84 research outputs found

    電力系統の静的および動的セキュリティ評価増強のための同期位相計測装置の最適配置

    Get PDF
    九州工業大学博士学位論文 学位記番号:工博甲第490号 学位授与年月日:令和2年3月25日1 INTRODUCTION|2 PMU-BASED POWER SYSTEM MONITORING AND CONTROL|3 OPTIMAL PMU PLACEMENT PROBLEM AND STATE ESTIMATION|4 MULTI OBJECTIVE PMU PLACEMENT WITH CURRENT CHANNEL SELECTION|5 INFLUENCE OF MEASUREMENT UNCERTAINTY PROPAGATION IN PMU PSEUDO MEASUREMENT|6 PHASOR-ASSISTED VOLTAGE STABILITY ASSESSMENT BASED ON OPTIMALLY PLACED PMUS|7 PMU PLACEMENT FOR DYNAMIC VULNERABILITY ASSESSMENT|8 CONCLUSIONS九州工業大学令和元年

    Cascading Outages Detection and Mitigation Tool to Prevent Major Blackouts

    Get PDF
    Due to a rise of deregulated electric market and deterioration of aged power system infrastructure, it become more difficult to deal with the grid operating contingencies. Several major blackouts in the last two decades has brought utilities to focus on development of Wide Area Monitoring, Protection and Control (WAMPAC) systems. Availability of common measurement time reference as the fundamental requirement of WAMPAC system is attained by introducing the Phasor Measurement Units, or PMUs that are taking synchronized measurements using the GPS clock signal. The PMUs can calculate time-synchronized phasor values of voltage and currents, frequency and rate of change of frequency. Such measurements, alternatively called synchrophasors, can be utilized in several applications including disturbance and islanding detection, and control schemes. In this dissertation, an integrated synchrophasor-based scheme is proposed to detect, mitigate and prevent cascading outages and severe blackouts. This integrated scheme consists of several modules. First, a fault detector based on electromechanical wave oscillations at buses equipped with PMUs is proposed. Second, a system-wide vulnerability index analysis module based on voltage and current synchrophasor measurements is proposed. Third, an islanding prediction module which utilizes an offline islanding database and an online pattern recognition neural network is proposed. Finally, as the last resort to interrupt series of cascade outages, a controlled islanding module is developed which uses spectral clustering algorithm along with power system state variable and generator coherency information

    Cascading Outages Detection and Mitigation Tool to Prevent Major Blackouts

    Get PDF
    Due to a rise of deregulated electric market and deterioration of aged power system infrastructure, it become more difficult to deal with the grid operating contingencies. Several major blackouts in the last two decades has brought utilities to focus on development of Wide Area Monitoring, Protection and Control (WAMPAC) systems. Availability of common measurement time reference as the fundamental requirement of WAMPAC system is attained by introducing the Phasor Measurement Units, or PMUs that are taking synchronized measurements using the GPS clock signal. The PMUs can calculate time-synchronized phasor values of voltage and currents, frequency and rate of change of frequency. Such measurements, alternatively called synchrophasors, can be utilized in several applications including disturbance and islanding detection, and control schemes. In this dissertation, an integrated synchrophasor-based scheme is proposed to detect, mitigate and prevent cascading outages and severe blackouts. This integrated scheme consists of several modules. First, a fault detector based on electromechanical wave oscillations at buses equipped with PMUs is proposed. Second, a system-wide vulnerability index analysis module based on voltage and current synchrophasor measurements is proposed. Third, an islanding prediction module which utilizes an offline islanding database and an online pattern recognition neural network is proposed. Finally, as the last resort to interrupt series of cascade outages, a controlled islanding module is developed which uses spectral clustering algorithm along with power system state variable and generator coherency information

    Review of Clustering Methods for Slow Coherency-Based Generator Grouping

    Get PDF
    Slow coherency is one of the most relevant concepts used in power systems dynamics to group generators that exhibit similar response to disturbances. Among the approaches developed for generator grouping based on slow coherency, clustering algorithms play a significant role. This paper reviews the clustering algorithms applied in model-based and data-driven approaches, highlighting the metrics used, the feature selection, the types of algorithms and the comparison among the results obtained considering simulated or measured data

    Impact Assessment, Detection, And Mitigation Of False Data Attacks In Electrical Power Systems

