4 research outputs found

    Fast Exact Algorithms Using Hadamard Product of Polynomials

    Get PDF
    Let C be an arithmetic circuit of poly(n) size given as input that computes a polynomial f in F[X], where X={x_1,x_2,...,x_n} and F is any field where the field arithmetic can be performed efficiently. We obtain new algorithms for the following two problems first studied by Koutis and Williams [Ioannis Koutis, 2008; Ryan Williams, 2009; Ioannis Koutis and Ryan Williams, 2016]. - (k,n)-MLC: Compute the sum of the coefficients of all degree-k multilinear monomials in the polynomial f. - k-MMD: Test if there is a nonzero degree-k multilinear monomial in the polynomial f. Our algorithms are based on the fact that the Hadamard product f o S_{n,k}, is the degree-k multilinear part of f, where S_{n,k} is the k^{th} elementary symmetric polynomial. - For (k,n)-MLC problem, we give a deterministic algorithm of run time O^*(n^(k/2+c log k)) (where c is a constant), answering an open question of Koutis and Williams [Ioannis Koutis and Ryan Williams, 2016]. As corollaries, we show O^*(binom{n}{downarrow k/2})-time exact counting algorithms for several combinatorial problems: k-Tree, t-Dominating Set, m-Dimensional k-Matching. - For k-MMD problem, we give a randomized algorithm of run time 4.32^k * poly(n,k). Our algorithm uses only poly(n,k) space. This matches the run time of a recent algorithm [Cornelius Brand et al., 2018] for k-MMD which requires exponential (in k) space. Other results include fast deterministic algorithms for (k,n)-MLC and k-MMD problems for depth three circuits

    Paths and walks, forests and planes : arcadian algorithms and complexity

    Get PDF
    This dissertation is concerned with new results in the area of parameterized algorithms and complexity. We develop a new technique for hard graph problems that generalizes and unifies established methods such as Color-Coding, representative families, labelled walks and algebraic fingerprinting. At the heart of the approach lies an algebraic formulation of the problems, which is effected by means of a suitable exterior algebra. This allows us to estimate the number of simple paths of given length in directed graphs faster than before. Additionally, we give fast deterministic algorithms for finding paths of given length if the input graph contains only few of such paths. Moreover, we develop faster deterministic algorithms to find spanning trees with few leaves. We also consider the algebraic foundations of our new method. Additionally, we investigate the fine-grained complexity of determining the precise number of forests with a given number of edges in a given undirected graph. To wit, this happens in two ways. Firstly, we complete the complexity classification of the Tutte plane, assuming the exponential time hypothesis. Secondly, we prove that counting forests with a given number of edges is at least as hard as counting cliques of a given size.Diese Dissertation befasst sich mit neuen Ergebnissen auf dem Gebiet parametrisierter Algorithmen und KomplexitĂ€tstheorie. Wir entwickeln eine neue Technik fĂŒr schwere Graphprobleme, die etablierte Methoden wie Color-Coding, representative families, labelled walks oder algebraic fingerprinting verallgemeinert und vereinheitlicht. Kern der Herangehensweise ist eine algebraische Formulierung der Probleme, die vermittels passender Graßmannalgebren geschieht. Das erlaubt uns, die Anzahl einfacher Pfade gegebener LĂ€nge in gerichteten Graphen schneller als bisher zu schĂ€tzen. Außerdem geben wir schnelle deterministische Verfahren an, Pfade gegebener LĂ€nge zu finden, falls der Eingabegraph nur wenige solche Pfade enthĂ€lt. Übrigens entwickeln wir schnellere deterministische Algorithmen, um SpannbĂ€ume mit wenigen BlĂ€ttern zu finden. Wir studieren außerdem die algebraischen Grundlagen unserer neuen Methode. Weiters untersuchen wir die fine-grained-KomplexitĂ€t davon, die genaue Anzahl von WĂ€ldern einer gegebenen Kantenzahl in einem gegebenen ungerichteten Graphen zu bestimmen. Und zwar erfolgt das auf zwei verschiedene Arten. Erstens vervollstĂ€ndigen wir die KomplexitĂ€tsklassifizierung der Tutte-Ebene unter Annahme der Expo- nentialzeithypothese. Zweitens beweisen wir, dass WĂ€lder mit gegebener Kantenzahl zu zĂ€hlen, wenigstens so schwer ist, wie Cliquen gegebener GrĂ¶ĂŸe zu zĂ€hlen.Cluster of Excellence (Multimodal Computing and Interaction

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore