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Abstract

In this dissertation, we explore the problem of how to describe the shape of an object in 2D

and 3D with a set of features that are invariant to isometric transformations. We focus to

based our approach on the well-known Medial Axis Transform and its topological properties.

We aim to study two problems. The first is how to find a shape representation of a segmented

object that exhibits rotation, translation, and reflection invariance. The second problem is

how to build a machine learning pipeline that uses the isometric invariance of the shape

representation to do both classification and retrieval. Our proposed solution demonstrates

competitive results compared to state-of-the-art approaches.

We based our shape representation on the medial axis transform (MAT), sometimes called

the topological skeleton. Accepted and well-studied properties of the medial axis include:

homotopy preservation, rotation invariance, mediality, one pixel thickness, and the ability

to fully reconstruct the object.

These properties make the MAT a suitable input to create shape features; however, sev-

eral problems arise because not all skeletonization methods satisfy all the above-mentioned

properties at the same time. In general, skeletons based on thinning approaches preserve

topology but are noise sensitive and do not allow a proper reconstruction. They are also

not invariant to rotations. Voronoi skeletons also preserve topology and are rotation invari-

ant, but do not have information about the thickness of the object, making reconstruction

impossible. The Voronoi skeleton is an approximation of the real skeleton. The denser the

sampling of the boundary, the better the approximation; however, a denser sampling makes

the Voronoi diagram more computationally expensive.

In contrast, distance transform methods allow the reconstruction of the original object by

providing the distance from every pixel in the skeleton to the boundary. Moreover, they

exhibit an acceptable degree of the properties listed above, but noise sensitivity remains an

issue. Therefore, we selected distance transform medial axis methods as our skeletoniza-

tion strategy, and focused on creating a new noise-free approach to solve the contour noise

problem.

To effectively classify an object, or perform any other task with features based on its shape,

the descriptor needs to be a normalized, compact form: Φ should map every shape Ω to

the same vector space Rn. This is not possible with skeletonization methods because the

skeletons of different objects have different numbers of branches and different numbers of

points, even when they belong to the same category. Consequently, we developed a strategy

to extract features from the skeleton through the map Φ, which we used as an input to a

machine learning approach.

After developing our method for robust skeletonization, the next step is to use such skeleton

into the machine learning pipeline to classify object into previously defined categories. We

developed a set of skeletal features that were used as input data to the machine learning
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architectures. We ran experiments on MPEG7 and ModelNet40 dataset to test our approach

in both 2D and 3D. Our experiments show results comparable with the state-of-the-art in

shape classification and retrieval. Our experiments also show that our pipeline and our

skeletal features exhibit some degree of invariance to isometric transformations.

In this study, we sought to design an isometric invariant shape descriptor through robust

skeletonization enforced by a feature extraction pipeline that exploits such invariance through

a machine learning methodology. We conducted a set of classification and retrieval experi-

ments over well-known benchmarks to validate our proposed method.

Keywords: Medial Axis Transform, Isometry, Morphological Skeletonization, Shape Anal-

ysis and Description, Shape feature, Invariance and Equivariance, PointNet, Chordiogam,

Shape Classification and Retrieval
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Resumen

En esta disertación se explora el problema de cómo describir la forma de un objeto en 2D y

3D con un conjunto de caracteŕısticas que sean invariantes a transformaciones isométricas.

La metodoloǵıa propuesta en este documento se enfoca en la Transformada del Eje Medio

(Medial Axis Transform) y sus propiedades topológicas. Nuestro objetivo es estudiar dos

problemas. El primero es encontrar una representación matemática de la forma de un objeto

que exhiba invarianza a las operaciones de rotación, translación y reflexión. El segundo

problema es como construir un modelo de machine learning que use esas invarianzas para

las tareas de clasificación y consulta de objetos a través de su forma. El método propuesto

en esta tesis muestra resultados competitivos en comparación con otros métodos del estado

del arte.

En este trabajo basamos nuestra representación de forma en la transformada del eje medio,

a veces llamada esqueleto topológico. Algunas propiedades conocidas y bien estudiadas de

la transformada del eje medio son: conservación de la homotoṕıa, invarianza a la rotación,

su grosor consiste en un solo pixel (1D), y la habilidad para reconstruir el objeto original a

través de ella.

Estas propiedades hacen de la transformada del eje medio un punto de partida adecuado

para crear caracteŕısticas de forma. Sin embargo, en este punto surgen varios problemas

dado que no todos los métodos de esqueletización satisfacen, al mismo tiempo, todas las

propiedades mencionadas anteriormente. En general, los esqueletos basados en enfoques

de erosión morfológica conservan la topoloǵıa del objeto, pero son sensibles al ruido y no

permiten una reconstrucción adecuada. Además, no son invariantes a las rotaciones. Otro

método de esqueletización son los esqueletos de Voronoi. Los esqueletos de Voronoi también

conservan la topoloǵıa y son invariantes a la rotación, pero no tienen información sobre el

grosor del objeto, lo que hace imposible su reconstrucción. Cuanto más denso sea el muestreo

del contorno del objeto, mejor será la aproximación. Sin embargo, un muestreo más denso

hace que el diagrama de Voronoi sea más costoso computacionalmente.

Por el contrario, los métodos basados en la transformada de la distancia permiten la re-

construcción del objeto original, ya que proporcionan la distancia desde cada ṕıxel del es-

queleto hasta su punto más cercano en el contorno. Además, exhiben un grado aceptable

de las propiedades enumeradas anteriormente, aunque la sensibilidad al ruido sigue siendo

un problema. Por lo tanto, en este documento seleccionamos los métodos basados en la

transformada de la distancia como nuestra estrategia de esqueletización, y nos enfocamos en

crear un nuevo enfoque que resuelva el problema del ruido en el contorno.

Para clasificar eficazmente un objeto o realizar cualquier otra tarea con caracteŕısticas

basadas en su forma, el descriptor debe ser compacto y estar normalizado: Φ debe rela-

cionar cada forma Ω al mismo espacio vectorial Rn. Esto no es posible con los métodos

de esqueletización en el estado del arte, porque los esqueletos de diferentes objetos tienen



xii

diferentes números de ramas y diferentes números de puntos incluso cuando pertenecen a

la misma categoŕıa. Consecuentemente, en nuestra propuesta desarrollamos una estrategia

para extraer caracteŕısticas del esqueleto a través de la función Φ, que usamos como entrada

para un enfoque de aprendizaje automático.

Después de desarrollar nuestro método de esqueletización robusta, el siguiente paso es usar

dicho esqueleto en un modelo de aprendizaje de máquina para clasificar el objeto en cate-

goŕıas previamente definidas. Para ello se desarrolló un conjunto de caracteŕısticas basadas

en el eje medio que se utilizaron como datos de entrada para la arquitectura de aprendizaje

automático.

Realizamos experimentos en los conjuntos de datos: MPEG7 y ModelNet40 para probar

nuestro enfoque tanto en 2D como en 3D. Nuestros experimentos muestran resultados com-

parables con el estado del arte en clasificación y consulta de formas (retrieval). Nuestros

experimentos también muestran que el modelo desarrollado junto con nuestras caracteŕısticas

basadas en el eje medio son invariantes a las transformaciones isométricas.

Keywords: Transformada del eje medio, Isometŕıa, Esqueletos topológicos, Análisis y de-

scripción de forma, Invarianza y equivarianza, PointNet, Chordiogam, Clasificación y recu-

peración de formas
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1 Introduction

Understanding the shape of objects in the real world has been a critically important issue

for centuries, even millennia. Many great minds in the history of the world have dedi-

cated themselves to unraveling the meaning of the concept of shape. The results of this

exhaustive exploration have expanded our understanding of shape from early concepts as

the Platonic solids, to more complex concepts encompassed by theories such as differential

geometry (do Carmo, 1992), the formulation of Gestalt psychology (Koffka, 1999), Kendall’s

shape analysis (Kendall, 1984a), and more.

Shapes of objects arise naturally in many fields where the geometric information of volumes

or surfaces plays an essential role in the subject of study. A clear example of this phenomenon

is the field medicine, where many clinical applications such as radiotherapy planning, MRI

analysis, image-guided surgery, and treatment evolution (Nava-Yazdani et al., 2019) heavily

rely on the analysis and processing of both 2D and 3D data. There are many additional

areas in which understanding shapes can be a useful tool. Examples of such areas include

non-destructive object study and reconstruction in archaeology and cultural heritage (Tal,

2014; van der Maaten et al., 2006); object classification and retrieval from large collection

of images (Li et al., 2018; Safar and Shahabi, 2003); human action and pose recognition for

gaming and entertainment (Chaudhry et al., 2013; Li et al., 2019); environment sensing in

robot navigation and planning (Peters and Ledoux, 2016; Li et al., 2017); and industry for

automatic visual quality inspection of product defects (Qiu et al., 2011).

Computational-driven study of shape has been a matter of interest since the invention of

modern computers through fields like computer vision, computational geometry, and machine

learning. Therefore, it is unsurprising that technological advances are improving the way we

store shapes in digital formats, e.g. digital images (2D), point clouds and triangular meshes

(3D).

The analysis of 3D models is very different from the analysis of 2D images. The main

difference is that 3D models offer a complete representation of the object since occlusions

are more likely to be present in projected data in 2D. However, 3D processing and analysis

are much more complicated to handle and model compared to 2D pixels in a regular grid.

Hence, 2D descriptors usually do not generalize to 3D, splitting classification and retrieval

pipelines in two.

Shape analysis relies on an accurate mathematical representation of the shape of an object,

regardless of the domain of applications. This representation should be able to exhibit ge-

ometric and topological properties inherent to the shape itself. As a result, we can define
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shape analysis as “a set of theories, methods, and algorithms that concur to the formal-

ization and computation of properties useful to characterize the geometrical appearance of

objects.” (Biasotti et al., 2014).

There are two key aspects to shape analysis. The first key aspect it the object presentation

that determines how the geometric information of the object is stored. Examples of the most

common representations are point clouds, contour curves, meshes, and topological skeletons.

The latter being one of the focuses of our work in this study. The second aspect centers

on how to extract features from a chosen representation. Such features should highlight

the geometric properties of the shape. Both representation and description are essential for

shape analysis.

1.1 Problem statement

Researchers have proposed a variety of shape descriptors. These descriptors differ widely in

their mathematical formulation. They are designed to address specific goals in a particular

field. The purpose of every shape descriptor is to provide a compact but complete set of

features of the shape of an object, preserving its appearance and geometric properties. For

a 3D model compact representation is preferred because the amount of data required to

represent the entire structure of an object is exponentially higher than for 2D models.

Over the past two decades, computer vision research has put enormous effort into creat-

ing more effective and efficient shape descriptors. Although we have witnessed significant

progress, especially in the last ten years, performance remains unsatisfactory. There are

several challenges to shape description that guide ongoing research in the field of computer

vision.

One of these challenges is isometric invariance and equivariance, e.g., a shape descriptor

should be rotation invariant. In other words, a feature map f should describe an object

in the same way, regardless of its pose. Rotation, like any other isometric transformation,

preserves the geometric properties of the object. Many shape descriptors in literature are

not rotation invariant by design, despite their good performance in tasks such as shape

classification and retrieval (Worrall and Brostow, 2018; Kondor and Trivedi, 2018). A clear

example of this is approaches based on CNNs, where the base operation is the mathematical

the convolution, which is equivariant to translations but not to rotations. A particularly

difficult result of this non-invariance problem occurs when dealing with arbitrary rotations

in SO(3), the mathematical group describing all possible rotations in a 3D vector space.

Some authors approach this problem by setting a canonical pose for the objects. However,

there is no explicit agreement about what a canonical pose means.

Additionally, many shape description methods also encounter difficulties when dealing with

shapes of the same category but at different scales. This scenario is common due to the wide

variety of sensors. e.g., cameras, point clouds, scanners, etc. Authors use object normaliza-

tion to tackle this problem, enclosing the object in a normalized boundary. However, in more
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extreme settings such as images in the wild, clutter, or complex background, normalization

is challenging to conduct.

Intra-class variation is also a common problem. It occurs when objects belong to a single

category but have significant differences with that category, e.g., chairs with and without

arms, with wheeled legs, etc. Another challenge related to intra-class variation is the dif-

ference in topology (Genus number or number of holes) among different objects, even when

they belong to the same class. It is common for a pair of objects belonging to the same class

to differ in the number of holes in their structure. These differences make it difficult for

many descriptors to produce a distinctive set of features for the specific class, particularly

when the descriptors do not know the specific topology of the objects beforehand.

Finally, another frequent problem is shape non-rigid deformation. Objects in categories such

as cats, horses, or human beings, are susceptible to having deformations due to the movement

of their bodies. While these deformations do not change the category the shape belongs to,

they do make it more difficult to describe the object accurately in every possible pose.

Graph-based methods, especially those based on the Medial Axis Transform (also called

topological skeleton), have interesting properties that can address the shape description chal-

lenges detailed above. They provide dimensionality reduction while preserving the topology.

They are rotation invariant because the medial axis of a rotated object is the rotated medial

axis of the original one. The MAT is also robust to small deformation, such as articulation

because of its graph-like structure. For example, the movement of a human-like shape does

not affect the entire skeleton but only the connections between the nodes of the skeleton.

However, there are also downsides to using this methodology. Skeletons are extremely sen-

sitive to the noise of the contour or surfaces of the object. Even small amounts of noise

can cause erroneous sections of the skeleton to appear. Moreover, skeletons of some shapes

are ambiguous, meaning that two somewhat different shapes can have similar skeletal repre-

sentations. Therefore, skeletonization methods are usually used in combination with other

approaches.

In this dissertation, we studied shape analysis for classification and retrieval. We focused our

work on designing a new shape description strategy with invariant properties to isometric

transformation. We used the Medial Axis Transform as our shape representation because of

its properties that make it invariant to isometries. Due to its extreme sensitivity to noise, we

first formulated a robust skeletonization algorithm capable of estimating the “true skeleton”

of an object with fewer spurious branches. We designed a machine learning approach to

extract shape features from the medial axis transform, that can be applied to 2D as well as

3D shapes. We conducted shape classification and retrieval experiments in order to assess the

advantages of our approach against state-of-the-art methods. Figure 1-1 shows an overview

of our methodology.
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Figure 1-1: Proposed Machine learning pipeline. The CPMA skeleton of the input shape is com-
puted to extract chord (blue lines) later. Both the chords and a sampled point
cloud from the boundary are sent to independent PointNet++ architectures, and
later passed through a fully connected network to get the classification scores.

1.2 Objectives

In this dissertation, we study shape analysis with the ultimate goal of defining a shape

descriptor capable of exhibiting isometric invariance for shape classification and retrieval.

We explore shape description methods; specifically, those that depend on the Medial Axis

and its topology-preserving properties. With this in mind, we define the following objectives

for this study:

English version

General objective: Study how to formulate a shape description of an object in a digital

image through its Medial Axis. The feature representation focused on the invariance to

isometries that are inherent to the Medial Axis.

Detailed objectives
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1. Analyze and categorize the main Medial Axis-Based shape descriptors that exist in the

literature, listing their properties and assessing their advantages and weaknesses.

2. Identify the most relevant 2D and 3D skeletonization methods in the state-of-the-art

that are robust to boundary/surface noise of the segmented object.

3. Design a new Medial Axis-based shape descriptor that works in 2D and 3D, which

exhibits invariance to isometries. Without being the main focus of our study, scale

and small non-rigid deformations invariance are also considered.

4. Test the stated shape descriptor through Shape Classification and Shape Retrieval

experiments, over relevant benchmarks and dataset in the field.

Spanish version

Objetivo general Estudiar la descripción de la forma de un objeto en una imagen digital

a partir de su representación como un esqueleto topológico. El estudio está enfocado en sus

las propiedades invariantes a isometŕıas, escala y pequeñas deformaciones no ŕıgidas.

Objetivos espećıficos

1. Analizar los principales métodos existentes para representar la forma de un objeto

en una imagen digital a partir de su esqueleto topológico y enumerar sus principales

ventajas y desventajas en torno a sus propiedades.

2. Identificar en la literatura existente un método de esqueletonización robusto en 2D y

3D, que muestre poca sensibilidad al ruido presente en la segmentación del objeto.

3. Proponer un nuevo descriptor de forma en 2D y 3D basado en el concepto de esqueleto

topologico (Medial Axis); con propiedades invariantes a isometŕıas, escala y pequeñas

deformaciones no ŕıgidas.

4. Evaluar el desempeño del descriptor propuesto comparándolo con los principales bench-

marks utilizados en la comunidad cient́ıfica a través de experimentos de shape classifi-

cation y shape retrieval. La evaluación resaltará las propiedades, ventajas y desventajas

del descriptor con respecto a otros enfoques.

1.3 Contributions

Shape Description has proliferated in the field of computer vision. We focused on the topo-

logical properties of shapes in 2D and 3D through the study of the concept of the Medial
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Axis Transform. We designed a shape descriptor based on the MAT by exploiting its invari-

ance to topology, scale, isometries, and small deformations. We tested our methodology by

conducting several classification experiments on state-of-the-art datasets.

Additionally, several academic papers were submitted to conferences and peer-reviewed jour-

nals in the field of computer vision. These papers summarize the main contribution of this

dissertation:

1. In chapter 4 and 5, we explore robust skeletonization methods. Robustness, in this

case, is measured as the degree of invariance to noise and isometric transformation.

We were able to identify, use, and evaluate the main approaches in the literature.

