441 research outputs found

    Combined 3D thinning and greedy algorithm to approximate realistic particles with corrected mechanical properties

    Full text link
    The shape of irregular particles has significant influence on micro- and macro-scopic behavior of granular systems. This paper presents a combined 3D thinning and greedy set-covering algorithm to approximate realistic particles with a clump of overlapping spheres for discrete element method (DEM) simulations. First, the particle medial surface (or surface skeleton), from which all candidate (maximal inscribed) spheres can be generated, is computed by the topological 3D thinning. Then, the clump generation procedure is converted into a greedy set-covering (SCP) problem. To correct the mass distribution due to highly overlapped spheres inside the clump, linear programming (LP) is used to adjust the density of each component sphere, such that the aggregate properties mass, center of mass and inertia tensor are identical or close enough to the prototypical particle. In order to find the optimal approximation accuracy (volume coverage: ratio of clump's volume to the original particle's volume), particle flow of 3 different shapes in a rotating drum are conducted. It was observed that the dynamic angle of repose starts to converge for all particle shapes at 85% volume coverage (spheres per clump < 30), which implies the possible optimal resolution to capture the mechanical behavior of the system.Comment: 34 pages, 13 figure

    Path Planning for Mobile Robot Navigation using Voronoi Diagram and Fast Marching

    Get PDF
    For navigation in complex environments, a robot need s to reach a compromise between the need for having efficient and optimized trajectories and t he need for reacting to unexpected events. This paper presents a new sensor-based Path Planner w hich results in a fast local or global motion planning able to incorporate the new obstacle information. In the first step the safest areas in the environment are extracted by means of a Vorono i Diagram. In the second step the Fast Marching Method is applied to the Voronoi extracted a reas in order to obtain the path. The method combines map-based and sensor-based planning o perations to provide a reliable motion plan, while it operates at the sensor frequency. The m ain characteristics are speed and reliability, since the map dimensions are reduced to an almost uni dimensional map and this map represents the safest areas in the environment for moving the robot. In addition, the Voronoi Diagram can be calculated in open areas, and with all kind of shaped obstacles, which allows to apply the proposed planning method in complex environments wher e other methods of planning based on Voronoi do not work.This work has been supported by the CAM Project S2009/DPI-1559/ROBOCITY2030 I

    Shape analysis and description based on the isometric invariances of topological skeletonization

