of grayscale and color images. Extensive experiments are conducted using a wide variety of images from a number of databases to evaluate the performance of the proposed image denoising scheme and to compare it with that of other existing schemes. It is shown that the proposed denoising scheme based on the alpha-stable distributions outperforms these other methods in terms of the peak signal-to-noise ratio and mean structural similarity index, as well as in terms of visual quality of the denoised images. The alpha-stable model is also used in developing new multiplicative watermark schemes for grayscale and color images. Closed-form expressions are derived for the log-likelihood-based multiplicative watermark detection algorithm for grayscale images using the univariate and bivariate Cauchy members of the alpha-stable family. A multiplicative multichannel watermark detector is also designed for color images using the multivariate Cauchy distribution. Simulation results demonstrate not only the effectiveness of the proposed image watermarking schemes in terms of the invisibility of the watermark, but also the superiority of the watermark detectors in providing detection rates higher than that of the state-of-the-art schemes even for the watermarked images undergone various kinds of attacks

    A higher-order MRF based variational model for multiplicative noise reduction

    Get PDF
    The Fields of Experts (FoE) image prior model, a filter-based higher-order Markov Random Fields (MRF) model, has been shown to be effective for many image restoration problems. Motivated by the successes of FoE-based approaches, in this letter, we propose a novel variational model for multiplicative noise reduction based on the FoE image prior model. The resulted model corresponds to a non-convex minimization problem, which can be solved by a recently published non-convex optimization algorithm. Experimental results based on synthetic speckle noise and real synthetic aperture radar (SAR) images suggest that the performance of our proposed method is on par with the best published despeckling algorithm. Besides, our proposed model comes along with an additional advantage, that the inference is extremely efficient. {Our GPU based implementation takes less than 1s to produce state-of-the-art despeckling performance.}Comment: 5 pages, 5 figures, to appear in IEEE Signal Processing Letter

    A Low-Complexity Bayesian Estimation Scheme for Speckle Suppression in Images

    Get PDF
    Speckle noise reduction is a crucial pre-processing step for a successful interpretation of images corrupted by speckle noise, and thus, it has drawn a great deal of attention of researchers in the image processing community. The Bayesian estimation is a powerful signal estimation technique and has been widely used for speckle noise removal in images. In the Bayesian estimation based despeckling techniques, the choice of suitable signal and noise models and the development of a shrinkage function for estimation of the signal are the major concerns from the standpoint of the accuracy and computational complexity of the estimation. In this thesis, a low-complexity wavelet-based Bayesian estimation technique for despeckling of images is developed. The main idea of the proposed technique is in establishing suitable statistical models for the wavelet coefficients of additively decomposed components, namely, the reflectance image and the signal-dependant noise, of the multiplicative degradation model of the noisy image and then in using these two statistical models to develop a shrinkage function with a low-complexity realization for the estimation of the wavelet coefficients of the noise-free image. A study is undertaken to explore the effectiveness of using a two sided exponential distribution as a prior statistical model for the discrete wavelet transform (DWT) coefficients of the signal-dependant noise. This model, along with the Cauchy distribution, which is known to be a good model for the wavelet coefficients of the reflectance image, is used to develop a minimum mean square error (MMSE) Bayesian estimator for the DWT coefficients of the noise-free image. A low-cost realization of the shrinkage function resulting from the MMSE Bayesian estimation is proposed and its efficacy is verified from the standpoint of accuracy as well as computational cost. The performance of the proposed despeckling scheme is evaluated on both synthetic and real SAR images in terms of the commonly used metrics, and the results are compared to that of some other state-of-the-art despeckling schemes available in the literature. The experimental results demonstrate the validity of the proposed despeckling scheme in providing a significant reduction in the speckle noise at a very low computational cost and simultaneously in preserving the image details

    Enhanced Speckle Filters For Sonar Images Using Stationary Wavelets And Hybrid Inter- And Intra Scale Wavelet Coefficient Dependency

    Get PDF
    The quality of Sonar images are often reduced by the presence of speckle noise. The presence of speckle noise leads to incorrect analysis and has to be handled carefully. In this paper, an improved non-parametric statistical wavelet denoising method is presented. The algorithm uses a stationary wavelet transformation to derive the wavelet coefficients, from which edge and non-edge wavelet coefficients are identified. Further to improve the time complexity, only homogenous regions with respect to coefficients of neighbors are considered. This method uses an ant colony classification technique. A hybrid method that exploits both inter-scale and intra-scale dependencies between wavelet coefficients is also proposed. The experimental results show that the proposed method is efficient in terms of reduction in speckle noise and speed and can be efficiently used by various sonar imaging systems
    • …
    corecore