Moreover, two new methods for skeletonization were developed, compared with the

state-of-the-art, and submitted to the scientific community:

D. Patino, and J. W. Branch. “Noise-invariant skeletonization by modeling contour and

surface noise in 2D and 3D objects”. (Submitted to Revista Dyna.)

D. Patino, and J. W. Branch. “Cosine-Pruned Medial Axis: A new strategy for spurious

branch removal in 2D and 3D by constraining the cosine transform reconstruction”. (Sub-

mitted to IET Computer Vision)

2. In chapter 6 we crafted a new classification method to exploit and demonstrate the proper-

ties of skeleton-based shape description. We tested our approach through classification and

retrieval experiments.

D. Patino, and J. W. Branch. “2D and 3D Shape classification and retrieval using noise-free

topological skeletons”. Paper on progress.

3. In addition to the listed papers, we submitted another two indirect contributions resulting

from our exploration of how superpixels can be used to approximate/segment the shape of

an object. In this paper, we use superpixels to segment skin lesions in dermoscopic images.

D. Patiño, J. Avendaño, and J. W. Branch. “Automatic skin lesion segmentation on der-

moscopic images by the means of superpixel merging”. International Conference on Medical

Image Computing and Computer-Assisted Intervention. Springer. 2018. p728-736.

Diego Patiño, Alberto Ceballos, Jairo Rodriguez, German Sánchez, and John Branch. “Melanoma

Detection on Dermoscopic Images using Superpixels segmentation and Shape Based Fea-

tures”. Evento de Investigacción y Socialización de Ciencias de la Computación (SICC),

Medelĺın, Colombia.

1.4 Organization

In the next chapters, we will further approach in detail the stated research topic. The

remainder of this document is organized as follows. In chapter 2, we describe the preliminary
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concepts that help to understand this study. In chapter 3, we offer a comprehensive literature

review of shape analysis and shape description. The detailed methodology employed in

the development of this dissertation is explained in chapter 4. We present and discuss

our results in two chapters. First, in chapter 5, we formally define our skeletonization

strategy and report the results of the robust skeletonization experiments. Later, in chapter

6, we fully describe the development of a shape classification method based on the Medial

Axis Transform, providing experiments to show its advantages over other state-of-the-art

approaches. Finally, in chapter 7, we draw some conclusions and present a short discussion

about the study, along with future directions for this research.



2 Shape Analysis

The questions: what is “Shape” and how do we understand it? Has captivated mathe-

maticians and philosophers for over a century, as seen in essential studies such as Gestalt

Physiology (KING et al., 1994), Thompson’s “On Growth and Form” (Thompson, 1942),

or Kendall’s Statistical Theory of Shape Kendall (1984b); Stoyan (1989). With the rise of

Computer Science and the advent of the digital imagery era, shape analysis has become a

significant area of research, penetrating application domains like medical imaging, industrial

design, entertainment, computational anatomy, sensor measurement, and geographical pro-

filing, among others. Today, shape analysis plays an integral role in the fields of computer

vision and augmented reality due to their need for more diverse and precise tools to analyze

vast pools of 2D and 3D data.

While the history of shape analysis is long, the area remains open to new and exciting

innovation, as research problems such as shape matching, shape retrieval, classification, and

semantic segmentation remain unsolved. A significant amount of research on the subject is

still active, with new theories and technological advances taking place all the time. The goal

of this chapter is to present the key most important concepts related to shape analysis. These

concepts will be described in the following sections to enable readers to better understand

the research conducted in this dissertation.

2.1 Shape Description

Kendall Shape Theory (Kendall, 1977) defines a shape as “all the geometrical information

that remains when location, scale, and rotational effects (Euclidean transformations) are

filtered out from an object.” In essence, this definition implies that shape does not change

when we apply any of the above mention transformations. However, one might argue that

an object maintains the category it belongs to even after a non-rigid deformation. It is this

type of ambiguities the ones that make shape description a challenging problem. See Figure

2-1.

Thus, shape analysis can be defined as the automatic analysis of geometric shapes, for ex-

ample, using a computer to detect similarly shaped objects in a database or parts that fit

together. In order to perform such analysis, it is crucial to be able to describe a shape as a

list of features of a vector space f ∈ V , such that f summarizes the most important proper-

ties of the object. Generally speaking, a shape descriptor is a simplified representation of a
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Figure 2-1: Non-rigid transformation between similar biological shapes. Both instances belong to
the same class - fish - however, its morphology is different. On Growth and Form, D.
W. Thomposon, 1997

2D or 3D shape in the form of a vector containing a set of numerical values or a graph-like

structure used to describe the shape geometrically or topologically.

Here it is important to distinguish between shape description and shape representation. A

short but meaningful distinction between these two concepts is offered by (Lee, 1984) as

follows: “An object representation contains enough information to reconstruct (an approx-

imation to) the object, while a description only contains enough information to identify an

object as a member of some class.” In other words, the representation of an object is more

detailed and accurate than the description. The description is more concise and designed

to highlight the particular properties of the shape. In this sense, we can think of a shape

representation as an alternative way to store all of the shape’s information in a different

format that particularly benefits: speed, compactness and efficiency (Siddiqi et al., 1999;

Toshev et al., 2012; Marie et al., 2016; Freifeld and Black, 2012).

2.2 Shape Matching

Shape matching is the process of comparing a pair of geometric objects by applying the

notion of shape similarity. The goal of shape matching is to estimate how close or different

these two shapes are. This is done to establish a set of correspondences between sections

of different shapes or to find a shape similar to a model in a cluttered image/3D model.

A distance applied to the features in the shape description of each object is the standard

similarity measure used to make the comparison (See Figure 2-2). The most common metrics

employed for shape matching are the Hausdorff Distance, the Chamfer Distance (Butt and

Maragos, 1998), or any geodesic metric in general (Ling et al., 2007).
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Figure 2-2: Shape matching example. Are the two shape similar enough to be considered in the
same class?. Taken from: Computer Vision Group, TUM Department of Informatics,
Technical University of Munich

Shape matching finds applications in many fields such as shape retrieval, recognizing object

categories, fingerprint identification, Optical Character Recognition (OCR), and Molecular

Biology.

To achieve significant results when comparing objects, we need Any shape matching approach

to use metrics and a shape descriptors with some degree or equivariance or invariance to

intrinsic variations between the compared shapes, i.e., rotations, scale, appearance.

2.3 Shape Classification and Retrieval

Shape classification in computer vision addresses the problem of assigning labels to objects

belonging to one of many classes based on the object’s shape. This problem is closely related

to shape-based object retrieval, for which the goal is to return objects from a database

that are the most similar to a predefined query object. Shape classification performance

is commonly evaluated through classification accuracy per instance—more objects classified

in the correct class increase the accuracy to a maximum of 100%. For shape retrieval, the

preferred evaluation metric is the Mean Average Precision (mAP) over a set of queries on a

dataset.

Classification is usually conducted by training machine learning algorithms with a set of

hand-labeled objects. The classification algorithm learns how to divide the feature space of

the shape description such that objects belonging to the same classes will cluster together.

The shape description of each object is crucial for classification because it emphasizes the

characteristics of the different classes.

This same description is also used for shape retrieval. In shape retrieval, we compare two

objects of the same database through a positive score value s > 0 computed with any distance

metric: s = d(Ω1,Ω2). Higher values of s indicate more difference between the two objects,

while lower values suggest a greater similarity between them. Figure 2-3 illustrates both
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shape classification and retrieval.

Although extensive research has been done on this field, shape classification is still consid-

ered as an open problem. This is, in part, attributed to factors like the large intra-class

variation between shapes of the same category. It is also attributed to the wide variety of

representation formats: contour data, point clouds, polygonal meshes, graphs, and signed

distance functions.

Additional challenges in shape classification and retrieval include variations of the objects

due to pose, deformation, occlusion, or cluttered and complex topologies.

Figure 2-3: Shape Classification and Retrieval. Object belonging to different classes appear dis-
tant in the features space (left). Objects with similar types to the query object have
higher retrieval scores than compared to distance ones (right).

2.4 Invariance and Equivariance

A map f is said to be an equivariant map when its domain and co-domain are acted on by

the same symmetry group, and the function commutes with the action of the group. This

means that applying a symmetry transformation and then computing the function produces

the same result as computing the function and then applying the transformation:

f(g.x) = g.f(x), (2-1)

Where g ∈ G, is an element of some mathematical symmetry group. The map f is called an

Invariant map, if applying f to x is the same as applying f to g.x:

f(g.x) = f(x), (2-2)
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In equation 2-1 and 2-2, the map f might take the form of an analytically expression as well

as a CNN, a SVM, etc.

Figure 2-4: Equivariance example. The resulting point cloud is the same after applying the map
f followed by the transformation π or viceversa (Worrall et al., 2017)

.

In the geometry of triangles, the area and perimeter of a triangle are invariant properties.

Translating or rotating a triangle does not change its area or perimeter. However, triangle

centers such as the centroid, circumcenter, incenter, and orthocenter are not invariant, be-

cause moving a triangle will cause its centers to move. Instead, these centers are equivariant.

Applying any Euclidean congruence (a combination of a translation and rotation) to a tri-

angle, and then constructing its center, produces the same point as constructing the center

first, and then applying the same congruence to the center. See Figure 2-4.

Informally, invariant maps demonstrate that a shape descriptor does not change with the

transformation of the object. Therefore, equivariance is generally preferable because the

mathematical process that makes the descriptor changes according to the transformation is

known. Equivariance allows one to recover the transformation itself by mapping two objects

that are known to be the same, but in different transformation/poses.

2.5 Isometric transformations

Isometries are geometric transformations that preserve measures of length, area and angles.

These transformations include reflections, translations, and rotations. Two isometric trans-
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formation Ta and Tb can be combined to produce a new one: Tc = TaTb. This property is in

general not commutative. Formally an isometry is defined as follows:

Definition 1 Isometric transformation Let X and Y be metric spaces with metrics dX
and dY . A map f : X 7→ Y is called an isometry or distance preserving if for any a, b ∈ X
one has

dY (f(a), f(b)) = dX(a, b) (2-3)

According to the above definition, other geometric transformation such as projections, shear-

ing, and scales; can not be considered isometries.

An isometry is automatically injective. If they were not, two distinct points, a and b, could

be mapped to the same point, thereby contradicting the coincidence axiom of the metric d.

A global isometry, isometric isomorphism, or congruence mapping is a bijective isometry.

Like any other bijection, a global isometry has a function inverse. The inverse of a global

isometry is also a global isometry.

Isometric invariance and equivariance in shape analysis is an important research area in

computer vision because shapes naturally manifest rich variability among instances of the

same class. All the geometric properties that make the object belong to the class in question

remain after an isometric transformation. Any kind of shape analysis is often required to be

invariant to isometric transformations and shape variations such as different poses, rotations

or different canonical coordinate systems of the data, and translation of the object.

Equivariance to other transformation such scale or non-rigid deformations are also an active

focus of research. These type of transformation are important because they commonly occur

in articulated shapes, or due to different registration sensors.

2.6 Digital Shape Formats

In this section, we describe some of the most common ways to represent the shape of an

object in digital formats.

Pixels and Voxels in digital imaging, a pixel is a physical point in a raster image. It

is the smallest controllable element of a picture represented on the screen. For storing a

shape, pixels take binary values p ∈ [0, 1] representing binary occupancy. A key notion when

working with pixels is the neighborhood, Np = {q ∈ Z|d(p, q) ≤ ε}. This is a set of all of the

points that are immediately close to a point p. A shape is composed of all of the pixels with

value 1 defining the area or volume of the object. The analogous of pixels in 3D are voxels

that satisfy the same properties described above.
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Figure 2-5: Isometric Transformations. A transformation is considered isometric if it does not
change the length, area, or relative angles between any pair of points. The image
shows how translations, rotations and reflections satisfy the isometry definition, and
how dilations are examples of non-isometric transformations. Source: https://www.
onlinemathlearning.com/math-transformation.html

.

Point clouds a point cloud is a set of data points in a euclidean space. Point clouds are

generally produced by 3D scanners, which measure a large number of points on the external

surfaces of objects around them. As the output of 3D scanning processes, point clouds

are used for many purposes, such as create 3D CAD models for manufactured parts, for

metrology and quality inspection, and a multitude of visualization, animation, rendering,

and mass customization applications.

Point clouds can also be employed to represent volumetric data, as is sometimes done in

medical imaging. By using point clouds, we can achieve multi-sampling and data compres-

sion.

Triangular Meshes a triangular mesh is a discrete approximation of the geometric man-

ifold of an object using a set of triangles whose that share some of their edges. They can

approximate arbitrary topologies as a piecewise smooth surface.

A mesh is usually digitally stored as an array of vertices and a list of face indices. Each set

of face indices consists of a tuple of three integer vertex indices. Although triangular meshes

are the most common, it is possible to build a polygonal mesh out of any regular polygon.

Their graph structure makes them suitable for a large variety of applications. They are also

https://www.onlinemathlearning.com/math-transformation.html
https://www.onlinemathlearning.com/math-transformation.html
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orientable, which means that the direction of the normal to the surface in every polygon is

stored as well.

Singed Distance Functions a signed distance function of a set Ω is a function f that

determines the distance of a given point x from the boundary of Ω. The sign of f accounts

for the point x being inside or outside Ω. Positive values mean that x is inside Ω. It decreases

in value as x approaches δΩ, where the signed distance function is zero, and it takes negative

values outside of Ω. Formally,

f(x) =

{
d(x, ∂Ω) if x ∈ Ω

−d(x, ∂Ω) if x ∈ Ωc
. (2-4)

It is relevant to mention that the opposite convention is also adopted sometimes.

2.7 Medial Axis Transform

The medial axis transform (MAT) of an object Ω is the set of all pairs (x, r) such that a ball

Br(x) centered on x, with radius r, and totally inscribed in Ω is not contained in any other

ball centered on x as well. This means Br(x) 6* Br′(x), for all r′ > r.

Several alternative definitions of the MAT exit in the scientific literature. One of the most

widely used defines the MAT as the set of all points having more than one closest point on

the object’s boundary. Both of the previous definitions are equivalent and lead to the same

result.

It is important to make the distinction between the Medial Axis Transform and the Medial

Axis. The medial axis only contains the locus of the inscribed balls and not the radius

information. The MAT, instead, is a complete shape descriptor, meaning it can be used to

reconstruct the shape of the original domain. In the 3D case, the medial axis transform is

also known as the medial surface. See figures 2-6 and 2-7.

The MAT was originally referred to as the topological skeleton. It was introduced by

Blum (Blum, 1967) as a tool for biological shape recognition. It is used as a shape rep-

resentation of low dimensionality, but with all the topological information of the object

contained in it. Moreover, it is easy to see from its definition that the medial axis exhibits

invariance to isometric transformations.

Although there is no unanimous agreement among authors, the media axis transform should

satisfy five main properties: 1) have the same topology as the object, i.e., the same number of

components and holes (and tunnels); 2) be thin; 3) be centered within the object (medial); 4)

preserve the geometric features of the object; and 5) allow complete recovery of the original

object (Punam K. Saha and de Baja , Eds.).
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Figure 2-6: Illustration of the medial axis definition. (left) The MAT skeleton M of the shape
O with contour S. (middle) Examples of maximally inscribed balls (red), and balls
which are neither maximal nor inscribed, thus not contributing toM (green). (right)
Approximate reconstruction of O by the union of balls Br(x). Source: (Tagliasacchi
et al., 2016)

Figure 2-7: Medial Axis of a 3D object. Medial axis surface of the objecet (left). Medial axis
surface over imposed on the original object (right). Source: http://www2.riken.jp/
brict/Yoshizawa/Research/Skeleton.html

Because the MAT is one of the main focuses of our dissertation, we will expand its definition

and explore its properties in detail in subsequent chapters.

http://www2.riken.jp/brict/Yoshizawa/Research/Skeleton.html
http://www2.riken.jp/brict/Yoshizawa/Research/Skeleton.html
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In this chapter, we offer a short literature review of shape representations and shape descrip-

tors. Despite the difficulty of categorizing the extensive corpus of studies in the field, we have

chosen an intuitive way to group them into the following five categories: 1) contour-based,

2) region-based, 3) graph-based, 4) spectral shape description, and 5) learned shape descrip-

tion. In the following sections, we will present an overview of each one of these categories

with their advantages, weaknesses, and illustrative examples.

3.1 Contour and Surface Based Shape Description

The contour of a 2D object is a closed curve that contains essential information to understand

the object geometry. For example, humans can recognize an object solely by its contour.

Instead of a closed curved, a 3D object is usually represented as an oriented surface. Such

surface accounts for the boundary of the object in R3. For simplicity, we will refer here

to both 2D or 3D approaches as contour-based shape descriptors. However, we will offer

additional clarification when necessary.

Contour-based descriptors (CBD) only consider the boundary of the shape and neglect the

information contained in the shape interior. These descriptors are very efficient at filtering

out results based on the boundary points because of their low computation complexity.

However, they are not good at handling image noise, and thus they are not accurate in real-

life applications. All contour-based shape description methods depend on a parametrization

of the contour. If this parametrization is too coarse or the curve is not smooth enough, the

performance can drop (Stiene et al., 2006) significantly.