    Get PDF
    The global energy market has seen a massive increase in investment and capital flow in the last few decades. This has completely transformed the way power grids operate - legacy systems are now being replaced by advanced smart grid infrastructures that attest to better connectivity and increased reliability. One popular example is the extensive deployment of phasor measurement units, which is referred to PMUs, that constantly provide time-synchronized phasor measurements at a high resolution compared to conventional meters. This enables system operators to monitor in real-time the vast electrical network spanning thousands of miles. However, a targeted cyber attack on PMUs can prompt operators to take wrong actions that can eventually jeopardize the power system reliability. Such threats originating from the cyber-space continue to increase as power grids become more dependent on PMU communication networks. Additionally, these threats are becoming increasingly efficient in remaining undetected for longer periods while gaining deep access into the power networks. An attack on the energy sector immediately impacts national defense, emergency services, and all aspects of human life. Cyber attacks against the electric grid may soon become a tactic of high-intensity warfare between nations in near future and lead to social disorder. Within this context, this dissertation investigates the cyber security of PMUs that affects critical decision-making for a reliable operation of the power grid. In particular, this dissertation focuses on false data attacks, a key vulnerability in the PMU architecture, that inject, alter, block, or delete data in devices or in communication network channels. This dissertation addresses three important cyber security aspects - (1) impact assessment, (2) detection, and (3) mitigation of false data attacks. A comprehensive background of false data attack models targeting various steady-state control blocks is first presented. By investigating inter-dependencies between the cyber and the physical layers, this dissertation then identifies possible points of ingress and categorizes risk at different levels of threats. In particular, the likelihood of cyber attacks against the steady-state power system control block causing the worst-case impacts such as cascading failures is investigated. The case study results indicate that false data attacks do not often lead to widespread blackouts, but do result in subsequent line overloads and load shedding. The impacts are magnified when attacks are coordinated with physical failures of generators, transformers, or heavily loaded lines. Further, this dissertation develops a data-driven false data attack detection method that is independent of existing in-built security mechanisms in the state estimator. It is observed that a convolutional neural network classifier can quickly detect and isolate false measurements compared to other deep learning and traditional classifiers. Finally, this dissertation develops a recovery plan that minimizes the consequence of threats when sophisticated attacks remain undetected and have already caused multiple failures. Two new controlled islanding methods are developed that minimize the impact of attacks under the lack of, or partial information on the threats. The results indicate that the system operators can successfully contain the negative impacts of cyber attacks while creating stable and observable islands. Overall, this dissertation presents a comprehensive plan for fast and effective detection and mitigation of false data attacks, improving cyber security preparedness, and enabling continuity of operations

    Impact Assessment, Detection, and Mitigation of False Data Attacks in Electrical Power Systems

    Get PDF
    The global energy market has seen a massive increase in investment and capital flow in the last few decades. This has completely transformed the way power grids operate - legacy systems are now being replaced by advanced smart grid infrastructures that attest to better connectivity and increased reliability. One popular example is the extensive deployment of phasor measurement units, which is referred to PMUs, that constantly provide time-synchronized phasor measurements at a high resolution compared to conventional meters. This enables system operators to monitor in real-time the vast electrical network spanning thousands of miles. However, a targeted cyber attack on PMUs can prompt operators to take wrong actions that can eventually jeopardize the power system reliability. Such threats originating from the cyber-space continue to increase as power grids become more dependent on PMU communication networks. Additionally, these threats are becoming increasingly efficient in remaining undetected for longer periods while gaining deep access into the power networks. An attack on the energy sector immediately impacts national defense, emergency services, and all aspects of human life. Cyber attacks against the electric grid may soon become a tactic of high-intensity warfare between nations in near future and lead to social disorder. Within this context, this dissertation investigates the cyber security of PMUs that affects critical decision-making for a reliable operation of the power grid. In particular, this dissertation focuses on false data attacks, a key vulnerability in the PMU architecture, that inject, alter, block, or delete data in devices or in communication network channels. This dissertation addresses three important cyber security aspects - (1) impact assessment, (2) detection, and (3) mitigation of false data attacks. A comprehensive background of false data attack models targeting various steady-state control blocks is first presented. By investigating inter-dependencies between the cyber and the physical layers, this dissertation then identifies possible points of ingress and categorizes risk at different levels of threats. In particular, the likelihood of cyber attacks against the steady-state power system control block causing the worst-case impacts such as cascading failures is investigated. The case study results indicate that false data attacks do not often lead to widespread blackouts, but do result in subsequent line overloads and load shedding. The impacts are magnified when attacks are coordinated with physical failures of generators, transformers, or heavily loaded lines. Further, this dissertation develops a data-driven false data attack detection method that is independent of existing in-built security mechanisms in the state estimator. It is observed that a convolutional neural network classifier can quickly detect and isolate false measurements compared to other deep learning and traditional classifiers. Finally, this dissertation develops a recovery plan that minimizes the consequence of threats when sophisticated attacks remain undetected and have already caused multiple failures. Two new controlled islanding methods are developed that minimize the impact of attacks under the lack of, or partial information on the threats. The results indicate that the system operators can successfully contain the negative impacts of cyber attacks while creating stable and observable islands. Overall, this dissertation presents a comprehensive plan for fast and effective detection and mitigation of false data attacks, improving cyber security preparedness, and enabling continuity of operations

    Intentional Controlled Islanding in Wide Area Power Systems with Large Scale Renewable Power Generation to Prevent Blackout

    Get PDF
    Intentional controlled islanding is a solution to prevent blackouts following a large disturbance. This study focuses on determining island boundaries while maintaining the stability of formed islands and minimising load shedding. A new generator coherency identification framework based on the dynamic coupling of generators and Support Vector Clustering method is proposed to address this challenge. A Mixed Integer Linear Programming model is formulated to minimize power flow disruption and load shedding, and ensure the stability of islanding. The proposed algorithm was validated in 39-bus and 118-bus test systems
    corecore