6,343 research outputs found

    Improved fuzzy vault scheme for fingerprint verification

    Get PDF
    Fuzzy vault is a well-known technique to address the privacy concerns in biometric identification applications. We revisit the fuzzy vault scheme to address implementation, efficiency, and security issues encountered in its realization. We use the fingerprint data as a case study. We compare the performances of two different methods used in the implementation of fuzzy vault, namely brute force and Reed Solomon decoding. We show that the locations of fake (chaff) points in the vault leak information on the genuine points and propose a new chaff point placement technique that makes distinguishing genuine points impossible. We also propose a novel method for creation of chaff points that decreases the success rate of the brute force attack from 100% to less than 3.5%. While this paper lays out a complete guideline as to how the fuzzy vault is implemented in an efficient and secure way, it also points out that more research is needed to thwart the proposed attacks by presenting ideas for future research

    Machine Learning Models that Remember Too Much

    Full text link
    Machine learning (ML) is becoming a commodity. Numerous ML frameworks and services are available to data holders who are not ML experts but want to train predictive models on their data. It is important that ML models trained on sensitive inputs (e.g., personal images or documents) not leak too much information about the training data. We consider a malicious ML provider who supplies model-training code to the data holder, does not observe the training, but then obtains white- or black-box access to the resulting model. In this setting, we design and implement practical algorithms, some of them very similar to standard ML techniques such as regularization and data augmentation, that "memorize" information about the training dataset in the model yet the model is as accurate and predictive as a conventionally trained model. We then explain how the adversary can extract memorized information from the model. We evaluate our techniques on standard ML tasks for image classification (CIFAR10), face recognition (LFW and FaceScrub), and text analysis (20 Newsgroups and IMDB). In all cases, we show how our algorithms create models that have high predictive power yet allow accurate extraction of subsets of their training data

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    New cryptanalysis of LFSR-based stream ciphers and decoders for p-ary QC-MDPC codes

    Get PDF
    The security of modern cryptography is based on the hardness of solving certain problems. In this context, a problem is considered hard if there is no known polynomial time algorithm to solve it. Initially, the security assessment of cryptographic systems only considered adversaries with classical computational resources, i.e., digital computers. It is now known that there exist polynomial-time quantum algorithms that would render certain cryptosystems insecure if large-scale quantum computers were available. Thus, adversaries with access to such computers should also be considered. In particular, cryptosystems based on the hardness of integer factorisation or the discrete logarithm problem would be broken. For some others such as symmetric-key cryptosystems, the impact seems not to be as serious; it is recommended to at least double the key size of currently used systems to preserve their security level. The potential threat posed by sufficiently powerful quantum computers motivates the continued study and development of post-quantum cryptography, that is, cryptographic systems that are secure against adversaries with access to quantum computations. It is believed that symmetric-key cryptosystems should be secure from quantum attacks. In this manuscript, we study the security of one such family of systems; namely, stream ciphers. They are mainly used in applications where high throughput is required in software or low resource usage is required in hardware. Our focus is on the cryptanalysis of stream ciphers employing linear feedback shift registers (LFSRs). This is modelled as the problem of finding solutions to systems of linear equations with associated probability distributions on the set of right hand sides. To solve this problem, we first present a multivariate version of the correlation attack introduced by Siegenthaler. Building on the ideas of the multivariate attack, we propose a new cryptanalytic method with lower time complexity. Alongside this, we introduce the notion of relations modulo a matrix B, which may be seen as a generalisation of parity-checks used in fast correlation attacks. The latter are among the most important class of attacks against LFSR-based stream ciphers. Our new method is successfully applied to hard instances of the filter generator and requires a lower amount of keystream compared to other attacks in the literature. We also perform a theoretical attack against the Grain-v1 cipher and an experimental attack against a toy Grain-like cipher. Compared to the best previous attack, our technique requires less keystream bits but also has a higher time complexity. This is the result of joint work with Semaev. Public-key cryptosystems based on error-correcting codes are also believed to be secure against quantum attacks. To this end, we develop a new technique in code-based cryptography. Specifically, we propose new decoders for quasi-cyclic moderate density parity-check (QC-MDPC) codes. These codes were proposed by Misoczki et al.\ for use in the McEliece scheme. The use of QC-MDPC codes avoids attacks applicable when using low-density parity-check (LDPC) codes and also allows for keys with short size. Although we focus on decoding for a particular instance of the p-ary QC-MDPC scheme, our new decoding algorithm is also a general decoding method for p-ary MDPC-like schemes. This algorithm is a bit-flipping decoder, and its performance is improved by varying thresholds for the different iterations. Experimental results demonstrate that our decoders enjoy a very low decoding failure rate for the chosen p-ary QC-MDPC instance. This is the result of joint work with Guo and Johansson.Doktorgradsavhandlin

    A Discrete Logarithm-based Approach to Compute Low-Weight Multiples of Binary Polynomials

    Full text link
    Being able to compute efficiently a low-weight multiple of a given binary polynomial is often a key ingredient of correlation attacks to LFSR-based stream ciphers. The best known general purpose algorithm is based on the generalized birthday problem. We describe an alternative approach which is based on discrete logarithms and has much lower memory complexity requirements with a comparable time complexity.Comment: 12 page