Perhaps the simplest shape descriptor is the chain codes (Liu and Žalik, 2005). Chain codes

describe the boundary of a 2D object by encoding the angles between a point in the boundary

and its immediate neighbors. Different encodings are obtained by using either a 4-element

or 8-element neighborhood. Each element in the chain encodes as a relative angle difference

between itself and the next element. After, some statistics are computed, such as the number

of times a code repeats. These statistics are later used as features for shape comparison.

Chain codes are invariant to translation, but not to scale neither rotation.

Another widely-used shape descriptor is the Shape Context (SC) (Belongie et al., 2002).

The SC is a way of capturing the relationship between a single point and its neighbors in a

uniform radial vicinity. Given a shape Ω, SC defines a polar histogram on each point of its

boundary δΩ. The histogram is the descriptor itself.
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Histograms of different points in different shapes are compared to do shape matching. There

are many variations of the original SC formulation (Bhuptani and Talati, 2014; Kokkinos

et al., 2012) intending to make it less computational expensive (Mori et al., 2005), and

invariant to rotations (Yang and Wang, 2007) and deformations (Ling et al., 2007).

Another well-known CBD is the Fourier descriptor (FD). FD is the result of parametrizing

the contour as a Jordan Curve r(t), and applying the Fourier transform. The descriptor is

defined as vector v ∈ Rm, where the entries of v are the first m coefficients of the Fourier

Representation of the shape signature of the object. Here, shape signature means any 1-D

function used to represent the boundaries of a 2-D shape,

FD(Ω) = a0, a1, ai, ..., am−1, with ai =
1

n

n−1∑
t=0

r(t)e
−(j2πnt)

n (3-1)

Despite its simplicity, FD is a powerful descriptor that has invariance to translations, and

equivariance to rotations and scale. However, FD’s representation performance reduces

when the contour is undersampled. Variations to FD include (Wafi et al., 2016), (Zhao and

Belkasim, 2012), and (Ye Mei and Androutsos, 2008).

The parametrized curve r(t) is also employed to define another shape descriptor: The Cur-

vature Scale (Abbasi et al., 1999) (CSS). The CSS is computed using a 2D plot called the

CSS image with dimensions (t, σ). Every point in this plot corresponds to a location of

curvature zero-crossing along with the parameter t, on a Gaussian-smoothed version of r(t).

The zero-crossing is estimated as

k(t, σ) =
Xt(t, σ)Ytt(t, σ)−Xtt(t, σ)Yt(t, σ)

(Xt(t, σ)2 + Yt(t, σ)2)
3
2

. (3-2)

The curve along the parameter t, for a range of values of σ (starting at 1) is defined as:

rσ(t, σ) = [X(t, σ), Y (t, σ)]T (3-3)

The CSS descriptor consists of the locations of the maxima of the CSS image on the plane

(t, σ). The CSS representation is robust with respect to scale, noise, and change in orienta-

tion. Any rotation of the object causes a circular shift on its representation, which is easily

determined during the matching process.

A number of other contour-based approaches describing features of shapes do exist in the

scientific literature applied to different fields. Most of the work, however, has been done in

the area of free form object recognition and classification in 3D range data. Examples of this

works include eigen-CSS (Drew et al., 2009), B-Spline contour descriptors (Figueiredo et al.,

2000), and geometric metrics such as (roundness, relation Area/Perimeter, mean curvature,
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etc.), or the Chordiogram (Toshev, 2011; Toshev et al., 2012) that we will discuss in detail

later in this study.

(a) Chain Codes. The k-neighborhood define the encoding of
the shape. Statistics of the codes are use as feature vec-
tor. For the examples shown, the codes are 1100100..., and
21017...

(b) Fourier Descriptors. The contour of the object is
parametrized as Jordan Curve, s(t), and the coefficients
of the Fourier Transform define the descriptor.

(c) Shape Context. Each point in the contour is described
through a 2D polar histogram. Similar points have similar
histograms.

(d) The maxima of curvature scale space. Consist of the lo-
cations of the maxima of the CSS image, constructed by
evolving the contour of an object with successive Gaussian
smoothing.

Figure 3-1: Examples of the four most relevant contour-based shape descriptors.

3.2 Region Based Shape Description

Region-based methods (RBD) take all of the pixels within a shape region into consideration to

obtain the shape descriptor. They further divide into global and local region-based methods.

Global methods take the region as a whole during the calculation. Local methods divide the

region into smaller parts called primitives and then accumulate the results together at the

end. The most popular RBDs are different “moments” (regular moments, Zernike moments

(ZMD), Hu-moments), Angular Radial Transform (ART), and the popular Scale Invariance

Feature Transform (SIFT) descriptor (Lowe, 2004).
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In general, moments describe numeric quantities at some distance from a reference point or

axis. Regular moments, for instance, have simple transnational and scale-invariant prop-

erties. However, the basis (xp and yq) are not orthogonal, and therefore, regular moments

contain redundant information. All regular moments have the form:

Mpq =

∫ ∞
∞

∫ ∞
∞

xpyqf(x, y)dxdy, (3-4)

Where p and q are non-negative integers, and f(x, y) is the image function whose moments

we want to compute. In computer vision, f(x, y) is usually a binary image representing an

object segmentation.

Moments produced using orthogonal basis sets, like Zernike Moments (Khotanzad and Hong,

1990), better encode the information of the image and require lower computational precision

to the same accuracy. Zernike Moments are a set of orthogonal polynomials defined on the

unit disk. They have simple rotation and scale invariance, and higher accuracy for detailed

shapes. The basis for their computations are the polynomials:

Vnm = Rnm(ρ)ejmθ,with

Rm
n =


∑n−m/2

l=0
(−1)l(n−l)!

l![ 1
2

(n+m)−l]![ 1
2

(n−m)−l]!ρ
n−2l for n - m even

0 for n - m odd

(3-5)

Additionally, Hu-moments (Zhihu Huang and Jinsong Leng, 2010) are defined a set of 7

formulas, hi, that are basically a non-linear combination of regular moments. They exhibit

scale, rotation and translation invariant properties. e.g., h2 = (M20 −M02)2 + 4M2
11.

The Angular Radial Transform (Kim and Kim, 2000) (ART) is another moment-based de-

scriptor for both connected and disconnected shapes. The ART is a complex orthogonal,

unitary transform defined on a unit disk that consists of the complete orthogonal sinusoidal

basis functions in polar coordinates. The ART coefficients, Fnm of order n and m, are defined

as

Fnm =

∫ 2π

0

∫ 1

0

Vnm(ρ, θ)f(ρ, θ)ρdρdθ, (3-6)

Where f(ρ, θ) is the image in polar coordinates, and Vnm(ρ, θ) = Am(θ)Rn(θ) is the ART

basis. In order to achieve rotation invariance, an exponential function is used for the angular
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basis function. See equation 3-7. Real parts of basis functions are shown in Figure 3-2b.

Am(θ) = 1
2π
ejmθ

Rn =

 1 n = 0

2cos(πnρ) n 6= 0

(3-7)

A significant number of other contour-based approaches describing features of shapes exist

in the scientific literature. Examples of this work include Lowe’s (Lowe, 2004) SIFT for

RGB images, geometric metrics (area-perimeter ratio, roundness, Danielsson factor, etc.),

or 3DMatch (Zeng et al., 2016) for 3D data.

(a) The first 21 Zernike polynomials, ordered vertically by radial degree and horizontally
by azimuthal degree.

(b) Real parts of the The Angular Radial Transform basis functions.

Figure 3-2: Examples of two of the most relevant region-based shape descriptors.
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3.3 Graph Based Shape Description

In this section, we will explore description methods intended to represent the geometric

properties of the object as a graph. The main reasons for employing this methodology

are: 1) the fact that a graph representation is usually of lower dimensionality, and 2) that

most of the graph-based methods preserve the topology (genus) of the objects. Despite

the ambiguous definition of graph-based descriptors, graph-based usually means that the

features are computed from the Medial Axis Transform (MAT) of the object. The MAT,

also known as the topological skeleton, was defined by (Blum, 1967) as the set of all points

having more than one closest point on the object’s boundary. The MAT is usually presented

as tuples of the form (X, r). Where X ∈ Rn is the location of the skeleton point inside the

object, and r ∈ R+ is the radius of a ball centered on X. This representation allows the

reconstruction of the original object from its MAT.

A large number of shape descriptors have been proposed by exploiting the properties of

the MAT or re-defining its computation. There are three primary mechanisms to compute

the MAT, also called skeletonization techniques: 1) the layer by layer erosion (also called

thinning) method, 2) calculating the Voronoi diagram generated by the boundary points,

and 3) detecting ridges in distance map of the boundary points. In digital spaces, only an

approximation to the“true skeleton” can be extracted.

In the process of thinning to obtain the medial axis of an object, the points belonging to

its volume (or silhouette in 2D), are deleted from the outer boundary first and then pro-

ceeded inside until a single-pixel wide skeleton result. These methods are easy to implement;

however, they are not robust to isometries. Skeletonization by thinning can be expressed in

terms of morphological erosions and openings:

S(A) =
K⋃
k=0

Sk(A), with Sk =
K⋃
k=0

{(A	 kB)− [(A	 kB) ◦B]} (3-8)

Where B is a structuring element, (A	kB) indicates k successive erosions of A, and K is the

number of iterations required before A becomes an empty set. The most well-known algo-

rithm for thinning skeletonization is perhaps the Zhang Suen (Zhang and Suen, 1984) algo-

rithm; however, other approaches have been developed using similar principles (Viswanathan

et al., 2013). The skeletonization can fulfill both property requirements (i.e., the topological

and the geometrical) based on Voronoi diagrams. Nevertheless, this is an expensive process,

especially for large and complex objects.

Skeletonization can also be estimated by taking sample points on the contour of the object

and then compute the Voronoi Diagram (VD) of such points (Ogniewicz and Ilg, 1992). The

skeleton is then the intersection of the VD with the object itself. One disadvantage of this

method is that each additional vertex on the polygon adds a new skeletal branch. Thus, a
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(a) Medial Axis Transform Computation. (Left) a shape and
its boundary. (right) Medial Axis elements consisting of the
centers and radius of balls inscribed in the shape (Peters
and Ledoux, 2016)

(b) Computation of a Voronoi skeleton. The last step (bottom
right) shows some examples of spurious branches. Saha
et al. (2016)

(c) Skeletal context. This descriptor uses a similar formulation
as the shape context; using points from the contour that
depend on the branches of the medial axis (Xie et al., 2008). (d) 3D skeletonization example (Au et al., 2008)

Figure 3-3: Examples of computations of the Medial Axis Transform in 2D and 3D

suitable polygonal approximation of an object is crucial to generate the desired complexity

of the skeleton (Punam K. Saha and de Baja , Eds.).

The most common methods to extract the MAT are, however, those based on the distance

transform. In these methods, the skeleton is calculated as the ridges of the distance transform

inside the silhouette/volume of the object. Some authors refer to this approach as curve

evolution or grass fire transform since this process can be described as “setting a fire” on the

borders of an image region to yield descriptors such as the region’s skeleton or medial axis.

A factor that can limit the use of the skeleton in applications is its sensitivity to noise along

the object boundary (Beristain and Grana, 2010). Even negligible boundary noise can cause

spurious skeleton branches, so that skeleton pruning techniques are of interest. Effective

pruning techniques focus on different criteria for the evaluation of the significance of an

individual skeleton branch. Thus, the decision is whether to remove or keep the branch.

Clearly, branch removal by pruning modifies the skeleton in such a way that a smoother
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boundary characterizes the object represented by the pruned skeleton. A pruning process is

adequate if the resulting skeleton structure is noticeably simplified, but the above differences

are negligible for the specific application. Some authors address this issue by including

constraints while computing all the points that belong to the medial axis. Others do so by

removing branches that are considered useless according to criteria like the reconstruction

accuracy(Punam K. Saha and de Baja , Eds.; Gao et al., 2018; Hesselink and Roerdink,

2008).

Alone, it is difficult to use the Medial Axis Transform as a shape descriptor, because the num-

ber of tuples for each object might be different. It is, instead, considered a simplified shape

representation. Hence, many works have explored extracting a certain number of features

based on the MAT; and then using these as a descriptor for shape classification and shape

retrieval. Descriptors based on the MAT usually incorporate features from other method-

ologies not strictly associated with shape. One example is the Bag of Skeleton Paths (Shen

et al., 2014a). This descriptor is computed by pooling the skeleton paths connecting pairs of

endpoints in the skeleton, in a bag-of-words fashion. Another example is the Skeletal Con-

text (Xie et al., 2008), which is based on the well-known Shape Context discussed in section

3.1. Skeletal Context aims to build a histogram of points on the contour of the object, as

SC does, but not using a regular sampling of the contour of the object. Instead, it uses the

endpoints where the medial axis’s branches touch the contour. See figure 3-3c.

Ongoing research related to skeletonization is moving on two fronts in recent years. On

the one hand, the traditional approach of using a segmented silhouette of an object to

extract the skeleton has lost popularity compared to approaches that compute the skeleton

on natural-colored images with complex backgrounds (Tsogkas and Dickinson, 2017). On

the other hand, deep learning methods have been developed using geometric constraints and

reconstructions constraints into the loss function (Atienza, 2019; Wang et al., 2018). These

geometric constraints are direct applications of the medial axis properties discussed above.

3.4 Spectral Shape Analysis

Spectral shape analysis is a new but exciting field. It describes and compares geometric

shapes based on the spectrum (eigenvalues or eigenfunctions) of the Laplace–Beltrami op-

erator. The Laplace-Beltrami operator is the generalized form of the Laplacian operator ∆

sometimes denoted as (∇2). Like the Laplacian, the Laplace–Beltrami operator is defined

as the divergence of the gradient and is a linear operator taking functions into functions.

∆f = (∇.∇)f = ∇2f = div(∇f). (3-9)

Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is

well suited for the analysis of the shape of objects under arbitrary rotations, as well as
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for classification and retrieval of non-rigid shapes, i.e., bendable objects such as humans,

animals, plants, etc.

The spectral components of the Laplace-Beltrami operator can be computed by solving the

Helmholtz partial differential equation (or Laplacian eigenvalue problem):

(∇2 + λ)f = 0. (3-10)

The solutions are the eigenfunctions φi and eigenvalues λi of operator ∇. The structure of

the eigenfunctions depends on the geometry of the manifold, where the partial differential

equation is solved. For instance, for a sphere in 3D (S2), the eigenfunctions turn out to be

the spherical harmonics.

Geometric shapes are often represented as 2D curved surfaces, 2D surface meshes (usually

triangle meshes), or 3D solid objects (e.g., using voxels or tetrahedra meshes). The Helmholtz

equation can be discretely solved for all these cases. If a boundary exists, e.g., a square, or

the volume of any 3D geometric shape, boundary conditions need to be specified.

Several discretizations of the Laplace operator exist for the different types of geometry repre-

sentations. However, some of these operators do not approximate the underlying continuous

operator well enough and should be used carefully.

The recent interest of the scientific community in spectral analysis has resulted in a consider-

able number of spectral shape signatures that have been successfully applied to a broad range

of areas, including manifold learning (Belkin et al., 2006), object recognition and deformable

shape analysis (Pickup et al., 2016a; Li and Ben Hamza, 2013), medical imaging (Chaudhari

et al., 2014), and shape classification and retrieval (Gao et al., 2014). The diversified nature

of these applications demonstrates the practicality of spectral analysis.

The simplest, albeit still useful descriptor extracted from the Laplace-Beltrami operator is

called Shape-DNA (Reuter et al., 2006). Shape-DNA consist of using the cropped spectrum

containing only the first n eigenvalues. Assuming M to be a Riemannian Manifold with

metric h, Shape-DNA is defined as:

ShapeDNA(M, h) = [λ0, λ0, ..., λn−1]T , with λi ≤ λi+1 (3-11)

Its main advantages are its simple representation (a vector of numbers) and comparison, its

scale invariance, and its good performance for shape retrieval of non-rigid shapes, despite

its simplicity. There are several formulations of shape descriptors theoretically close to

ShapeDNA: singular values of Geodesic Distance Matrix (SD-GDM) (Smeets et al., 2009)

and Reduced Bi-Harmonic Distance Matrix (R-BiHDM) (Ye and Yu, 2015). However, the

eigenvalues are global descriptors, and therefore the shapeDNA and other global spectral

descriptors cannot be used for local or partial shape analysis.

The eigenfunctions of ∇2 can be used to perform shape analysis as well. The most common
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types of these shape descriptors are called Signatures. Notable examples in this family are the

heat kernel signature (HKS) (Sun et al., 2009) and the wave kernel signature (WKS) (Aubry

et al., 2011); however, other variations like Global point signature (GPS) (Rustamov, 2007),

Improved wave kernel signature (IWKS) (Limberger and Wilson, 2015), and Spectral graph

wavelet signature (SGWS) (Masoumi et al., 2016) also exist. HKS is based on the concept

of heat diffusion over a surface. Given an initial heat distribution u0(x) over the surface, the

heat kernel ht(x, y) relates the amount of heat transferred from x to y after t. The solution

to the diffusion equation:

∆u(x, t) = k
∂u(x, t)

∂t
(3-12)

Can be express in terms of the eigenvalues and eigenfunctions of ∆:

u(x, t) =

∫
ht(x, y)u0(y)dy (3-13)

with,

ht(x, y) =
∞∑
i=0

e−λitφi(x)φi(y) (3-14)

The heat kernel fully characterizes shapes up to an isometry and represents increasingly

global properties of the shape with increasing time. The constant k in equation 3-12 stands

for the material diffusivity.

