2,687 research outputs found

    Fast Image Segmentation Using Two-Dimensional Otsu Based on Estimation of Distribution Algorithm

    Get PDF

    A Comparison of Nature Inspired Algorithms for Multi-threshold Image Segmentation

    Full text link
    In the field of image analysis, segmentation is one of the most important preprocessing steps. One way to achieve segmentation is by mean of threshold selection, where each pixel that belongs to a determined class islabeled according to the selected threshold, giving as a result pixel groups that share visual characteristics in the image. Several methods have been proposed in order to solve threshold selectionproblems; in this work, it is used the method based on the mixture of Gaussian functions to approximate the 1D histogram of a gray level image and whose parameters are calculated using three nature inspired algorithms (Particle Swarm Optimization, Artificial Bee Colony Optimization and Differential Evolution). Each Gaussian function approximates thehistogram, representing a pixel class and therefore a threshold point. Experimental results are shown, comparing in quantitative and qualitative fashion as well as the main advantages and drawbacks of each algorithm, applied to multi-threshold problem.Comment: 16 pages, this is a draft of the final version of the article sent to the Journa

    On the segmentation and classification of hand radiographs

    Get PDF
    This research is part of a wider project to build predictive models of bone age using hand radiograph images. We examine ways of finding the outline of a hand from an X-ray as the first stage in segmenting the image into constituent bones. We assess a variety of algorithms including contouring, which has not previously been used in this context. We introduce a novel ensemble algorithm for combining outlines using two voting schemes, a likelihood ratio test and dynamic time warping (DTW). Our goal is to minimize the human intervention required, hence we investigate alternative ways of training a classifier to determine whether an outline is in fact correct or not. We evaluate outlining and classification on a set of 1370 images. We conclude that ensembling with DTW improves performance of all outlining algorithms, that the contouring algorithm used with the DTW ensemble performs the best of those assessed, and that the most effective classifier of hand outlines assessed is a random forest applied to outlines transformed into principal components

    Accurate and reliable segmentation of the optic disc in digital fundus images

    Get PDF
    We describe a complete pipeline for the detection and accurate automatic segmentation of the optic disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour models at increasing resolutions using information related to inpainted images and vessel masks. Validation experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts and partially graded with a quality label, demonstrate the good performances of the proposed approach. The method is able to detect the optic disc and trace its contours better than the other systems presented in the literature and tested on the same data. The average error in the obtained contour masks is reasonably close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel properties from fundus camera images (VAMPIRE)
    • …
    corecore