    Get PDF
    ilustracionesIn this dissertation, we explore the problem of how to describe the shape of an object in 2D and 3D with a set of features that are invariant to isometric transformations. We focus to based our approach on the well-known Medial Axis Transform and its topological properties. We aim to study two problems. The first is how to find a shape representation of a segmented object that exhibits rotation, translation, and reflection invariance. The second problem is how to build a machine learning pipeline that uses the isometric invariance of the shape representation to do both classification and retrieval. Our proposed solution demonstrates competitive results compared to state-of-the-art approaches. We based our shape representation on the medial axis transform (MAT), sometimes called the topological skeleton. Accepted and well-studied properties of the medial axis include: homotopy preservation, rotation invariance, mediality, one pixel thickness, and the ability to fully reconstruct the object. These properties make the MAT a suitable input to create shape features; however, several problems arise because not all skeletonization methods satisfy all the above-mentioned properties at the same time. In general, skeletons based on thinning approaches preserve topology but are noise sensitive and do not allow a proper reconstruction. They are also not invariant to rotations. Voronoi skeletons also preserve topology and are rotation invariant, but do not have information about the thickness of the object, making reconstruction impossible. The Voronoi skeleton is an approximation of the real skeleton. The denser the sampling of the boundary, the better the approximation; however, a denser sampling makes the Voronoi diagram more computationally expensive. In contrast, distance transform methods allow the reconstruction of the original object by providing the distance from every pixel in the skeleton to the boundary. Moreover, they exhibit an acceptable degree of the properties listed above, but noise sensitivity remains an issue. Therefore, we selected distance transform medial axis methods as our skeletonization strategy, and focused on creating a new noise-free approach to solve the contour noise problem. To effectively classify an object, or perform any other task with features based on its shape, the descriptor needs to be a normalized, compact form: Φ\Phi should map every shape Ω\Omega to the same vector space Rn\mathrm{R}^{n}. This is not possible with skeletonization methods because the skeletons of different objects have different numbers of branches and different numbers of points, even when they belong to the same category. Consequently, we developed a strategy to extract features from the skeleton through the map Φ\Phi, which we used as an input to a machine learning approach. After developing our method for robust skeletonization, the next step is to use such skeleton into the machine learning pipeline to classify object into previously defined categories. We developed a set of skeletal features that were used as input data to the machine learning architectures. We ran experiments on MPEG7 and ModelNet40 dataset to test our approach in both 2D and 3D. Our experiments show results comparable with the state-of-the-art in shape classification and retrieval. Our experiments also show that our pipeline and our skeletal features exhibit some degree of invariance to isometric transformations. In this study, we sought to design an isometric invariant shape descriptor through robust skeletonization enforced by a feature extraction pipeline that exploits such invariance through a machine learning methodology. We conducted a set of classification and retrieval experiments over well-known benchmarks to validate our proposed method. (Tomado de la fuente)En esta disertación se explora el problema de cómo describir la forma de un objeto en 2D y 3D con un conjunto de características que sean invariantes a transformaciones isométricas. La metodología propuesta en este documento se enfoca en la Transformada del Eje Medio (Medial Axis Transform) y sus propiedades topológicas. Nuestro objetivo es estudiar dos problemas. El primero es encontrar una representación matemática de la forma de un objeto que exhiba invarianza a las operaciones de rotación, translación y reflexión. El segundo problema es como construir un modelo de machine learning que use esas invarianzas para las tareas de clasificación y consulta de objetos a través de su forma. El método propuesto en esta tesis muestra resultados competitivos en comparación con otros métodos del estado del arte. En este trabajo basamos nuestra representación de forma en la transformada del eje medio, a veces llamada esqueleto topológico. Algunas propiedades conocidas y bien estudiadas de la transformada del eje medio son: conservación de la homotopía, invarianza a la rotación, su grosor consiste en un solo pixel (1D), y la habilidad para reconstruir el objeto original a través de ella. Estas propiedades hacen de la transformada del eje medio un punto de partida adecuado para crear características de forma. Sin embargo, en este punto surgen varios problemas dado que no todos los métodos de esqueletización satisfacen, al mismo tiempo, todas las propiedades mencionadas anteriormente. En general, los esqueletos basados en enfoques de erosión morfológica conservan la topología del objeto, pero son sensibles al ruido y no permiten una reconstrucción adecuada. Además, no son invariantes a las rotaciones. Otro método de esqueletización son los esqueletos de Voronoi. Los esqueletos de Voronoi también conservan la topología y son invariantes a la rotación, pero no tienen información sobre el grosor del objeto, lo que hace imposible su reconstrucción. Cuanto más denso sea el muestreo del contorno del objeto, mejor será la aproximación. Sin embargo, un muestreo más denso hace que el diagrama de Voronoi sea más costoso computacionalmente. Por el contrario, los métodos basados en la transformada de la distancia permiten la reconstrucción del objeto original, ya que proporcionan la distancia desde cada píxel del esqueleto hasta su punto más cercano en el contorno. Además, exhiben un grado aceptable de las propiedades enumeradas anteriormente, aunque la sensibilidad al ruido sigue siendo un problema. Por lo tanto, en este documento seleccionamos los métodos basados en la transformada de la distancia como nuestra estrategia de esqueletización, y nos enfocamos en crear un nuevo enfoque que resuelva el problema del ruido en el contorno. Para clasificar eficazmente un objeto o realizar cualquier otra tarea con características basadas en su forma, el descriptor debe ser compacto y estar normalizado: Φ\Phi debe relacionar cada forma Ω\Omega al mismo espacio vectorial Rn\mathrm{R}^{n}. Esto no es posible con los métodos de esqueletización en el estado del arte, porque los esqueletos de diferentes objetos tienen diferentes números de ramas y diferentes números de puntos incluso cuando pertenecen a la misma categoría. Consecuentemente, en nuestra propuesta desarrollamos una estrategia para extraer características del esqueleto a través de la función Φ\Phi, que usamos como entrada para un enfoque de aprendizaje automático. % TODO completar con resultados. Después de desarrollar nuestro método de esqueletización robusta, el siguiente paso es usar dicho esqueleto en un modelo de aprendizaje de máquina para clasificar el objeto en categorías previamente definidas. Para ello se desarrolló un conjunto de características basadas en el eje medio que se utilizaron como datos de entrada para la arquitectura de aprendizaje automático. Realizamos experimentos en los conjuntos de datos: MPEG7 y ModelNet40 para probar nuestro enfoque tanto en 2D como en 3D. Nuestros experimentos muestran resultados comparables con el estado del arte en clasificación y consulta de formas (retrieval). Nuestros experimentos también muestran que el modelo desarrollado junto con nuestras características basadas en el eje medio son invariantes a las transformaciones isométricas. (Tomado de la fuente)Beca para Doctorados Nacionales de Colciencias, convocatoria 725 de 2015DoctoradoDoctor en IngenieríaVisión por computadora y aprendizaje automátic