Spectral shape analysis is still an emerging topic. Part of the ongoing research in this area

focuses on incorporate concepts from Deep Learning. Hence, some work has been done

on trying to shift the properties of the spectrum of the manifold of a shape into a Machine

Learning framework. The spectrum of different manifolds is, in general, different (eigenvalues

and eigenfunctions differ between shapes). Therefore, models like the one in (Litman and

Bronstein, 2014) propose to model the intrinsic information provided for the spectrum as a

sort of dictionary of basis b(λi). Generalizing equation 3-14, and re-writing it we can express

a spectral descriptor as:

p(x) =
∑
k≥1

f(λk)φ
2
k(x) =

∑
k≥1

Ab(λk)φ
2
k(x) = Ag(x) (3-15)

Where gj(x) =
∑

k≥1 bj(λk)φ
2
k(x) stores all the geometric information generalized across a

dictionary of functions of an m >> n number of frequencies b = {bj(λ), ..., bm(λ)}. Equation
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(a) A 3D shape (left) and its six first eigenfunctions plotted over it. Taken from (Wachinger et al.,
2016).

(b) Robustness of the WKS: The red lines connect a reference point in the background (standing
David) with its 50 best matches on the perturbed shape in the foreground. The color encodes the
feature distance to the reference point, blue = short distance, red = large distance in the feature
space.

Figure 3-4: Examples of how the eigenfunctions look when plotted on the shape manifold (left).
The WKS descriptor used for point correspondence (right).

3-15 leads to the formulation of the cost function

d2 = ||p− p′||2 = ||A(g − g′)||2 = (g − g′)TATA(g − g′), (3-16)

that is suitable for a machine learning approach. The matrix ATA contains the weights to

be learned while minimizing d2. A represents the coefficients of the response to any of the
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frequencies in b.

In the next section, we will discuss more recent shape descriptors based on machine learning

and deep learning. Some of these descriptors also incorporate concepts from spectral shape

analysis.

3.5 Learned Shape Features

Deep Learning has an astonishing impact in science and modern life. Deep Learning ap-

proaches have a wide variety of applications across numerous fields. Thus, it is unsurprising

that Shape Analysis is one of the fields in which Deep Learning has an impact.

There are many learned models for 3D shapes expressed as point clouds (Qi et al., 2017a), or

triangular meshes (Kulon et al., 2019), but very few for 2D shape analysis. In Atabay (2017),

the authors present an interesting comparison of several CCN models used for binary Shape

Classification. This paper shows that CNN’s models have competitive, and many times

higher, performance compared with hand-crafted features over the most common binary

shape dataset (e.g., Animal Dataset, MPEG7, ModelNet (Zhirong Wu et al., 2015), and

ShapeNet (Chang et al., 2015)).

The goal of Deep Learning for Shape Description is to let a machine learning system to learn

the filters/models that offer a useful response to the geometry of an object. Also, learned

descriptors should have the capacity to generalize through different shapes, so that only a

single model needs to be trained.

Despite the high accuracy achieved by these studies, a few challenges remain open problems

in computer vision. Perhaps the most notorious one is the inability of CNN’s to properly

response to natural rotations of the object. CNN’s are not invariant to rotations (Chui et al.,

2019). This is an especially difficult problem in 3D, when dealing with arbitrary rotations on

the rotation mathematical group SO(3) (Esteves et al., 2018a). Some authors have developed

exciting approaches where good accuracy is achieved in the presence of arbitrary rotations.

Most of them, however, use very large deep learning models, which lead to the discussion of

how much the network is learning or memorizing a subset of all the possible rotations.

Grid-based approaches to Learned Shaped descriptions are the most straightforward way to

use deep learning for shape analysis. In this sense, a CNN is applied to the image or volume,

hoping that the network will learn characteristic enough features of the geometry of the

objects in the dataset (Maturana and Scherer, 2015; Wang et al., 2019a). These approaches

are simple; however, they also suffer from lack of rotation invariance and are computationally

expensive because they depend exponentially on the tessellation of the object. The finer the

grid is, the more complex and time consuming the computations are.

Multiview CNN (MVCNN) (Su et al., 2015; Feng et al., 2018) are perhaps the most represen-

tative deep learning model for 3D shape classification that suffers from the stated rotation

non-invariant problem. MVCNN, in essence, train a CNN on a large set of rendered views

of the object (usually between 12 and 80 views). These views are passed through a regular
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(a) In the log-polar representation, rotations around the ori-
gin become vertical shifts, and dilations around the origin
become horizontal shifts (Esteves et al., 2018b).

(b) VoxNet architecture. The network voxelize the object’s
point cloud in order to apply 3D convolutions on a regular
grid.

(c) Multiview CNN depicting the process of view rendering, and how each view is processed indepen-
dently by a CNN before pooling into the final features vector (Su et al., 2015).

(d) Spherical CNNs. (Left) A 3D object. (Center) The projection of the 3D object into a spherical
function. (Right) Spherical features learned by the neural network.

Figure 3-5: Examples of learned features describing different methods to achieve rotation equiv-
ariance using machine learning approaches.

CNN, then pooled together, and finally passed through a fully connected network to produce

the final features for classification. MVCNN has over 99 million parameters. This makes it

hard to train and also poses the “memorizing problem” discussed above.
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A solution to this problem is to create equivariant CNN models where the learned features of

a rotated object are the rotated features of the original one. Recall equation 2-1). Spherical

CNNs (Cohen et al., 2018; Esteves et al., 2018a) are one example of equivariance networks.

The main idea behind them is to represent 3D objects as functions on the sphere, and then

run a series of convolution layers on such representation. Due to the non-euclidean geometry

of the sphere, the convolutions are computed not with a fast sliding window approach, but

with spherical convolutions in the Fourier domain via spherical harmonics.

Polar Transformer Network (Esteves et al., 2018b) offers a solution to the rotation invariance

problem in 2D. This type of CNN learns the transformation between a 2D image into a polar

image. In log-polar coordinates, a rotation of the original object becomes a translation; and

then, a regular CNN learns the features of the object. Regular CNN’s are equivariant to

translations by design due to the well-known properties of convolutions.

Dealing with non-rigid transformation in shapes is also a central problem in computer vision.

Most shape descriptors, however, are only invariant up to isometries. Thus, changes in the

object geometry like articulations or general changes due to movement or ‘èvolution” of the

object are not covered. Nevertheless, there are some exceptions. Graph-based descriptors are

invariant to articulations due to the graph structure that models the joints (Pickup et al.,

2016b). Spectral shape descriptors offer some degree of invariance to small deformation

as long as they are locally enough. This means that if the deformation occurs in a small

neighborhood of a point where the manifold of the object does not change abruptly, the

descriptor remains relatively stable.

As a consequence, a subset of learned shape analysis is conducted by integrating ideas from

graph-based and spectral techniques into a machine learning pipeline. This is due by engi-

neering loss functions that take into account the graph representation of the object Pumarola

et al. (2018), or by incorporating the spectral analysis into the process of learning the filters

on the shape manifold (Laga, 2018; Litany et al., 2018). A summary of learned approaches

to shape analysis is shown in figure 3-5.



4 Shape Description Based on the

Isometric Invariances of Topological

Skeletonization

4.1 Overview of the Stated Problem

In this dissertation, we study the problem of describing the shape of an object in 2D and

3D with a set of features invariant to isometric transformations, particularly rotations. We

focus our approach on the well-known Medial Axis Transform (MAT) and its topological

properties. A set of experiments conducted on popular datasets was performed to highlight

how our descriptor behaves compared with state-of-the-art approaches.

We aim to study two problems. The first problem: how to find a shape representation

of a segmented object that exhibits rotation, translation, and reflection invariance. The

second problem: how to build a machine learning pipeline that uses the isometric invariance

of the shape representation to do both classification and retrieval. Our proposed solution

demonstrates competitive results compared to state-of-the-art approaches.

We base our descriptor on the MAT, sometimes called a topological skeleton. Accepted and

well-studied properties of the medial axis include (Bernard and Manzanera, 1999):

Homotopy skeletons must preserve the topology of the original shapes/images.

One-pixel thickness skeletons should be made of one-pixel thick lines.

Mediality they should be positioned in the middle of shapes (with all skeleton points having

the same distance from two closest points on object boundary).

Rotation invariance in discrete spaces, this can only be satisfied for rotation angles, which

are multiples of π
2

but should be approximately satisfied for other angles.

Noise immunity skeletons should be insensitive to shape-boundary noise.

Reconstruction one should be capable of reconstructing the original object from the skele-

ton.
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These properties make the MAT a suitable input to create a shape descriptor; however,

several problems arise because not all skeletonization methods satisfy all of these properties

at the same time. In general, skeletons based on thinning approaches preserve topology but

are noise sensitive and do not allow for proper reconstruction of the original shape. These

skeletons are also not invariant to rotations.

Voronoi skeletons also preserve topology and are rotation invariant, but do not include

information about the thickness of the object, which makes reconstruction impossible. The

Voronoi skeleton is an approximation of the real skeleton. The denser the sampling of the

boundary, the better the approximation; however, a denser sampling makes the Voronoi

diagram more computationally expensive.

In contrast, distance transform methods allow the reconstruction of the original object by

providing the distance from every pixel in the skeleton to the boundary. Moreover, they

exhibit an acceptable degree of the MAT properties listed above, but noise sensitivity remains

an issue. Given this information, we selected distance transform medial axis methods as our

skeletonization strategy and focused on creating a new noise-free approach to solve the

contour noise problem.

Most skeletonization methods produce a skeleton that contains many more branches than

desired, which can occur for several reasons. The most common reason is border noise,

where every little protrusion gives rise to a skeletal branch. Unwanted parts of the skeleton

are called spurious branches. Many skeletonization methods deal with spurious branches

through the process of pruning, where the spurious branches are removed. In those cases,

what defines a spurious part must be determined either while computing the skeleton or as

a post-processing step.

To effectively classify an object, or perform any other task with features based on the object

shape, the descriptor needs to be a normalized, compact form: a map Φ that take every

shape Ω to the same vector space Rn. This is not possible with skeletonization methods

because the skeletons of different objects have different numbers of branches and different

numbers of points, even when they belong to the same category. Consequently, we developed

a strategy to extract features from the skeleton through the map Φ, which we used as an

input to a machine learning approach.

In this study, we sought to design an isometric invariant shape descriptor through robust

skeletonization enforced by a feature extraction pipeline that exploits such invariance through

a machine learning methodology. We conducted a set of classification and retrieval experi-

ments over well-known benchmarks to validate our proposed method.
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4.2 Methodology Design

4.2.1 Robust Skeletonization

Spurious branches in the MAT are generally associated with noise in the contour. Even small

perturbation can cause a new branch to appear. Spurious branches create an erroneous

underlying structure of the object (Figure 4-1). We refer to any method that outputs a

consistent skeleton in the presence of several degrees of noise: “robust skeletonization”.

One strategy for removal of spurious branches consists of directly smoothing the shape (Rumpf

and Preusser, 2002; Mokhtarian and Mackworth, 1992), which results in a MAT with less

noise. The filtered skeleton of the unfiltered shape is later defined as the unfiltered skeleton

of the filtered shape. The main drawback of this approach is that, in most cases, the result-

ing medial axis is not a good approximation of the real medial axis (RMA). Additionally,

the smoothing procedure can potentially change the topology of the shape resulting in a

different skeleton. Miklos Miklos et al. (2010) introduced a slightly different approach with

the Scaled Axis Transform (SAT). The SAT involves applying a scale transformation to the

distance map and computing the unfiltered medial axis of the resulting reconstructed shape.

In (Postolski et al., 2014), the authors highlighted the fact that the Scale Axis Transform is

not necessarily a subset of the original shape, and went beyond Miklos’ work to propose a

solution that guarantees a better approximation of the RMA.

Figure 4-1: Spurious branch in medial axis. A new whole branch appear (right), even when a
small perturbation of the contour (left).

One of the most popular solutions to spurious branches (Couprie et al., 2007) considered the

angle formed by a point p ∈ Ω, and its two closest boundary points ΠΩ(x), called the distance

transform of p. This solution removes skeleton points for which this angle is lower than a

fixed threshold. This criterion allows different scales within a shape but generally leads

to an unconnected medial axis. Some modifications to his approach have been proposed.
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In (Hesselink and Roerdink, 2008), the authors introduced the Gamma γ-Integer Medial

Axis (GIMA), where a point belongs to the skeleton if the distance between its two closest

boundary points is at least equal to γ.

All the work mentioned above is based on the distance transform DΩ(x). The distance

transform acts as a generator function for the medial axis, such that points p ∈MAT if and

only if they satisfy some constraint involving their distance to the boundary. However, by

itself, the distance transform poses some problems because it usually contains discontinuities.

See figure 4-2. As a result, some studies focus on extracting alternative generator functions.

An example is (Gorelick et al., 2006), where they proposed to estimating DΩ(x) as the

solutions of the Poisson equation

∆u(x) = −1. (4-1)

Later, (Aubert and Aujol, 2014) formalized the concept of the Poisson Skeleton and provided

the details of a skeletonization algorithm based on this principle. Poisson skeletons rely on

a solid mathematical formulation. Among other concepts, they use the local minimums and

maximums of the curvature of δΩ. However, when such methodology is applied in a discrete

environment, many spurious branches appear due to the need to define the length of a kernel

size to estimate these local extreme points.

Figure 4-2: Distance transform discontinuities. The image in the left shows the Euclidean distance
of each point to the contour of the object. Notice how some discontinuities appear
near the areas where the level sets change curvature. The image on the right shows an
at least twice differentiable approximation of u using Gorelick et al. (2006) approach.

In contrast to the studies mentioned above, we propose a method to prune the medial axis and

free it from as many spurious branches as possible without compromising the reconstruction
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property. Our method must preserve the topology and connectivity of the original object

while maintaining its equivariance to isometric transformations.

Let Ω be an n-dimensional closed shape with a boundary δΩ. We propose a new pruning

approach to robust skeletonization by filtering the MAT of Ω with a score function FΩ(X) :

N2 7→ R+. The function FΩ acts as an indication of the relevance of point X in the real

skeleton of Ω. We define FΩ as the average of a set of estimation of the MAT over smoothed

versions Ω̂ of the original object. Intuitively, FΩ acts as a sort of probability of how likely it

is for a point X to belong to the real skeleton of Ω. The real skeleton branches will regularly

appear in the skeletons resulting in high values of the score function. In contrast, spurious

branches will only appear occasionally, resulting in low values.

To create the set of medial axis from the smoothed boundary, we used the Discrete Cosine

Transform (DCT). The DCT in two dimensions has the form:

Cu =


1√
2

if u = 0

1 otherwise

Cv = (Similar to above)

F(u, v) =
1

4
CuCv

N−1∑
x=0

M−1∑
y=0

I(x, y)cos

(
uπ

2x+ 1

2N

)
cos

(
vπ

2y + 1

2M

)
Where (u, v) are the frequency coordinates in the frequency domain.

The DCT is closely related to the discrete Fourier transform of real valued-functions. The

DCT, however, has better energy compaction properties, with just a few of the transform co-

efficients representing the majority of the energy in the sequence. Multidimensional variants

of the various DCT types follow straightforwardly from the one-dimensional definitions: they

are simply a separable product (equivalently, a composition) of DCTs along each dimension.

Mathematically, the DCT is perfectly reversible and does not lose any image information.

To rebuild an image in the spatial domain from the frequencies obtained above, we use the

IDCT:

I(x, y) =
1

4

N−1∑
u=0

N−1∑
v=0

CuCvF(u, v)cos

(
uπ

2x+ 1

2N

)
cos

(
vπ

2y + 1

2N

)
. (4-2)

For the n-dimensional DCT we will use the notation I(X), with X ∈ Rn, instead of I(x, y).

Additionally, we denote Î(M) as the reconstructed version of I using only the first M fre-

quencies of the DCT in equation 4-2, with M < N . Now, we are ready to define our pruning

strategy based on these concepts.
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We define the Cosine-Pruned Medial Axis (CPMA) as a pruned version of the MAT of

a shape Ω. The CPMA(Ω) consist of all the pairs (X, r) ∈ MAT(Ω) such that the score

function evaluated on X is greater than a threshold τ . e.g. FΩ(X) > τ . The score function

is defined as

FΩ(X) =
1

M

M∑
i=1

[MAT(Î(i))](X). (4-3)

The value of τ was determined empirically; however, we conducted an additional set of

experiments to show how sensitive the CPMA is to different values of the threshold.

Although the CPMA results in a noise-free medial axis, its definition also allows disconnected

skeletons. There is no restriction in its formulation to force individual elements of the CPMA

to create a connected skeleton. We solved this issue by finding individual disconnected pieces

of the CPMA and representing each piece as a graph. Later, we connect them using a geodesic

distance g(ni, nj) inside Ω, where ni and nj where are nodes of two distinct pieces. However,

the geodesic distance can lead to a connection between nodes that do not follow the medial

axis (See figure 4-3). To address this, we instead compute the minimum energy distance

between n1 and n2 using the inverse score function as energy field, EΩ = 1 − FΩ. Because

FΩ is bounded on the interval [0, 1], we guaranty that EΩ(X) will have higher values as

X is close to δΩ, and lower values when X is close to the centerline of the object, hence

forcing the paths to be close to the MAT. We call the result of connecting all the pieces the

Connected CPMA.

In the next chapter, we will offer additional details about our method for robust skeletoniza-

tion. We will present the implementation details of the concepts described above, as well as

the algorithms and experiment results to support our claims.