    Contributions to Confidentiality and Integrity Algorithms for 5G

    Get PDF
    The confidentiality and integrity algorithms in cellular networks protect the transmission of user and signaling data over the air between users and the network, e.g., the base stations. There are three standardised cryptographic suites for confidentiality and integrity protection in 4G, which are based on the AES, SNOW 3G, and ZUC primitives, respectively. These primitives are used for providing a 128-bit security level and are usually implemented in hardware, e.g., using IP (intellectual property) cores, thus can be quite efficient. When we come to 5G, the innovative network architecture and high-performance demands pose new challenges to security. For the confidentiality and integrity protection, there are some new requirements on the underlying cryptographic algorithms. Specifically, these algorithms should: 1) provide 256 bits of security to protect against attackers equipped with quantum computing capabilities; and 2) provide at least 20 Gbps (Gigabits per second) speed in pure software environments, which is the downlink peak data rate in 5G. The reason for considering software environments is that the encryption in 5G will likely be moved to the cloud and implemented in software. Therefore, it is crucial to investigate existing algorithms in 4G, checking if they can satisfy the 5G requirements in terms of security and speed, and possibly propose new dedicated algorithms targeting these goals. This is the motivation of this thesis, which focuses on the confidentiality and integrity algorithms for 5G. The results can be summarised as follows.1. We investigate the security of SNOW 3G under 256-bit keys and propose two linear attacks against it with complexities 2172 and 2177, respectively. These cryptanalysis results indicate that SNOW 3G cannot provide the full 256-bit security level. 2. We design some spectral tools for linear cryptanalysis and apply these tools to investigate the security of ZUC-256, the 256-bit version of ZUC. We propose a distinguishing attack against ZUC-256 with complexity 2236, which is 220 faster than exhaustive key search. 3. We design a new stream cipher called SNOW-V in response to the new requirements for 5G confidentiality and integrity protection, in terms of security and speed. SNOW-V can provide a 256-bit security level and achieve a speed as high as 58 Gbps in software based on our extensive evaluation. The cipher is currently under evaluation in ETSI SAGE (Security Algorithms Group of Experts) as a promising candidate for 5G confidentiality and integrity algorithms. 4. We perform deeper cryptanalysis of SNOW-V to ensure that two common cryptanalysis techniques, guess-and-determine attacks and linear cryptanalysis, do not apply to SNOW-V faster than exhaustive key search. 5. We introduce two minor modifications in SNOW-V and propose an extreme performance variant, called SNOW-Vi, in response to the feedback about SNOW-V that some use cases are not fully covered. SNOW-Vi covers more use cases, especially some platforms with less capabilities. The speeds in software are increased by 50% in average over SNOW-V and can be up to 92 Gbps.Besides these works on 5G confidentiality and integrity algorithms, the thesis is also devoted to local pseudorandom generators (PRGs). 6. We investigate the security of local PRGs and propose two attacks against some constructions instantiated on the P5 predicate. The attacks improve existing results with a large gap and narrow down the secure parameter regime. We also extend the attacks to other local PRGs instantiated on general XOR-AND and XOR-MAJ predicates and provide some insight in the choice of safe parameters

    Some Notes on Code-Based Cryptography

    Get PDF
    This thesis presents new cryptanalytic results in several areas of coding-based cryptography. In addition, we also investigate the possibility of using convolutional codes in code-based public-key cryptography. The first algorithm that we present is an information-set decoding algorithm, aiming towards the problem of decoding random linear codes. We apply the generalized birthday technique to information-set decoding, improving the computational complexity over previous approaches. Next, we present a new version of the McEliece public-key cryptosystem based on convolutional codes. The original construction uses Goppa codes, which is an algebraic code family admitting a well-defined code structure. In the two constructions proposed, large parts of randomly generated parity checks are used. By increasing the entropy of the generator matrix, this presumably makes structured attacks more difficult. Following this, we analyze a McEliece variant based on quasi-cylic MDPC codes. We show that when the underlying code construction has an even dimension, the system is susceptible to, what we call, a squaring attack. Our results show that the new squaring attack allows for great complexity improvements over previous attacks on this particular McEliece construction. Then, we introduce two new techniques for finding low-weight polynomial multiples. Firstly, we propose a general technique based on a reduction to the minimum-distance problem in coding, which increases the multiplicity of the low-weight codeword by extending the code. We use this algorithm to break some of the instances used by the TCHo cryptosystem. Secondly, we propose an algorithm for finding weight-4 polynomials. By using the generalized birthday technique in conjunction with increasing the multiplicity of the low-weight polynomial multiple, we obtain a much better complexity than previously known algorithms. Lastly, two new algorithms for the learning parities with noise (LPN) problem are proposed. The first one is a general algorithm, applicable to any instance of LPN. The algorithm performs favorably compared to previously known algorithms, breaking the 80-bit security of the widely used (512,1/8) instance. The second one focuses on LPN instances over a polynomial ring, when the generator polynomial is reducible. Using the algorithm, we break an 80-bit security instance of the Lapin cryptosystem
    corecore