    Skeletonization and segmentation of binary voxel shapes

    Get PDF
    Preface. This dissertation is the result of research that I conducted between January 2005 and December 2008 in the Visualization research group of the Technische Universiteit Eindhoven. I am pleased to have the opportunity to thank a number of people that made this work possible. I owe my sincere gratitude to Alexandru Telea, my supervisor and first promotor. I did not consider pursuing a PhD until my Master’s project, which he also supervised. Due to our pleasant collaboration from which I learned quite a lot, I became convinced that becoming a doctoral student would be the right thing to do for me. Indeed, I can say it has greatly increased my knowledge and professional skills. Alex, thank you for our interesting discussions and the freedom you gave me in conducting my research. You made these four years a pleasant experience. I am further grateful to Jack vanWijk, my second promotor. Our monthly discussions were insightful, and he continuously encouraged me to take a more formal and scientific stance. I would also like to thank Prof. Jan de Graaf from the department of mathematics for our discussions on some of my conjectures. His mathematical rigor was inspiring. I am greatly indebted to the Netherlands Organisation for Scientific Research (NWO) for funding my PhD project (grant number 612.065.414). I thank Prof. Kaleem Siddiqi, Prof. Mark de Berg, and Dr. Remco Veltkamp for taking part in the core doctoral committee and Prof. Deborah Silver and Prof. Jos Roerdink for participating in the extended committee. Our Visualization group provides a great atmosphere to do research in. In particular, I would like to thank my fellow doctoral students Frank van Ham, Hannes Pretorius, Lucian Voinea, Danny Holten, Koray Duhbaci, Yedendra Shrinivasan, Jing Li, NielsWillems, and Romain Bourqui. They enabled me to take my mind of research from time to time, by discussing political and economical affairs, and more trivial topics. Furthermore, I would like to thank the senior researchers of our group, Huub van de Wetering, Kees Huizing, and Michel Westenberg. In particular, I thank Andrei Jalba for our fruitful collaboration in the last part of my work. On a personal level, I would like to thank my parents and sister for their love and support over the years, my friends for providing distractions outside of the office, and Michelle for her unconditional love and ability to light up my mood when needed

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest

    Curve Skeleton and Moments of Area Supported Beam Parametrization in Multi-Objective Compliance Structural Optimization