4.2.2 Design of a Skeleton-Based Shape Descriptor

In this subsection, we describe the feature extraction mechanism to map the skeleton-based

features discussed above to a set features φ. We also describe the machine learning pipeline

that takes φ as input and processes it to do both shape classification and retrieval. We will

also show how the selected machine learning architecture preserves the invariant properties

of the skeleton of the shape.

To extract a set of features from the skeleton representation of Ω through the use of the

Chordiogram defined by Toshev (2011). The chordiogram is a rotation and translation

invariant shape descriptor capturing global geometric relationships between elements of the

object boundary. To define the chordiogram, consider a pair of boundary edges p and q from

δΩ. We will call such a pair (p, q) a chord. One can define various features that describe

the geometry of the chord, which we will denote by fpq ∈ Rd, as we will see in chapter 6.

The chordiogram is defined as the k-dimensional histogram of fpq over all the chords. By
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Figure 4-3: Path connectivity between CPMA segments. When using the euclidean distance
(left), two nodes could connect through a path that is not entirely contained inside
the object Ω. The minimum geodesic distance (center) guarantees that the path will
be inside the object, but does not follow the centerline. The minimum energy distance
with FΩ as the energy field is the best alternatives and forces the path to follow the
medial axis.

carefully defining fpq, and because isometric transformations are equally applied to all points

in the object, the chordiogram is able to capture the invariant properties of Ω. e.g., if we

set f 0
pq as the euclidean distance between p and q, and set R as a rotation around the origin

of coordinates; then we have that

||Rp−Rq|| = ||R(p− q)|| =
√

(p− q)TRTR(p− q) = (p− q)T (p− q) = ||p− q||, (4-4)

Because R is a unitary matrix. Figure 4-4 shows how the chords are formed on a 2D shape.

Two problems quickly arise from the definition of the chordiogram. First, the chordiogram

depends on the relationships of pairs of points in the boundary, and then it needs a dense sam-

pling to cover all the geometry of the object properly. Moreover, a dense sampling, such as n

points sampled from δΩ, leads to a significantly large number of chords, #chords = n(n−1).

This number quickly becomes intractable even for up-to-date computational resources, es-

pecially in the 3D case. With a small n, the risk is not to have enough representative points

from the contour to capture its geometric properties.

The second problem is the noise of the boundary. As in the case of the medial axis, boundary

noise can cause variation of the final computation of the chordiogram. In this case, the noise is

represented as jittering on the ends of the chords, slightly changing their features. Although
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Figure 4-4: Computation of individual chord in the chordiogram. Images a), b) c) shows examples
of different chords from point pairs (p1, q1) and (p2, q2), an some of the properties that
can extracted from them.

a good machine learning approach acting on a set of features should be robust to these types

of artifacts in the data, this effect should be minimized.

To deal with sampling and boundary jittering problems, we will use results from subsection

4.2.1. After computing the CPMA of Ω, we use it to extract chords from the joints of the

skeleton, not from the boundary points. This is done to 1) reduce the total number of chords

representing the object. Notice that the chords computed over the skeleton maintain the

isometric invariances discussed in subsection 4.2.1.

Convolutional neural networks have shown that jointly optimizing feature extraction and

classification pipelines can significantly improve object recognition (Lecun et al., 1998; Krizhevsky

et al., 2012). Applying CNNs for shape analysis, however, is not as straightforward as one

might think. CNN learning strategy is based on learning a set of features that are applied

to the input as convolution filters. These mechanisms benefit from uniform grid structures

of images in 2D, where convolutions can be computed via sliding windows; however, shape

information is stored in different ways. In 2D, the segmented mask of a shape is a binary
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image where there is not enough photometric variation in the image for the filters to learn

useful features. Therefore, more preferable formats are used to obtain the shape information,

e.g., a sample point cloud from the contour of the object. This strategy is especially useful

in 3D, where information is typically represented as a point cloud or 3D triangular mesh.

For this reason, we chose to use PointNets (Qi et al., 2017a,b) as the machine learning model

for our experiments. PointNets are deep learning architectures that directly consume raw

point clouds without converting them to other formats. They have been applied to single

object classification and semantic segmentation. Additionally, one of the key design aspects

of PointNets is their invariance to permutations of the input points, which facilitates the

learning process in datasets of objects coming from different sensors, resolutions of scales.

We combined our skeleton-based approach with the most recent and widely used architecture

(PointNet++ arch (Qi et al., 2017b)). We did this by setting the list of N chords computed

from the skeleton of Ω as input for the neural network. The model determined by

Ŷ = Lθ(X) (4-5)

Where θ is the parameter vector to train, and X ∈ RN×K is a list of N chords each one

with K features. The network was trained using the classification cross-entropy as the loss

function. After training, the learned latent space, the layer before the fully-connected part

of the network, was used as a feature vector for retrieval.

In the next section, we will describe the experimental setup that was used to evaluate our

proposed method.

4.3 Experimental setup

In this section, we explain in detail the experimental framework we used to evaluate the

proposed descriptor. As we described in section 4.2, our approach to solve the stated problem

has two main components: 1) a skeleton computation method that is robust to spurious

branches; especially those coming from the noise in the contour of the object, and 2) the

design of shape classification architecture based on features extracted from the topological

skeleton. Thus, we designed a series of experiments to test each component of our solution

in comparison to the state-of-the-art. We performed our experiments on available datasets

of 2D silhouettes and 3D models in mesh format. Additionally, we employed well-known

metrics to assess the main properties of our solution.

4.3.1 Datasets

We chose five extensively used datasets of 2D and 3D data to evaluate our methodology on

skeletonization robustness, classification, and retrieval accuracy. These datasets are part of
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the accepted benchmarks in literature, which enabled us to compare our results to previous

work.

Kimia216 In our comparative study, we used the Kimia-216 shape dataset (Sebastian et al.,

2004) to test skeletonization robustness. It consists of 18 classes of different shapes with 12

samples in each class. The images in the dataset represent a collection of slightly different

views of a set of shapes with different topologies. Contour noise and random rotations are

also present in some of the images in the dataset. Kimia216 has been largely used to test a

wide range of skeletonization algorithms. Because of this, and the large variety of shapes, we

assumed that this benchmark ensured a fair comparison with the state-of-the-art regarding

skeletonization methods. Figure 4-5 shows two samples from each class.

Figure 4-5: Kimia 216 dataset: Two samples shapes from each class.

Animal Dataset We used the Animal2000 (Bai et al., 2009) dataset to evaluate the perfor-

mance of our skeleton representation with respect to articulations of the object; as a way to

show the benefits of our proposed skeletonization method when facing non-rigid transforma-

tions. The Animal2000 database has 2000 images of 20 categories; each category consists of

100 images (Figure 4-6). Because silhouettes in Animal2000 were obtained from real images,

each class is characterized by a large intra-class variation in shape.

MPEG7 We also experimented on the MPEG-7 CE-Shape 1 part B dataset (Latecki and

Lakamper, 2000). This dataset is commonly used for the evaluation of shape-based clas-

sification and retrieval. It consists of 1400 binary object masks representing 70 different

classes, each class including 20 examples. The metric employed to evaluate results on this

dataset is the Bull’s eye score: each shape is matched to all shapes, and the percentage of

the 20 possible correct matches among the top 40 matches is recorded. The Bull’s score is

the average percentage of overall shapes. See Figure 4-7.
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Figure 4-6: Sample shapes from Animal2000 database.

Figure 4-7: Examples from MPEG7 dataset: One sample from each category is shown.

ModelNet The main 3D dataset we used in this study is the well-known Princeton ModelNet-

40 large-scale 3D CAD model dataset (Zhirong Wu et al., 2015). ModelNet-40 comprises

12.311 CAD models split into 40 categories. Additionally, the dataset splits into training

and testing subsets containing 9843 and 2468 models, respectively. The models have been

manually cleaned and normalized to fit into a unit sphere. ModelNet40 is often used as

the benchmark for 3D shape recognition, shape classification and shape retrieval tasks (Qi

et al., 2017a; Su et al., 2015); for this reason, it is suitable to evaluate the accuracy of the

classification methodology developed in this dissertation. A rendered example from some

categories can be referenced in Figure 4-8.
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Figure 4-8: ModelNet-40 dataset: Rendered images from some of the 40 classes are shown in
arbitrary poses.

University of Groningen Skeletonization Benchmark This set is commonly found in the

literature to evaluate skeletonization methods in 3D (Sobiecki et al., 2014, 2013; Chaussard

et al., 2011). It includes natural as well as synthetic shapes taken from other popular

datasets. It includs shapes with and without (multiple) holes, of varying thickness, and

with smooth and noisy boundaries. Shapes are provided in PLY triangle mesh format1.

All meshes have been cleaned to ensure a consistent orientation, closeness, no duplicate or

T vertices, and no degenerate faces. Each file describes a single connected shape. Mesh

resolutions range between a few thousand vertices and over a million vertices. See Figure

4-9.

4.3.2 Skeletonization Sensitivity Analysis

In order to compare the robustness of any skeletonization method, we adopted an evaluation

strategy similar to the one presented in (Chaussard et al., 2011). Consequently, we measured

the similarity between the medial axis of a shape Ω and the one of shape Ω′ derived from

a “perturbation” of Ω. We were interested in evaluating how well our methodology would

respond to the induced noise of the contour/surface of the object, which is a well-understood

cause of spurious branches. We were also interested in assessing how stable the medial axis

1http://www.cs.rug.nl/svcg/Shapes/SkelBenchmark
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Figure 4-9: Groningen Skeletonization Benchmark: Examples of some of the in the dataset.

is in the presence of rotations to test for invariance to this isometric transformation.

As for similarity metrics, we employed the Hausdorff distance (dH), and Dubuisson-Jain dis-

similarity (dD). The Dubuisson-Jain similarity is essentially a normalization of the Hausdorff

distance using the size of the set involved in the computation (Dubuisson and Jain, 2002),

to help to overcome dH sensitivity to outliers. The Dubuisson-Jain similarity is defined as

dD(X, Y ) = max {D(X|Y ), D(Y |X)} , (4-6)

with

D(X|Y ) =
1

|X|
∑
x∈X

min
y∈Y
{d(x, y)} . (4-7)

To evaluate the noise sensitivity, we must first choose a strategy to induce noise to the bound-

ary of the object. We used a stochastic approach where a point p and its neighbors N(p)

are deformed by a vector v in the direction orthogonal to the boundary, and a deformation

magnitude normally distributed, |v| ∼ N (µ = p, σ = 1).

This noise model is recurrently applied n time to every shape in our datasets. We denote as

MATi(Ω) the medial axis of a shape Ω after applying the noise model i times. To determine

how invariant a particular skeletonization method is to boundary noise, we compared the

original medial axis MAT(Ω) with the noisy version of it MATi(Ω) using both similarity
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metrics. We use similarity over all the elements in the dataset as the measurement of the

invariance of the skeletonization method.

Regarding rotation sensitivity, the medial axis is ideally a rotation-invariant shape descriptor

so that MA(R(Ω)) = R(MA(Ω)). See equation 2-2. Due to sampling factors, this relationship

is merely an approximation. However, we can measure how “invariant” a medial axis is by

comparing MAT(R(Ω)) with R(MAT(Ω)) for different objects, and different definitions of

the medial axis. The more similar they are, on average, the more invariant the skeletonization

method is at computing the medial axis.

Rotations range from 0 degrees to 90 degrees counterclockwise around the origin for 2D

objects in our experiments. In 3D, we used a combination of azimuthal (θ = [0, π
2
]) and

elevation (φ = [0, π
2
]) rotations around the origin, so that the final rotation matrix is:

R = Raz(θ)Rel(φ) (4-8)

Both the noise sensitivity and the rotation sensitivity tests were conducted on Kimia’s and

Animal2000 datasets in 2D. For the 3D case, we usesd the Groningen Skeletonization Bench-

mark.

4.3.3 Shape Classification and Retrieval

One of the goals of this dissertation is to tackle the problem of invariance to isometric trans-

formation. We, therefore, focused our experiments on problems that benefit from such invari-

ance, namely, shape classification and retrieval in arbitrary orientations. We conducted shape

classification and shape retrieval experiments on the MPEG7 and ModelNet-40 datasets to

show the performance of our methodology.

The per-instance accuracy is the most common metric used to assess the performance of

the classification. By using accuracy, we were able to compare our results with state-of-

the-art methods. These methods will be discussed in detail in the next chapters. For

the classification, we used ModelNet-40 due to a well-established classification benchmark

associated with this dataset. Unlike the benchmark, we considered three experimental modes

to highlight the advantage of our classification pipeline most effectively. The three modes

include (1) training and testing with azimuthal rotations (z/z), (2) training and testing

with arbitrary rotations (SO(3)/SO(3)), and (3) training with azimuthal and testing with

arbitrary rotations (z/SO(3)).

We used the MPEG7 dataset for our retrieval experiments. In literature, the retrieval rate

for this dataset is measured by the so-called Bull’s Eye score. Every shape in the database is

compared to all other shapes, and the number of shapes from the same class among the 40

most similar ones is reported. The Bull’s Eye retrieval rate is the ratio of the total number

of shapes from the same class to the highest possible number (which is 20 x 1400). Thus,
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the best possible rate is 1:

BS =
D40

P
. (4-9)

Where D40 is the total sum of correct retrieval instances out of the 40 most similar objects,

and P = 20× 1400 is the total possible outcome.

Results of the BS computed on ModelNet40 and classification accuracy on MPEG7 dataset

will also be reported and discussed in the following chapters. However, because the bench-

marks of the datasets do not use these alternative metrics, it is not possible to show com-

parative results.

4.4 Limitations

The goal of this research is to study skeleton-based shape description in detail. We aim to

explore the properties that make topological skeletons adequate to approach the problem of

isometric-invariant shape representation. Despite the long list of classification and retrieval

approaches that use a wide range of features inherent to the objects, we are only interested

in their shape. Therefore, no photometric or texture information was used in this study.

Consequently, the selected datasets only contain information about the geometry of the

objects in the form of pre-segmented silhouettes in the 2D case, or triangular meshes without

texture in the case of 3D models.

Additionally, in this study, we are interested in exploring isometric invariances and equiv-

ariances in shape analysis. For that purpose, we create a classification pipeline based on a

deep learning model. Because we do not aim to explore the best deep architecture to classify

shapes, we set PointNet++ as our machine learning model. However, we acknowledge that

other approaches exist and should be fairly compared with our results.

Although in chapter 1, we discussed a few applications fields where shape analysis has an

impact; we do not aim to present any applications of the research problem of this dissertation.

This work is limited to assess the performance of the new proposed descriptor in comparison

to well-established datasets and benchmarks in the scientific literature.

In this chapter, we defined the employed methodology for this research by describing the two

key elements of this work: 1) robust skeletonization and 2) design of classification pipeline

based on topological features. In the next chapters, we will further detail both elements and

provide a detailed explanation of the experiments conducted and their results.
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In this chapter, we address the problem of spurious branch removal. Spurious branches in

the MAT are associated with noise in the contour. Even a small perturbation can cause

a new branch to appear. To address this challenge, we developed a method that produces

a consistent skeleton in the presence of several degrees of noise, and show the results of

the experiments designed to prove our robust skeletonization. We conducted additional

experiments to demonstrate how our method, the CPMA, exhibits equivariance to isometric

transformations.

5.1 The Cosine-Pruned Medial Axis

The Cosine-Pruned Medial Axis is defined as a pruned version of the MAT of a shape Ω.

The computation of the CPMA starts with the estimation of the Discrete Cosine Transform

(DCT (Ω)). We can reconstruct the original object from the DCT using a truncated number

of frequencies M . We repeat this process several times, increasing the value of i each time.

By using this method, we assure that each reconstruction is a smooth version of the original

object. Each smooth reconstruction is expected to have a skeleton with less spurious branches

than the original while still maintaining the skeletal structure.

After computing a set of reconstructions S =
{
I(i)
}

for i = 1, 2, ...,M ; we aggregate all of

them to create a score function using equation 4-3, and denote it FΩ . Later, the CPMA is

the result of thresholding FΩ with the parameter τ .

From the above description, it is possible to see how the CPMA can result in a disconnected

skeleton. Despite the fact that the CPMA is invariant to contour noise, the connectivity

property is necessary to ensure that the topology of the original object is preserved. For

this reason, we enforce such connectivity by iteratively connecting the individual parts of

the CPMA through a minimum energy path approach. We will refer to this result as the

CPMA + connectivity.

In the following sections, we summarize the implementation issues encountered while imple-

menting our methodology. We also offer proof of the isometric equivariance of the CPMA.

5.1.1 Implementation details

In this section, we discuss the algorithms that we used to implement the CPMA and the

CPMA + connectivity efficiently. We also discuss their complexity and hyper-parameter
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selection.

We based our code in python programming language due to its simplicity, the vast number

of libraries available, and the popularity in the scientific community for academic projects,

particularly in machine learning.

The CPMA only relies on one parameter, τ . The value of τ is a threshold to determine

whether a point of FΩ is a skeleton point. The value of τ was defined empirically to be

τ = 0.5; however, we conducted an additional experiment to show how sensitive the CPMA

is to different values of the threshold. This experiment will be described later in subsection

5.2.4.

Another important consideration to take into account when computing the CPMA is the

number of frequencies employed on the reconstruction of the original object through the

DCT. We found that using frequencies greater than N
2

does not yield significant improvement

for the CPMA. Here, all of the objects are enclosed in square images or cubic volumes with

side N in length.

