256,491 research outputs found

    Efficient implementation of the nonequilibrium Green function method for electronic transport calculations

    Get PDF
    An efficient implementation of the nonequilibrium Green function (NEGF) method combined with the density functional theory (DFT) using localized pseudo-atomic orbitals (PAOs) is presented for electronic transport calculations of a system connected with two leads under a finite bias voltage. In the implementation, accurate and efficient methods are developed especially for evaluation of the density matrix and treatment of boundaries between the scattering region and the leads. Equilibrium and nonequilibrium contributions in the density matrix are evaluated with very high precision by a contour integration with a continued fraction representation of the Fermi-Dirac function and by a simple quadratureon the real axis with a small imaginary part, respectively. The Hartree potential is computed efficiently by a combination of the two dimensional fast Fourier transform (FFT) and a finite difference method, and the charge density near the boundaries is constructed with a careful treatment to avoid the spurious scattering at the boundaries. The efficiency of the implementation is demonstrated by rapid convergence properties of the density matrix. In addition, as an illustration, our method is applied for zigzag graphene nanoribbons, a Fe/MgO/Fe tunneling junction, and a LaMnO3/_3/SrMnO3_3 superlattice, demonstrating its applicability to a wide variety of systems.Comment: 20 pages, 11 figure

    Improved simulation of non-Gaussian temperature and polarization CMB maps

    Get PDF
    We describe an algorithm to generate temperature and polarization maps of the cosmic microwave background radiation containing non-Gaussianity of arbitrary local type. We apply an optimized quadrature scheme that allows us to predict and control integration accuracy, speed up the calculations, and reduce memory consumption by an order of magnitude. We generate 1000 non-Gaussian CMB temperature and polarization maps up to a multipole moment of l_max = 1024. We validate the method and code using the power spectrum and the fast cubic (bispectrum) estimator and find consistent results. The simulations are provided to the community.Comment: 18 pages, 19 figures. Accepted for publication in ApJS. Simulations can be obtained at http://planck.mpa-garching.mpg.de/cmb/fnl-simulation

    Novel applications of Lattice QCD: Parton distribution functions, proton charge radius and neutron electric dipole moment

    Full text link
    We briefly discuss the current status of lattice QCD simulations and review selective results on nucleon observables focusing on recent developments in the lattice QCD evaluation of the nucleon form factors and radii, parton distribution functions and their moments, and the neutron electric dipole moment. Nucleon charges and moments of parton distribution functions are presented using simulations generated at physical values of the quark masses, while exploratory studies are performed for the parton distribution functions and the neutron electric dipole moment at heavier than physical value of the pion mass.Comment: Plenary talk at XII Quark Confinement, 29 August - 3 September, 2016, Thessaloniki, Greece, 20 pages, 21 figure
    • …
    corecore