    Get PDF
    This work addresses the end-to-end virtual automation of structural optimization up to the derivation of a parametric geometry model that can be used for application areas such as additive manufacturing or the verification of the structural optimization result with the finite element method. A holistic design in structural optimization can be achieved with the weighted sum method, which can be automatically parameterized with curve skeletonization and cross-section regression to virtually verify the result and control the local size for additive manufacturing. is investigated in general. In this paper, a holistic design is understood as a design that considers various compliances as an objective function. This parameterization uses the automated determination of beam parameters by so-called curve skeletonization with subsequent cross-section shape parameter estimation based on moments of area, especially for multi-objective optimized shapes. An essential contribution is the linking of the parameterization with the results of the structural optimization, e.g., to include properties such as boundary conditions, load conditions, sensitivities or even density variables in the curve skeleton parameterization. The parameterization focuses on guiding the skeletonization based on the information provided by the optimization and the finite element model. In addition, the cross-section detection considers circular, elliptical, and tensor product spline cross-sections that can be applied to various shape descriptors such as convolutional surfaces, subdivision surfaces, or constructive solid geometry. The shape parameters of these cross-sections are estimated using stiffness distributions, moments of area of 2D images, and convolutional neural networks with a tailored loss function to moments of area. Each final geometry is designed by extruding the cross-section along the appropriate curve segment of the beam and joining it to other beams by using only unification operations. The focus of multi-objective structural optimization considering 1D, 2D and 3D elements is on cases that can be modeled using equations by the Poisson equation and linear elasticity. This enables the development of designs in application areas such as thermal conduction, electrostatics, magnetostatics, potential flow, linear elasticity and diffusion, which can be optimized in combination or individually. Due to the simplicity of the cases defined by the Poisson equation, no experts are required, so that many conceptual designs can be generated and reconstructed by ordinary users with little effort. Specifically for 1D elements, a element stiffness matrices for tensor product spline cross-sections are derived, which can be used to optimize a variety of lattice structures and automatically convert them into free-form surfaces. For 2D elements, non-local trigonometric interpolation functions are used, which should significantly increase interpretability of the density distribution. To further improve the optimization, a parameter-free mesh deformation is embedded so that the compliances can be further reduced by locally shifting the node positions. Finally, the proposed end-to-end optimization and parameterization is applied to verify a linear elasto-static optimization result for and to satisfy local size constraint for the manufacturing with selective laser melting of a heat transfer optimization result for a heat sink of a CPU. For the elasto-static case, the parameterization is adjusted until a certain criterion (displacement) is satisfied, while for the heat transfer case, the manufacturing constraints are satisfied by automatically changing the local size with the proposed parameterization. This heat sink is then manufactured without manual adjustment and experimentally validated to limit the temperature of a CPU to a certain level.:TABLE OF CONTENT III I LIST OF ABBREVIATIONS V II LIST OF SYMBOLS V III LIST OF FIGURES XIII IV LIST OF TABLES XVIII 1. INTRODUCTION 1 1.1 RESEARCH DESIGN AND MOTIVATION 6 1.2 RESEARCH THESES AND CHAPTER OVERVIEW 9 2. PRELIMINARIES OF TOPOLOGY OPTIMIZATION 12 2.1 MATERIAL INTERPOLATION 16 2.2 TOPOLOGY OPTIMIZATION WITH PARAMETER-FREE SHAPE OPTIMIZATION 17 2.3 MULTI-OBJECTIVE TOPOLOGY OPTIMIZATION WITH THE WEIGHTED SUM METHOD 18 3. SIMULTANEOUS SIZE, TOPOLOGY AND PARAMETER-FREE SHAPE OPTIMIZATION OF WIREFRAMES WITH B-SPLINE CROSS-SECTIONS 21 3.1 FUNDAMENTALS IN WIREFRAME OPTIMIZATION 22 3.2 SIZE AND TOPOLOGY OPTIMIZATION WITH PERIODIC B-SPLINE CROSS-SECTIONS 27 3.3 PARAMETER-FREE SHAPE OPTIMIZATION EMBEDDED IN SIZE OPTIMIZATION 32 3.4 WEIGHTED SUM SIZE AND TOPOLOGY OPTIMIZATION 36 3.5 CROSS-SECTION COMPARISON 39 4. NON-LOCAL TRIGONOMETRIC INTERPOLATION IN TOPOLOGY OPTIMIZATION 41 4.1 FUNDAMENTALS IN MATERIAL INTERPOLATIONS 43 4.2 NON-LOCAL TRIGONOMETRIC SHAPE FUNCTIONS 45 4.3 NON-LOCAL PARAMETER-FREE SHAPE OPTIMIZATION WITH TRIGONOMETRIC SHAPE FUNCTIONS 49 4.4 NON-LOCAL AND PARAMETER-FREE MULTI-OBJECTIVE TOPOLOGY OPTIMIZATION 54 5. FUNDAMENTALS IN SKELETON GUIDED SHAPE PARAMETRIZATION IN TOPOLOGY OPTIMIZATION 58 5.1 SKELETONIZATION IN TOPOLOGY OPTIMIZATION 61 5.2 CROSS-SECTION RECOGNITION FOR IMAGES 66 5.3 SUBDIVISION SURFACES 67 5.4 CONVOLUTIONAL SURFACES WITH META BALL KERNEL 71 5.5 CONSTRUCTIVE SOLID GEOMETRY 73 6. CURVE SKELETON GUIDED BEAM PARAMETRIZATION OF TOPOLOGY OPTIMIZATION RESULTS 75 6.1 FUNDAMENTALS IN SKELETON SUPPORTED RECONSTRUCTION 76 6.2 SUBDIVISION SURFACE PARAMETRIZATION WITH PERIODIC B-SPLINE CROSS-SECTIONS 78 6.3 CURVE SKELETONIZATION TAILORED TO TOPOLOGY OPTIMIZATION WITH PRE-PROCESSING 82 6.4 SURFACE RECONSTRUCTION USING LOCAL STIFFNESS DISTRIBUTION 86 7. CROSS-SECTION SHAPE PARAMETRIZATION FOR PERIODIC B-SPLINES 96 7.1 PRELIMINARIES IN B-SPLINE CONTROL GRID ESTIMATION 97 7.2 CROSS-SECTION EXTRACTION OF 2D IMAGES 101 7.3 TENSOR SPLINE PARAMETRIZATION WITH MOMENTS OF AREA 105 7.4 B-SPLINE PARAMETRIZATION WITH MOMENTS OF AREA GUIDED CONVOLUTIONAL NEURAL NETWORK 110 8. FULLY AUTOMATED COMPLIANCE OPTIMIZATION AND CURVE-SKELETON PARAMETRIZATION FOR A CPU HEAT SINK WITH SIZE CONTROL FOR SLM 115 8.1 AUTOMATED 1D THERMAL COMPLIANCE MINIMIZATION, CONSTRAINED SURFACE RECONSTRUCTION AND ADDITIVE MANUFACTURING 118 8.2 AUTOMATED 2D THERMAL COMPLIANCE MINIMIZATION, CONSTRAINT SURFACE RECONSTRUCTION AND ADDITIVE MANUFACTURING 120 8.3 USING THE HEAT SINK PROTOTYPES COOLING A CPU 123 9. CONCLUSION 127 10. OUTLOOK 131 LITERATURE 133 APPENDIX 147 A PREVIOUS STUDIES 147 B CROSS-SECTION PROPERTIES 149 C CASE STUDIES FOR THE CROSS-SECTION PARAMETRIZATION 155 D EXPERIMENTAL SETUP 15