Finally, we describe the implementation issues of connectivity enforcement. We connect the

different pieces of the raw CPMA through the minimum energy path, as stated in chapter

4. To do so, we create a lattice graph G ∈ Zn. A point p representing a pixel or a voxel, is

a node of G, if and only if p ∈ Ω. The node p shares an edge with every one of its neighbors

in the lattice if they are inside Ω. We used an 8-connectivity neighborhood in 2D and a

26-connectivity neighborhood in 3D.

To determine the minimum energy path between pairs of pixels/voxels with this methodology,

we compute the minimum path in the graph using Dijkstra’s algorithm. The weights of each

edge are the average of two neighboring values EΩ, e.g.

weight(ex,y) = 0.5(E(x) + E(y)).

This method guarantees the connectivity, but it is inefficient because it is based on an

iterative computation of the minimum energy path. We sacrifice performance in favor of

connectivity. The algorithm for the computation of the CPMA is presented in detail in

algorithm 1. Additionally, the connectivity enforcement procedure is explained in algorithm

2.

5.1.2 Isometric Equivariance of the CPMA

Because distance transform-based skeletons depend only on the shape Ω, and not on the

position or size in the embedding space, skeletons should be equivariant under isometric

transformations R of Ω, i.e., MAT(R(Ω)) = R(MAT(Ω)). To prove this equivariance, we

start from the definition of the MAT
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Figure 5-1: Score Function illustrative example. The images show from left to right the recon-
structed object Ω, the score function FΩ and the real medial axis of Ω. The first
row shows the FΩ computed with reconstructions up to only M1 of the first frequen-
cies. The second row shows FΩ computed with reconstructions up to M2 of the first
frequencies. M2 > M1.

MAT(Ω) = {(X, r) | X ∈ Ω ∧Br(X) 6* Br′(X
′), ∀r′ > r,X ′ ∈ Ω} ,

where Br(X) is closed ball centered in X with radius r. If we apply an isometric transfor-

mation R on MAT(Ω) we obtain

R(MAT(Ω)) = {(R(X), r) | X ∈ Ω ∧Br(X) 6* Br′(X
′),∀r′ > r,X ′ ∈ Ω} .

To compute R(MAT(Ω)) we only need to transform the elements of the result set. As the

transformation does not have any effect on the radius, it is easy to verify that X ∈ Ω if and

only if R(X) ∈ R(Ω). As a consequence, Br(R(X)) 6* Br′(R(X ′)),∀r′ > r,R(X ′) ∈ R(Ω).

Let us now define Y = R(X). We then have that
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Algorithm 1: Cosine-Pruned Medial Axis (CPMA)

Input:
I: N-dimensional binary array representing the object
M: number of frequencies of I to be used in the computation

Output:
CPMA: Cosine-Pruned Medial Axis

τ ← 0.5
F← DCT (I)
i← 1
while i < M do

Î(i) = IDCT (F, i) // Reconstruction of I using only the first i frequencies

FΩ = FΩ + MAT(Î(i))
i← i+ 1

end
FΩ ← FΩ/M // The final FΩ is the average of all reconstructions

CPMA = FΩ > τ
return CPMA

R(MAT(Ω)) =
{

(R(X), r) | X ∈ Ω ∧ [Br(X) 6* Br′(X
′), ∀r′ > r,X ′ ∈ Ω]

}
=
{

(R(X), r) | R(X) ∈ R(Ω) ∧ [Br(R(X)) 6* Br′(R(X ′)),∀r′ > r,R(X ′) ∈ R(Ω)]
}

=
{
Y, r) | Y ∈ R(Ω) ∧ [Br(Y ) 6* Br′(Y

′), ∀r′ > r, Y ′ ∈ R(Ω)]
}

= MAT(R(Ω))

Our method, the CPMA, depends entirely on FΩ, which also holds the isometric equivariant prop-

erty. In fact, by using the above result, and recalling that R is a linear transformation, we can

demonstrate that

R(FΩ) = R

(
1

M

M∑
i=1

MAT(Î(i))

)
=

1

M

M∑
i=1

R
(
MAT(Î(i))

)
=

1

M

M∑
i=1

MAT
(
R(Î(i))

)
= FR(Ω),

hence proving that the CPMA is equivariant to isometries.

Analytic methods typically satisfy this property because all computations are done in high-precision,

continuous vector space. In contrast, discrete methods cannot be fully equivariant because samples

of both Ω and MAT(Ω) are constrained to the fixed voxel grid. Additionally, the equivariance of

the MAT is also affected by the use of the discrete cosine transform. In a continuous domain, it

is easy to demonstrate that the cosine transform, as well as the Fourier Transform, have exact



50 5 Robust Skeletonization

Algorithm 2: Connect skeleton segments

Input:
CPMA: Cosine-Pruned Medial Axis

representing the object
FΩ Score function

Output:
C-CPMA: Connected Cosine-Pruned Medial Axis

C-CPMA ← copy(CPMA)
skeleton-parts ← compute-skeleton-parts(CPMA)
max-iter ← 200
it ← 0
while it < max-iter and |skeleton-parts| > 1 do

graph-i ← skeleton-parts[0]
graph-f ← skeleton-parts[1]
// Finds the minimum path inside the object for two pieces of the skeleton

min-path ← find-min-path(graph-i, graph-f, FΩ)
C-CPMA[path] ← True
skeleton-parts ← compute-skleton-parts(C-CPMA)
it ← it + 1

end
return C-CPMA

isometric equivariance; however, in a discrete domain, this equivariance is only an approximation,

R(FΩ) ≈ FR(Ω).

5.2 Experiments and Results

5.2.1 Comparative Studies

We chose a set of seven of the most relevant methods in the scientific literature to compare with

CPMA skeletonization results. These methods were selected based on a careful review of the state-

of-the-art on skeletonization. These methods were also chosen to illustrate the variety of approaches

authors employ to pruning the medial axis. The first method we used in our comparative study

is the MAT itself without any pruning. The MAT is computed by first calculating the distance

transform of the image. The MAT then lies along the singularities (i.e., creases or curvature

discontinuities) in the distance transform.

We chose the most representative pruning methods of the state-of-the-art. In general, pruning

methods use parameters derived from the distance transform and the projection of a point x in the

MAT to the nearest background point of the object, Px. However, other factors, such as contour

curvature, are also used. Table 5-1 summarizes all of the studies employed in our comparative

study for 2D. For each method, we used values for the parameters that are the most common
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through other comparative studies in previous works. In the following sections, we will also show

how the CPMA parameter τ is stable across different objects and even different datasets.

Method Abbreviation Authors Parameter

2D methods

Medial Axis Transform MAT Blum (1967) N/A

Zhang-Suen Algorithm Thinning Zhang and Suen (1984) N/A

Gamma Integer Medial
Axis

GIMA Hesselink and Roerdink
(2008)

γ: minimum distance
between Px and Py, y ∈
Nx.

Bisector Euclidean Me-
dial Axis

BEMA Couprie et al. (2007) θ: angle formed by the
point x and the two pro-
jections Px and Py, y ∈
Nx.

Scale Axis Transform SAT Giesen et al. (2009) s: scale factor to resize
MAT(Ω).

Scale Filtered Euclidean
Medial Axis

SFEMA Postolski et al. (2014) s: scale factor for in-
dividual balls in the
MAT(Ω).

Poisson Skeleton Poisson skel. Aubert and Aujol (2014) w: window size to find
the local maximum of
contour curvature.

3D methods

Zhang-Suen Algorithm Thininng (Zhang and Suen, 1984) N/A

Tree-structure skeleton
extraction

TEASAR (Sato et al., 2000) N/A

Table 5-1: Pruning methods employed for the comparative study in 2D. The table shows author,
name, and parameter description for each method. The point x ∈MAT is element of
the MAT that might be pruned. Px refers to the closest boundary point of x, while
Nx accounts for the neighborhood around it.

5.2.2 Stability Under Noisy Boundary

Medial axes are notoriously sensitive to border noise. Because we argue that the CPMA cope

reasonably well with shape deformation, it is useful to test how it performs in practice. We,

therefore, compared the stability of the CPMA with the other approaches in table 5-1, with respect

to contour noise. We based our 2D experiments on Kimia216 and the Animal Dataset for 2D.

Additionally, we used a set of three-dimensional objects from the Groningen Benchmark for 3D.

To introduce noise to the boundary of an object, we use two methods: one for 2D and one for 3D.

In the 2D case, we deform the random points in the contour of the object in a direction orthogonal
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to them. Let γ(i) = [x(i), y(i)] be the coordinates of the point i in the contour, and let Ni be all

the neighbor points of γ(i) in the contour. The deformation process is applied to a random number

of points in the contour such that

γ̂(j) = γ(j) + δ.λ.~v , ∀j ∈ Ni (5-1)

Where ~v = [ −y′(i) x′(i) ]T is a vector normal to the curve in i, δ randomly takes the values 1 or

−1, and λ is a random variable such that λ ∼ N (i, σ). Our noise model produces protrusions around

random points in the contour chosen with uniform distribution and probability of be deformed of

p = 0.005.

In the 3D case, we propose a simple mechanism to deform the object using a process derived from

the Eden’s (accretion) process. The Eden’s process is an iterative random cellular automaton that,

in its simplest form, attributes an equal probability to all the outer border points to be set to 1

at each step. That is, at each step, a neighbor of the object is chosen randomly and added to the

shape. As a result, the object’s homotopy type remains unchanged at each step. For both 2D and

3D, we denote by E(Ω, k) the result of applying k steps of the noise model to the shape Ω.

For our noise sensitivity experiments, we apply 20 times E(Ω, k) to every object of every dataset,

and then compute its MAT using every method in table 5-1 with different parameters. Later, each

MAT(E(Ω, k)) is compared with MAT(Ω) using both the Hausdorff distance and Dubuisson-Jain

dissimilarity. Finally, we report the per method average of each metric over all the elements of each

dataset.

We first test our skeletonization method on the Kimia216 dataset. We used all methods from

table 5-1 with different input parameters, and compared them to the CPMA and the CPMA with

connectivity enforcement. The parameters for each method were chosen empirically as the most

commonly employed parameters in literature. The results for all methods are shown in table 5-2.

This table shows how our methods are competitive against state-of-the-art skeletonization methods

such as the GIMA and SFEMA, and perform better than methods such as Poisson Skeletons, SAT,

skeletonization by thinning, and the MAT itself. Figure 5-2 shows both Hausdorff distance and

Dubuisson-Jain dissimilarity against noise level. The figure only displays the curves with the

parameters that yielded the best performance for every method in the comparative study. Note

that for most methods, the results are approximately the same for low levels of noise; however,

the curves (and the values in the table) start diverging when the noise level increases, revealing

the real noise invariant properties. In the figure, it is also possible to see how the CPMA and

the CPMA+connnect are among the three best results when the dissimilarity metric is used, only

surpassed by the GIMA. Although the results are not as good compared to methods with the

Hausdorff distance, it is possible to see how our methods still fall among the top five results.

The Animal2000 dataset contains nearly ten times more shapes than Kimia216. The Animal2000

dataset consists of 2000 images of different animals in a wide variety of poses. This implies more

variation between shapes, and therefore a more challenging setting. Table 5-3 shows similar results

compared to Kimia216, confirming that the noise invariant properties of the CPMA still hold

in a more robust dataset. The GIMA is still the best method measured with the Dubuisson-

Jain dissimilarity, and it is followed closely by both the CPMA and the CPMA with connectivity
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Method Hausdorff Dissimilarity

5 10 15 20 5 10 15 20

MAT 8.13 8.50 8.43 9.41 1.95 2.67 3.01 3.27

Thinning 4.68 5.85 6.88 8.15 2.18 3.26 3.94 4.45

GIMA (r=5) 5.46 6.50 7.37 8.84 0.87 1.31 1.60 1.88

GIMA (r=10) 5.40 7.12 8.35 9.18 0.68 1.08 1.35 1.58

GIMA (r=20) 4.49 5.76 6.39 7.30 1.00 1.30 1.05 1.35

BEMA (theta=90) 5.22 6.55 7.11 8.30 0.99 1.60 2.07 2.53

BEMA (theta=120) 5.05 6.56 7.60 8.74 0.70 1.37 1.94 2.52

BEMA (theta=150) 6.68 7.69 7.89 9.40 0.99 1.80 2.50 3.37

SAT (s=1.1) 8.68 8.73 8.76 9.64 3.09 4.37 5.08 5.57

SAT (s=1.2) 9.61 10.05 9.79 10.20 2.50 3.22 3.89 4.47

SFEMA (s=1.1) 4.15 5.35 6.18 7.53 0.84 1.37 1.92 2.50

SFEMA (s=1.2) 3.64 5.13 6.15 7.64 0.68 1.11 1.53 1.99

Poisson skel. (w=0.05) 11.43 11.16 11.26 12.73 2.46 3.05 3.27 3.53

Poisson skel. (w=0.10) 15.60 15.48 16.07 17.35 3.62 4.07 4.19 4.56

Poisson skel. (w=0.20) 17.71 18.02 19.54 21.35 5.00 5.38 5.63 6.20

CPMA 5.55 7.28 8.07 9.66 0.71 1.07 1.39 1.71

CPMA + Connect. 5.19 6.68 7.66 9.12 0.80 1.20 1.58 1.94

Table 5-2: Noise sensitivity results on Kimia216. The table shows the average Hausdorff distance
and Dubuisson-Jain dissimilarity for different noise levels (5-20) over each element of
the dataset. The best and worst method are highlighted to facilitate the comparison
with the CPMA.

enforcement. Results of using the Hausdorff distance as a metric show that the CPMA is close

to methods such as BEMA and SFEMA; however, the results are not as good as when using the

dissimilarity. Figure 5-3 depicts the best performance for every method in comparison to ours.

Our results suggest that the CPMA noise invariant properties generalize across different datasets

because of the complexity of Animal2000 regarding the number of shapes and the diversity of those

shapes. Note that that results in figure 5-3 appear to be smoother than those in the previously

discussed figure 5-2 on Kimia216. For further inspection, we include figures of all methods and all

parameters in appendix ??.

For our 3D experiments, we picked 14 objects from the Groningen benchmark, reflecting the most

common shapes used in the literature. Each object was voxelized to a binary voxel grid with

resolution 150 × 150 × 150. This resolution offers sufficient details as well as a sufficiently low

computational cost. In contrast to the 2D case, we apply E(Ω, k) only 10 times to the 3D object.

We did this for two reasons: 1) to reduce computational complexity, and 2) because in 3D with
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Figure 5-2: Noise sensitivity results on Kimia216 dataset. The figure shows the Hausdorff distance
(left) and the Dubuisson-Jain dissimilarity (right) for all the methods in table 5-2.
Only the best parametrization of each method is depicted for better interpretation.

Figure 5-3: Noise sensitivity results on Animal2000 dataset. The figure shows the Hausdorff dis-
tance (left) and the Dubuisson-Jain dissimilarity (right) for all the methods in table
5-3. Only the best parametrization of each method is depicted for better interpreta-
tion.

the chosen resolution, noise tends to be more extreme. The results on the Groningen dataset are

shown in table 5-4 and figure 5-4. We can observe that both the CPMA and CPMA+connectivity

achieved the best results among other methods when compared with the dissimilarity measure.

These results are evidence that our methodology has noise-invariance properties, and it is stable in

the presence of contour of surface deformation. However, the results show unusual patterns when
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Method Hausdorff Dissimilarity

5 10 15 20 5 10 15 20

MAT 7.47 10.39 12.47 14.64 3.56 4.50 5.00 5.29

Thinning 7.51 10.79 12.94 15.03 2.30 3.71 4.52 4.99

GIMA (r=5) 7.96 11.00 13.23 15.27 1.24 1.88 2.35 2.68

GIMA (r=10) 6.78 8.56 10.21 11.54 0.89 1.29 1.62 1.89

GIMA (r=20) 5.02 6.86 8.29 9.77 0.85 1.16 1.52 1.89

BEMA (theta=90) 7.84 10.61 12.76 14.78 1.45 2.37 3.06 3.57

BEMA (theta=120) 7.86 11.76 13.93 15.74 1.22 2.25 3.04 3.69

BEMA (theta=150) 8.88 12.38 14.39 16.51 1.68 3.00 3.95 4.72

SAT (s=1.1) 9.44 11.80 13.47 15.21 2.80 4.13 5.02 5.49

SAT (s=1.2) 11.28 13.57 15.21 16.40 2.13 3.13 3.85 4.55

SFEMA (s=1.1) 7.44 11.00 13.30 15.35 1.33 2.27 3.03 3.69

SFEMA (s=1.2) 7.64 11.43 13.83 15.90 1.26 2.13 2.78 3.36

Poisson skel. (w=0.05) 11.94 13.68 15.35 17.03 3.08 3.63 4.01 4.20

Poisson skel. (w=0.10) 14.55 17.11 18.64 20.10 3.55 4.08 4.68 4.94

Poisson skel. (w=0.20) 17.37 20.35 21.67 23.69 3.94 4.69 5.33 5.73

CPMA 9.20 12.88 14.96 17.22 1.18 1.96 2.55 3.09

CPMA + Connect. 8.67 12.39 14.45 16.88 1.17 1.96 2.58 3.13

Table 5-3: Noise sensitivity results on Animal2000. The table shows the average Hausdorff dis-
tance and Dubuisson-Jain dissimilarity for different noise levels (5-20) over each element
of the dataset. The best and worst methods are highlighted to facilitate the comparison
to the CPMA.

compared with the Hausdorff distance. In fact, for some methods, the metric decreases when the

noise level increases. We attribute this behavior to the outlier sensibility of the Hausdorff distance.

We complete the noise stability analysis showing some examples of the MAT computed with our

methodology, in comparison with the MAT computed using other methods in the comparative

study. Figure 5-5 shows such comparisons for all the datasets above mentioned datasets.

5.2.3 Sensitivity to Rotations

In the continuous framework, it is well known that the medial axis is a rotation equivariant shape

representation. More precisely, if we denote by R the rotation matrix around the origin; the rotation

equivariance property states that MAT(R(Ω)) ≈ R(MAT(Ω)). Regardless of the shape Ω and the

rotation R.

Nevertheless, we can experimentally measure the dissimilarity between MAT(R(Ω)) andR(MAT(Ω))
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Method Hausdorff Dissimilarity

2 4 6 8 10 2 4 6 8 10

3D thinning 4.20 3.61 3.25 3.03 2.90 6.30 7.80 8.58 9.07 9.41

TEASAR 7.76 7.36 6.39 6.24 5.92 1.09 1.55 1.98 2.44 2.80

CPMA 11.66 14.10 11.83 15.52 12.46 0.91 1.02 0.97 1.44 1.27

CPMA + Connect. 3.99 4.54 11.25 13.95 12.06 0.40 0.43 1.43 1.81 1.51

Table 5-4: Noise sensitivity results on Groningen benchmark. The table shows the average Haus-
dorff distance and Dubuisson-Jain dissimilarity for different noise levels (5-20) over
each element of the dataset. The best result is highlighted in bold font for comparison.

Figure 5-4: Noise sensitivity results on Groningen Benchmark dataset. The figure shows the Haus-
dorff distance (left) and the Dubuisson-Jain dissimilarity (right) for all the methods
in table 5-4.

for different instances, and different definitions of the medial axis transform. The lower this dis-

similarity, the more stable the method is under rotation. We conducted experiments on Kimia216,

Animal2000, and the Groningen Benchmark by inducing a set of controlled rotations on each

element of every dataset. Later, we computed the Hausdorff distance and the Dubuisson-Jain dis-

similarity between MAT(R(Ω)) and R(MAT(Ω)) for rotation angles varying from 0 to 90 degrees

by 3 degrees steps in 2D. In the 3D case, we varied the experiments for computational efficiency.

We induced azimuthal rotations (around z-axis) and elevation rotations (around y-axis) up to 90

degrees, but at intervals of 18 degrees.

The rotation sensitivity analysis on the Kimia216 dataset is summarized in table 5-5 and figure 5-6.

The results show that the CPMA and the CPMA with connectivity enforcement curves lie near the

average of the rest of the methods achieving state-of-the-art performance and even surpassing some

of them. Notice that when using the dissimilarity metric, both CPMA, the GIMA, the SFEMA, and
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Figure 5-5: Skeletonization results. The images show the MAT and the results of four different
pruning methods. Rows one and two are objects from Kimia216, rows three and four
are from Animal2000, and rows five and six from the Groningen benchmark. Notice
how the CPMA and the CPMA + connectivity produces skeletons with less spurious
branches while preserving the topology.
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the BEMA form a subgroup that performs significantly better compared to the others. Moreover,

the performance of these methods oscillates around a value of dissimilarity of around 1 pixel on

average. The intuition for this result is that regardless of the rotation, skeletons computed with

these methods vary only at one pixel on average. Consequently, we can claim that they exhibit

rotation equivariance.

Method Hausdorff Dissimilarity

30o 60o 90o 30o 60o 90o

MAT 8.18 8.17 2.17 2.67 2.64 0.75

Thinning 7.72 7.58 8.92 2.87 2.99 1.35

GIMA (r=5) 6.16 6.03 5.54 1.02 1.11 0.85

GIMA (r=10) 5.54 6.25 5.04 0.83 1.02 0.72

GIMA (r=20) 3.62 3.93 3.12 1.51 0.78 1.30

BEMA (theta=90) 12.35 12.76 11.72 1.31 1.60 1.06

BEMA (theta=120) 6.24 8.44 9.57 0.81 1.00 1.00

BEMA (theta=150) 9.14 10.09 10.27 1.11 1.35 1.36

SAT (s=1.1) 10.84 11.93 3.96 3.22 3.34 0.97

SAT (s=1.2) 11.44 12.40 4.45 2.64 2.87 0.97

SFEMA (s=1.1) 3.86 3.98 2.52 0.92 1.01 0.83

SFEMA (s=1.2) 3.68 3.66 2.08 0.82 0.88 0.80

Poisson skel. (w=0.05) 12.83 13.32 8.93 3.21 3.28 1.30

Poisson skel. (w=0.10) 16.36 17.03 10.17 4.24 4.30 1.78

Poisson skel. (w=0.20) 18.94 19.90 9.65 5.61 5.66 2.69

CPMA 8.63 8.65 2.42 1.18 1.33 0.70

CPMA + Connect. 8.51 8.36 2.72 1.22 1.39 0.75

Table 5-5: Rotation equivariance results on Kimia216. The table shows the average Hausdorff
distance and Dubuisson-Jain dissimilarity for different rotations of each element in the
dataset. The best and worse method are highlighted to facilitate the comparison with
the CPMA.

We applied the same analysis to the Animal2000 dataset achieving similar results. In this case,

the CPMA and the CPMA+connectivity ranked third and fourth, respectively, among all methods

when we used the dissimilarity metric. The results for all methods and parameters are presented

in table 5-6. As before, we also present a summary with the best parametrization for each method

in figure 5-7 to facilitate the interpretation. Notice that due to the larger number of objects in

the Animal2000 dataset, the curves for every method appear to be smoother, highlighting stability

across different rotation angles and shapes.
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Figure 5-6: Rotation equivariance results on Kimia216 dataset. The top row shows the Hausdorff
distance and Dubuisson-Jain dissimilarity for all the methods in table 5-5. The
bottom row shows only the best 5 results for clarification.

Figure 5-7: Rotation equivariance results on Animal2000 dataset. The top row shows the Haus-
dorff distance and Dubuisson-Jain dissimilarity for all the methods in table 5-5. The
bottom row shows only the best 5 results for clarification.

Finally, we ran the rotation sensitivity analysis on the 3D datasets, and summarize the results

in figure 5-8. The image shows the four 3D skeletonization methods we used in our study for

combinations of azimuthal and elevation angles. This figure illustrates how both the Hausdorff

distance and the dissimilarity get higher when the rotation becomes more extreme, except in the

case of CPMA + connectivity. We believe this behavior is due to the connectivity enforcement

mitigating the gaps in the skeletons, and reducing the metrics.
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Method Hausdorff Dissimilarity

30o 60o 90o 30o 60o 90o

MAT 5.08 5.17 2.38 3.67 3.64 0.77

Thinning 5.85 6.11 4.35 1.71 1.86 0.94

GIMA (r=5) 5.58 5.54 5.62 0.96 1.08 0.83

GIMA (r=10) 5.42 5.50 4.29 0.78 0.88 0.74

GIMA (r=20) 3.17 3.84 3.02 0.68 0.81 0.66

BEMA (theta=90) 11.12 11.92 9.80 1.10 1.35 0.89

BEMA (theta=120) 5.45 6.10 6.80 0.77 0.90 0.86

BEMA (theta=150) 7.60 8.88 9.91 1.13 1.36 1.40

SAT (s=1.1) 7.41 7.27 3.90 2.10 2.16 0.86

SAT (s=1.2) 9.82 9.62 4.85 1.77 1.90 0.95

SFEMA (s=1.1) 3.52 3.54 2.45 0.84 0.93 0.83

SFEMA (s=1.2) 3.54 3.63 2.26 0.77 0.87 0.82

Poisson skel. (w=0.05) 12.88 12.72 10.18 3.33 3.40 1.54

Poisson skel. (w=0.10) 15.02 15.41 10.58 3.67 3.89 1.89

Poisson skel. (w=0.20) 16.83 17.20 8.67 4.07 4.33 1.85

CPMA 6.62 6.14 2.64 0.96 1.06 0.77

CPMA + Connect. 6.19 5.77 3.30 0.98 1.05 0.86

Table 5-6: Rotation equivariance results on Animal2000. The table shows the average Hausdorff
distance and Dubuisson-Jain dissimilarity for different rotations of each element in the
dataset. The best and worse method are highlighted to facilitate the comparison with
the CPMA.

.

5.2.4 Hyper-parameter Selection

Many medial axis pruning methods depend on hyper-parameters to work correctly. These param-

eters usually have a physical meaning in the context of the object whose skeleton we sought to

estimate. Often, the parameters are distances or angles formed between points inside the object.

Some other works also create score function like ours intending to use its values as a filter parame-

ter to remove individual points form the MAT, hoping to reduce the number of spurious branches.

However, in most cases, such parameters are subject to factors like resolution or scale. Hence, we

conducted another experiment to test the sensitivity of the CPMA to the pruning parameter τ .

We ran additional experiments for different scale factors of the object. Figure 5-9 shows the

average of a reconstruction metric vs the selected value of τ . We compared an object Ω against
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Figure 5-8: Rotation equivariance results on Groningen Benchmark dataset. The top row shows
the Hausdorff distance and Dubuisson-Jain dissimilarity for all the methods in table
5-5. The bottom row shows only the best 5 results for clarification.

its reconstruction Ω̂ using the Jaccard Index overall images in Kimia216 dataset. High values of

τ deteriorate the reconstruction, while lower values do not prune enough spurious branches. From

the figure, we can infer that values around τ = 0.5 offer a good trade-off between reconstruction

and branch pruning. Moreover, around this value, the standard deviation reaches its minimum

value suggesting optimal performance regardless of the object. Because the value of τ is stable for

different scale factors, we conclude that scale does not affect the selection of the threshold.

In the next chapter, we will present experiments in which we use the CPMA + connectivity as

input shape representation for our classification and retrieval pipeline. We will derive some features

from our skeletonization, and then train a machine learning approach to predict the class of each

element.
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Figure 5-9: Sensitivity Analysis of threshold τ to different scales of the input images. The graph
shows the average Jaccard index of the reconstructed shape w.r.t the original object
for CPMAs computed with different values of τ . Higher values of the threshold lead
to less spurious branches. We also show the standard deviation error bands.



6 Shape-based Object Classification and

Retrieval

After developing our method for robust skeletonization, the next step is to use skeletons produced

with it into a machine learning pipeline to classify objects into previously defined categories. Hence,

in this chapter, we describe in detail the set of features that we engineered and the machine learning

architecture that was designed to classify each element. We based our features on the Chordiogram

(Toshev, 2011), which is a rotation and translation invariant shape descriptor capturing global

geometric relationships between elements of the object boundary. We also offer a justification of

why our features achieve isometric invariance, which is one of our main goals. A set of classification

and retrieval experiments on MPEG7 and ModelNet-40 dataset was conducted to test our approach

in both 2D and 3D, comparing the results with state-of-the-art methods.

6.1 Machine Learning Pipeline

6.1.1 Skeleton Based Feature Extraction

To extract a set of features from the skeletal representation of Ω we used the Chordiogram defined

by Toshev (2011). The chordiogram is a rotation and translation invariant shape descriptor that

captures global geometric relationships between points of the object boundary.

To define the chordiogram, consider a pair of boundary edges p, q ∈ δΩ. We will call such the pair

(p, q) a chord. One can define various features describing the geometry of the chord, which we will

denote by fpq ∈ Rd. The chordiogram is then a k-dimensional histogram of fpq over all the chords.

The chordiogram can capture the invariant properties of Ω by carefully choosing fpq. This happens

because isometric transformations apply equally to all points in the object. e.g., if we set f0
pq as

the euclidean distance between p and q, and set R as a rotation around the origin of coordinates.

We derived a set of features inspired by the chordiogram and adapted them to work with the

information provided from the skeleton of the object. The skeletons, as we defined in earlier

chapters, are shape representations that comprise the object into a set of points and radius, (X, r).

Moreover, the skeleton of the object can also be seen as graph G, where the nodes are points in

which three or more branches converge. We used this definition to design three new skeletal features

by creating chords between the nodes of G.

Let us define ni and nj as two distinct nodes of G. We called the first skeletal feature γi,j , and
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define it as the ratio of the euclidean distance and the geodesic distance between ni and nj .

γi,j =
deuc(ni, nj)

dgeo(ni, nj)
, (6-1)

where, deuc is the Euclidean distance between the Rn coordinates of both nodes, and dgeo is the

geodesic distance through G between ni and nj .

We call the two remaining skeletal features πi and πj , and define them as the Euclidean distance

from ni and ni to the closest boundary point, respectively. This formulation of skeletal features

allows the characterization of an object by their relationships among pairs of elements of its topo-

logical structure. The MAT of the shape represents such a topological structure.

Table 6-1 show a list of the features that are part of the original formulation of the chordiogram,

and the skeletal features formulated in the present study. This invariance properties of the skeletal

features will be discussed in the next subsection.

Feature Name
Invariance

Formulation
Rot. Scale Trans.

lpq Chord length yes no yes Regular chord

lp Distance to the center yes no no Regular chord

ψpq Chord orientation no yes yes Regular chord

θ − ψpq Relative normal yes yes yes Regular chord

γi,j Ratio between deuc and dgeo of nodes
ni and nj

yes yes yes Skel. chord

πi Distance from ni to δΩ yes no yes Skel. chord

πj Distance from nj to δΩ yes no yes Skel. chord

Table 6-1: Chordiogram features and their invariance. The table shows all the features derived
from the chordiogram with their respective invariance.

6.1.2 Invariant Properties of the Skeleton-Based Features

All of our skeletal features are invariant to scale, translation, and rotation. Therefore, they are

suitable to be used in our machine learning pipeline to classify objects by their shape.

Translation Invariance If we define point pi, pj ∈ Rm as the coordinates of ni and nj , and l as

an arbitrary vector also in Rm, we can show that

deuc(pi + l, pj + l) = ||pi + l − pj − l|| = ||pi − pj ||.
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The same result holds for dgeo; hence, proving the translation invariance of γi,j . We can reason

similarly with πi and πj because of all the points in Ω translate uniformly by l.

Rotation Invariance Recalling that a transformation with a rotation matrix R is a unitary

transformation, we can show that our features have rotation invariance. As it is the case with the

translation invariance, the distance between two points is not affected by rotations since

deuc(Rpi, Rpj) =||Rpi −Rpj ||
=||R(pi − pj)||

=
√

(pi − pj)TRTR(pi − pj)

=
√

(pi − pj)T (pi − pj)

=deuc(pi, pj).

Scale Invariance The feature γi,j is approximately scale-invariant because it is the ratio of two

distances that grow equally with a scale factor s. However, πi and πj are non-bounded distances

that depend on the dimensions of the object Ω. To enforce the scale invariance, we normalize the

distances by the maximum distance value over all nodes of G,

π̂i =
πi
πmax

.

Using the above derivations, we can extend the invariance of the skeletal features to all isometric

transformations.

6.1.3 Deep Learning Architecture

Our machine learning pipeline uses a deep learning architecture based on PointNet++ (Qi et al.,

2017b). PointNet++ is a CNN model designed to learn features on orderless point clouds. It is

permutation invariant, which means that the order of the points of the input features does not

affect the task the model is performing. PointNet++ is an extension of an earlier model from the

same authors, PointNet (Qi et al., 2017a). The differentiating factor lies in the fact that the latter

version enforces spatial localities of the input point set, as a means to preserve well-defined distance

metrics on the object such as Euclidean distance or geodesic distances.

PointNet++ builds a hierarchical grouping of points and progressively abstract larger local regions

along with the hierarchy, layer upon layer. After stacking several of these layers, the architecture

ends up with a smaller set of points representing the underlying structures of the object, each point

equipped with K-dimensional features vectors.

This hierarchical structure is composed of a number of set abstraction levels that include: a sampling

layer, a grouping layer, and a pointNet layer. The Sampling layer selects a set of points from input

points, which defines the centroids of local regions. The grouping layer constructs local region
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sets by finding “neighboring” points around the centroids. PointNet layer uses a mini-PointNet

to encode local region patterns into feature vectors. If the final goal is classification, the features

pass through an MLP to be trained with a softmax as the classification loss function. The entire

architecture can be seen in Figure 6-1.

In this study, we branched PointNet++ in two such that we could process the contour and the

skeletal data separately as it is depicted in figure 1-1. We call the first one the point cloud branch

since it takes a point cloud sampled from either a 3D surfaces or a 2D contour as input. The second

branch is called the skeletal branch, and it takes a list of chords extracted from the joints of the

skeleton as its input.

PointNet++ is generalizable to the chord space because a list of chords can be seen as a point

cloud in the m-dimensional space defined by the number of features of the chords. Despite this, the

contour data has a geometric meaning, e.g., a sampling of the boundary of the object, while the

skeletal data is just a set of n points features embedded in Rm. The CNN needs to learn different

classes of features from each input type, which is why we must process them separately.

The result of each branch is a one-dimensional feature vector of size 512. We concatenate both

features vectors into a new one that we call φ. This new feature vector contains information from

both the surface point cloud and the skeletonization. Finally, we pass φ through a fully connected

MLP and train the whole model for classification in an end-to-end fashion.