    Automatic skeletonization and skin attachment for realistic character animation.

    Get PDF
    The realism of character animation is associated with a number of tasks ranging from modelling, skin defonnation, motion generation to rendering. In this research we are concerned with two of them: skeletonization and weight assignment for skin deformation. The fonner is to generate a skeleton, which is placed within the character model and links the motion data to the skin shape of the character. The latter assists the modelling of realistic skin shape when a character is in motion. In the current animation production practice, the task of skeletonization is primarily undertaken by hand, i.e. the animator produces an appropriate skeleton and binds it with the skin model of a character. This is inevitably very time-consuming and costs a lot of labour. In order to improve this issue, in this thesis we present an automatic skeletonization framework. It aims at producing high-quality animatible skeletons without heavy human involvement while allowing the animator to maintain the overall control of the process. In the literature, the tenn skeletonization can have different meanings. Most existing research on skeletonization is in the remit of CAD (Computer Aided Design). Although existing research is of significant reference value to animation, their downside is the skeleton generated is either not appropriate for the particular needs of animation, or the methods are computationally expensive. Although some purpose-build animation skeleton generation techniques exist, unfortunately they rely on complicated post-processing procedures, such as thinning and pruning, which again can be undesirable. The proposed skeletonization framework makes use of a new geometric entity known as the 3D silhouette that is an ordinary silhouette with its depth information recorded. We extract a curve skeleton from two 3D silhouettes of a character detected from its two perpendicular projections. The skeletal joints are identified by down sampling the curve skeleton, leading to the generation of the final animation skeleton. The efficiency and quality are major performance indicators in animation skeleton generation. Our framework achieves the former by providing a 2D solution to the 3D skeletonization problem. Reducing in dimensions brings much faster performances. Experiments and comparisons are carried out to demonstrate the computational simplicity. Its accuracy is also verified via these experiments and comparisons. To link a skeleton to the skin, accordingly we present a skin attachment framework aiming at automatic and reasonable weight distribution. It differs from the conventional algorithms in taking topological information into account during weight computation. An effective range is defined for a joint. Skin vertices located outside the effective range will not be affected by this joint. By this means, we provide a solution to remove the influence of a topologically distant, hence highly likely irrelevant joint on a vertex. A user-defined parameter is also provided in this algorithm, which allows different deformation effects to be obtained according to user's needs. Experiments and comparisons prove that the presented framework results in weight distribution of good quality. Thus it frees animators from tedious manual weight editing. Furthermore, it is flexible to be used with various deformation algorithms
    corecore