Figure 6-1: PointNet++ Architecture.

After the network is trained, the features in φ that are learned with the machine learning architec-

ture are used as feature vectors for shape retrieval.

6.2 Experiments and Results

We conducted a set of shape classification and shape retrieval experiments on the MPEG7 and

ModelNet40 datasets to test our methodology. We used the per-instance accuracy to test the
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classification performance, and the Bull’s eye score to measure the retrieval performance. In this

section, we offer implementation details of the entire pipeline and discuss the results.

6.2.1 Training

Our pipeline is generalizable from 2D to 3D, meaning that the deep learning model does not change

in its mathematical design. However, when implementing the code, some considerations, such as

the format of the dataset, needed to be considered.

For every case in 2D and 3D, we used two models: 1) a baseline using plain PointNet++ as specified

in the original paper, 2) our methodology including the robust skeletonization designed and explored

in chapter 5. Moreover, three modes of training were considered for testing the rotation invariance

of our classification pipeline.

In the 2D case, an image can be in either the canonical pose as it is presented in the dataset or

can have rotations around the origin (SO(2) rotations). Therefore, the three modes of training

for the 2D case are: 1) training and testing in canonical pose (c/c), 2) training and testing with

arbitrary rotations (SO(2)/SO(2)), and (3) training in canonical pose and testing with arbitrary

rotations (c/SO(2)). In 3D, the situation is similar. However, because of the complexity of the

stated problem in 3D, we used azimuthal rotations instead of the canonical pose. The three training

modes in 3D are then: (1) training and testing with azimuthal rotations (z/z), (2) training and

testing with arbitrary rotations (SO(3)/SO(3)), and (3) training with azimuthal and tested with

arbitrary rotations (z/SO(3)).

We trained each model using the ADAM optimizer during 350 epochs with an initial learning rate

of 10−3. We used data augmentation for training by adding random jitter, point permutations,

and small shifting to the input features. Note that although our learned representation should be

rotation invariant, augmenting the inputs with rotations is still beneficial thanks to interpolation

and sampling effects.

The results of all our experiments are summarized in tables 6-2 and 6-3. They will be discussed

in the following subsections, along with more details about each type of experiment.

Method Mode Accuracy Bull’s eye score

PointNet++ baseline

c/c 88.92 % 0.8369

c/SO(2) 34.29 % 0.8407

SO(2)/SO(2) 78.93 % 0.8018

Our method

c/c 95.00 % 0.8418

c/SO(2) 36.07 % 0.8315

SO(2)/SO(2) 80.00 % 0.7457

Table 6-2: Classification and retrieval results of our methodology in 2D. We used PointNet++ as
a baseline to compare the results of our methodology.
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Method Mode Accuracy Bull’s eye score

PointNet++ baseline

z/z 89.30 % 0.6228

z/SO(3) 47.37 % 0.6199

SO(3)/SO(3) 71.63 % 0.5549

Our method

z/z 84.44 % 0.7910

z/SO(3) 54.21 % 0.7872

SO(3)/SO(3) 53.61 % 0.7751

Table 6-3: Classification and retrieval results of our methodology in 3D. We used PointNet++ as
a baseline to compare the results of our methodology.

6.2.2 Classification

The classification was done by adding a softmax layer at the end of our deep learning model. For

each input object that passes through the model, it returns a vector p of dimension K, where K is

the number of classes. Each element of this vector pi is the probability of the object belonging to

the class i. As is common in classification, we trained our model by minimizing the softmax cross-

entropy between pi and the ground truth vector p̂, which is sparse with only one value different from

zero, p̂i = 1, when the object belongs to the class i. To evaluate the classification performance, we

computed the accuracy per instance by taking the ratio of all of the elements correctly classified

over the total number of elements.

The classification results are summarized in tables 6-2 for 2D classification on the MPEG7 dataset;

and in table 6-3 for the 3D ModelNet40 dataset. We present results for every one of the training

modes described in the previous subsection.

From table 6-2 is possible to see how the classification accuracy is higher when our method is

employed. We reached a value of 95 % accuracy, which means that 95 out of 100 objects were well

classified into one of the 70 classes of MPEG7. We got this value when we trained the model on

the c/c mode. With the modes c/SO(2) and SO(2)/SO(2) we obtained accuracy values of 36.07%

and 80% respectively. These values are both approximately 2% higher than their counterpart mode

when training on the PointNet++ baseline. We attribute this increase in accuracy to the invariant

properties of our skeleton-based features.

The confusion matrices for the models trained with our method are depicted in the first row of

figure 6-4. The figure shows a confusion matrix that is highly populated in its diagonal for the

model trained in the mode c/c, following table 6-2. Similar results occur with mode SO(2)/SO(2),

where we start seeing more disperse values around the confusion matrix that indicate miss-classified

elements. However, the main diagonal still contains the majority of the high values in the matrix.

Therefore, we conclude that there is no significant confusion between any of the classes. The

c/SO(2) mode, has high values scattered around, in concordance with table 6-2.

Unfortunately, in the 3D case, our methodology did not achieve as positive results as in the 2D case.

The performances for all methods of training were below the baseline, except in the z/SO(3) bases.
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However, the z/SO(3) mode must not be entirely trusted since the model training did not converge,

as can be observed in its loss function progression in figure 6-3. The figure also shows the same

diverging pattern for the training mode SO(3)/SO(3). The only mode that whose loss function

significantly approached 0 was the z/z; however, its results are not competitive when compared with

the baseline or with the state-of-the-art methods of 3D classification on the ModelNet40 dataset

(see table 6-4). The confusion matrices for all tests of the 3D experiments are depicted in the

second row of figure 6-4.

Method Author Input type Acc. Params. Inp. size

VoxNet Maturana and Scherer (2015)

Voxel-grid

83.0 0.9M 303

SubVolSup Qi et al. (2016) 88.5 17M 303

SubVolSup MO Qi et al. (2016) 89.5 17M 20x303

RotationNet 20x Kanezaki (2016)

2D Image

92.4 58.9M 20x2242

MVCNN 12x Su et al. (2015) 89.5 99M 12x2242

MVCNN 80x Su et al. (2015) 90.2 99M 80x2242

PointNet Qi et al. (2017a)
Point cloud

89.2 3.5M 3x2048

PointNet++ Qi et al. (2017b) 89.3 1.7M 3x1024

Spherical CNN Esteves et al. (2018a) Mesh 88.9 0.5M 2x642

Ours 84.4∗ 0.8M 3x1024

Table 6-4: Classification results on the ModelNet40 dataset. We compared the accuracy of our
results with several state-of-the-art methods in different categories.

6.2.3 Retrieval

In order to run the shape retrieval experiments, we needed to describe every object in the datasets

with a set of m features arranged in a vector. The idea behind retrieval is that objects that are

close in this Rm space should belong to the same class, while objects of different classes should be

far apart among them. To do this, we used the feature vector φ of 1024 elements, which is the

concatenation of the output of both branches of our deep learning model. The retrieval experiments

consisted of comparing every object (query object) in the dataset with the rest of the objects and

selecting the k most similar ones. A pair of similar objects means that the euclidean distance

d(φi, φj) is small. Among the k most similar objects, those who belong to the same class as the

query object are used to compute a retrieval metric. In our case, we used the Bull’s eye score

because of its simplicity.

The last column in tables 6-2 and table 6-3 show the Bull’s eye score computed on the MPEG7

and ModelNet40 dataset respectively, for each mode of training. The Bull’s eye score is computed

as a number in the range [0, 1], where 0 means total failure when retrieving similar objects from
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Figure 6-2: Classification training progress on the MPEG7 dataset. The images show the training
progress step by step and up to 250 epochs. From left to right and top to bottom
we preset: test accuracy for the c/c mode, test accuracy for the SO(2)/SO(2) mode,
test accuracy for the c/SO(2) mode, and the classification loss for all modes.

the dataset, and 1 means that retrieved most similar objects were always of the same class as the

query object.

We conducted two retrieval tests: 1) on the MPEG7 2D dataset and 2) on the ModelNet40 3D

dataset. For the 2D experiments, we compared the retrieval results with the state-of-the-art in

shape retrieval. These results are presented in table 6-5. In this table, a set of methods with the

best performance in the literature were selected for comparison. The average score overall methods

in table 6-5 is 0.8300. The best performing method was the Locally constrained diff. (Yang et al.,

2009) that achieved a score of 0.9332. In comparison, our methodology achieved a Bull’s eye score

of 0.8418, which is slightly above average. Although our method could not surpass the Locally

constrained diff., we consider that our results are still competitive and have the potential for

improvement.

The Bull’s eye score was also computed over the ModelNet40 dataset. Results in table 6-3 show

superior retrieval performances of more than 15%. In all tests conducted with our model, the Bull’s

eye score achieved better results than their counterparts in the baseline. We see this as evidence
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Figure 6-3: Classification training progress on the ModelNet40 dataset. The images show the
training progress step by step and up to 250 epochs. From left to right and top to
bottom we preset: test accuracy for the z/z mode, test accuracy for the SO(3)/SO(3)
mode, test accuracy for the z/SO(3) mode, and the classification loss for all modes.

that the skeletal features are improving the shape representation.

Additionally, we want to highlight two key conclusions that arise from our results. First, notice

how the retrieval scores for our method are roughly the same regardless of the rotation mode of the

train and test partition of the dataset, even when the classification accuracy differs significantly.

Such scores suggest isometric invariance induced by our skeletal features. The second key result is

that our methodology managed to achieve performances of around 0.78 in a more complex problem,

namely 3D shape classification, as opposed to 2D shape classification.

In the next chapter, we will conclude this study offering some final remarks, including conclusions of

the skeletonization and the classification methods. Additionally, we will introduce potential future

work to continue the line of research in this dissertation.
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(a) Confusion matrix on MPEG7, mode
c/c

(b) Confusion matrix on MPEG7, mode
c/SO(2)

(c) Confusion matrix on MPEG7, mode
SO(2)/SO(2)

(d) Confusion matrix on ModelNet40,
mode z/z

(e) Confusion matrix on ModelNet40,
mode z/SO(3)

(f) Confusion matrix on ModelNet40,
mode SO(3)/SO(3)

Figure 6-4: Confusion matrices of the classification using our methodology for every mode of
training. The first row shows the confusion matrices for 2D classification on the
MPEG7 dataset. The second row shows the confusion matrices of 3D Classification
on ModelNet40.
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Method Authors Bull’s eye score

CSS Mokhtarian et al. (1998) 0.7544

Vis. Parts Latecki and Lakamper (2000) 0.7645

Shape Context Belongie et al. (2002) 0.7651

Aligning Curves Sebastian et al. (2003) 0.7816

Distance Set Grigorescu and Petkov (2003) 0.7838

Optimized CSS. Mokhtarian and Bober (2003) 0.8112

Gen. Model Tu and Yuille (2004) 0.8003

Chance Prob. Super (2004) 0.7936

Multiscale Representation Adamek and O’Connor (2004) 0.8493

Prob. Approach McNeill and Vijayakumar (2005) 0.7919

Contour Seg. Attalla and Siy (2005) 0.8433

Fixed Cor. Super (2006) 0.8540

Hierchical Procrustes McNeill and Vijayakumar (2006) 0.8635

Shape Tree Felzenszwalb and Schwartz (2007) 0.8770

Inner Distance Ling et al. (2007) 0.8540

Triangle Area Alajlan et al. (2008) 0.8723

Skeletal Context Xie et al. (2008) 0.7992

Shape L’AneRouge Peter et al. (2008) 0.8525

Locally constrained diff. Yang et al. (2009) 0.9332

Context-sensitive shape Sim. Bai et al. (2010) 0.9161

Symbolic Representation Shen et al. (2014b) 0.8592

Our method - 0.8418

Table 6-5: Shape retrieval results of the experiments on the MPEG7 dataset. State-of-the-art
methods are shown ordered by publication year, along with authors for reference. Our
method and the best performance in the table are highlighted in bold letters to facilitate
the comparison. The average Bull’s eye score for the methods in the table is 0.8300.
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Figure 6-5: Shape retrieval timeline on the MPEG7 dataset. The image shows how our method
(red) lies within the average of the other state of the art methods.
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In this dissertation, we studied shape analysis for classification and retrieval. We focused our work

on designing a new shape description strategy with invariant properties to isometric transformation;

however, we reviewed a large number of different works in the state-of-the-art related to shape

representation and description.

We chose the Medial Axis Transform as our shape representation because of its properties that make

it invariant to isometries. However, due to its extreme sensitivity to noise, we first formulated a

robust skeletonization algorithm capable of estimating the “true skeleton” of an object with fewer

spurious branches. We designed a machine learning approach to extract shape features from the

medial axis transform, that can be applied to 2D and 3D shapes. We conducted shape classification

and retrieval experiments in order to assess the advantages of our approach against state-of-the-art

methods.

7.1 Conclusions

Our pruning approach shows competitive results compared to the state-of-the-art on pruning meth-

ods of the Medial Axis of an object. Results in chapter 5 show that our method achieves significant

noise insensitivity, being able to produce stable skeleton even in scenarios with significant perturba-

tions of the contour. Additionally, experiments in chapter 5 produced stable results in the presence

of isometric transformations of the object. Through the formulation of the CPMA, we concluded

that such equivariance is generalizable to any isometric transformation.

The CPMA developed in this work has other interesting properties. First, it can be efficiently

computed in parallel because it depends on an aggregation of reconstructions Ω̂ of the original

shape. Each reconstruction is independent of the others, which allows the parallelism. Moreover,

we enforce the CPMA to maintain the topology of the original object. The aforementioned occurs

because the CPMA is ultimately computed out of the MAT of the reconstructions.

Our results also suggest that our CPMA noise invariant properties generalize across different

datasets. This occurs because of the complexity of Animal2000 in terms of the number of shapes

and the diversity of them.

In this study, we developed a new skeletonization method and a shape classification architecture. In

both cases, our methodology can be easily applied to 2D or 3D, meaning that our proposed methods

generalize across dimensions. This is a useful result for the implementation of any application based

on shape analysis.

As stated in chapter 3, spectral methods have been gaining attention in the scientific community.

Because our work depends on the cosine transform, we can argue that our approach lies in this

category, enforcing spectral shape analysis through our results.
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We used the equivariance properties of the medial axis transform and the chordiogram definition

to design and build a new machine learning pipeline. In the process, we formulated a set of new

shape features based on topological skeletons that are invariant to isometric transformations.

Although our classification results did not surpass the state-of-the-art by a large margin, we still

consider that we achieved comparable results with our methodology. We theorize that by including

a more extensive set of invariant skeletal features, and by using other deep learning architectures,

our results can be significantly improved.

7.2 Future Work

All of the 3D objects we used in our work were stored as 3D triangular meshes. To compute

the CPMA and use the skeletons as input for the machine learning, we voxelized these meshes.

Voxelization has two types of issues. First, the resolution starts playing an essential role because

low lattices have less representative power to capture small details in the objects; therefore, affecting

the overall performance. The second issue is the rotation invariance. When the 3D information is

voxelized, the three canonical axes need to be defined beforehand, such as the sides of individual

voxels align with them. This decision affects the isometric invariance because, for instance, rotated

voxels will not align perfectly with non-rotated voxels. As a result, implementing skeletonization

methods that can act directly over the 3D meshes or point clouds sampled from the object’s surface

is a potential line of future work.

Although we developed an effective algorithm for preserving the topology of the medial axis through

CPMA, our methodology is not an efficient implementation. Our algorithm for connectivity en-

forcement relies on iterative computations of the Dijkstra’s algorithm for finding the geodesic path

between nodes of two subsets of the skeletal graph. This algorithm does not scale well as the image

increases in size because the geodesic distance depends on the size of the image seen as a lattice.

Consequently, this methodology could be improved by computing the paths in parallel or by using

lookup tables of the already computed paths to reduce execution time.

We consider that our methodology has more potential to deal with non-rigid deformation because

of the graph-nature of the medial axis. New features that take into account the skeleton joints and

the angles between them can be useful to model deformations like articulation. We believe that

engineering new features with these characteristics, or formulating new machine learning approaches

able to learn these features, can be beneficial for non-rigid object classification and retrieval.

Feature engineering is fundamental to the application of machine learning and is both difficult and

expensive. Although automated feature learning can help to ease such problems, a good initial

representation of the data is still crucial. In this study, we presented a set of skeleton-based input

features for shape classification that are invariant isometric transformations; however, many other

useful features can be extracted from the definition of the MAT and should be considered for future

research.

PointNet and PointNet++ are arguably the most widely used CNN model for point clouds. Its

mathematical foundations are well supported, and it has been used successfully in different datasets.

However, other models also claim to perform well on orderless point clouds. It is an interesting line

of future work to test models such as (Huang and You, 2016), or (Wang et al., 2019b) on our set
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of skeleton-based features, and compare them with the ones presented in this dissertation.

We tested our skeleton-based features through a classification pipeline and retrieval experiments.

Retrieval was conducted computing the Bull’s eye score, which is the result of comparing an object

with all other objects in a dataset. The value of the Bull’s eye score is obtained by counting the

number of elements of the same class out of the first 2ni most similar objects. The value of ni is the

number of elements in class i in the dataset. Although this metric reflects whether the retrieval is

effective or not, other metrics are also employed in the literature. A line of future work is to explore

how well our methodology performs when compared with other retrieval metrics such as precision,

recall, mean average precision (mAP), nearest neighbor distance, e-Measure, or first/second tier

(FT/ST).
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