2,274 research outputs found

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Routing, Localization And Positioning Protocols For Wireless Sensor And Actor Networks

    Get PDF
    Wireless sensor and actor networks (WSANs) are distributed systems of sensor nodes and actors that are interconnected over the wireless medium. Sensor nodes collect information about the physical world and transmit the data to actors by using one-hop or multi-hop communications. Actors collect information from the sensor nodes, process the information, take decisions and react to the events. This dissertation presents contributions to the methods of routing, localization and positioning in WSANs for practical applications. We first propose a routing protocol with service differentiation for WSANs with stationary nodes. In this setting, we also adapt a sports ranking algorithm to dynamically prioritize the events in the environment depending on the collected data. We extend this routing protocol for an application, in which sensor nodes float in a river to gather observations and actors are deployed at accessible points on the coastline. We develop a method with locally acting adaptive overlay network formation to organize the network with actor areas and to collect data by using locality-preserving communication. We also present a multi-hop localization approach for enriching the information collected from the river with the estimated locations of mobile sensor nodes without using positioning adapters. As an extension to this application, we model the movements of sensor nodes by a subsurface meandering current mobility model with random surface motion. Then we adapt the introduced routing and network organization methods to model a complete primate monitoring system. A novel spatial cut-off preferential attachment model and iii center of mass concept are developed according to the characteristics of the primate groups. We also present a role determination algorithm for primates, which uses the collection of spatial-temporal relationships. We apply a similar approach to human social networks to tackle the problem of automatic generation and organization of social networks by analyzing and assessing interaction data. The introduced routing and localization protocols in this dissertation are also extended with a novel three dimensional actor positioning strategy inspired by the molecular geometry. Extensive simulations are conducted in OPNET simulation tool for the performance evaluation of the proposed protocol

    Study on Different Topology Manipulation Algorithms in Wireless Sensor Network

    Get PDF
    Wireless sensor network (WSN) comprises of spatially distributed autonomous sensors to screen physical or environmental conditions and to agreeably go their information through the network to a principle area. One of the critical necessities of a WSN is the efficiency of vitality, which expands the life time of the network. At the same time there are some different variables like Load Balancing, congestion control, coverage, Energy Efficiency, mobility and so on. A few methods have been proposed via scientists to accomplish these objectives that can help in giving a decent topology control. In the piece, a few systems which are accessible by utilizing improvement and transformative strategies that give a multi target arrangement are examined. In this paper, we compare different algorithms' execution in view of a few parameters intended for every target and the outcomes are analyzed. DOI: 10.17762/ijritcc2321-8169.15029

    Mathematical Models and Algorithms for Network Flow Problems Arising in Wireless Sensor Network Applications

    Get PDF
    We examine multiple variations on two classical network flow problems, the maximum flow and minimum-cost flow problems. These two problems are well-studied within the optimization community, and many models and algorithms have been presented for their solution. Due to the unique characteristics of the problems we consider, existing approaches cannot be directly applied. The problem variations we examine commonly arise in wireless sensor network (WSN) applications. A WSN consists of a set of sensors and collection sinks that gather and analyze environmental conditions. In addition to providing a taxonomy of relevant literature, we present mathematical programming models and algorithms for solving such problems. First, we consider a variation of the maximum flow problem having node-capacity restrictions. As an alternative to solving a single linear programming (LP) model, we present two alternative solution techniques. The first iteratively solves two smaller auxiliary LP models, and the second is a heuristic approach that avoids solving any LP. We also examine a variation of the maximum flow problem having semicontinuous restrictions that requires the flow, if positive, on any path to be greater than or equal to a minimum threshold. To avoid solving a mixed-integer programming (MIP) model, we present a branch-and-price algorithm that significantly improves the computational time required to solve the problem. Finally, we study two dynamic network flow problems that arise in wireless sensor networks under non-simultaneous flow assumptions. We first consider a dynamic maximum flow problem that requires an arc to transmit a minimum amount of flow each time it begins transmission. We present an MIP for solving this problem along with a heuristic algorithm for its solution. Additionally, we study a dynamic minimum-cost flow problem, in which an additional cost is incurred each time an arc begins transmission. In addition to an MIP, we present an exact algorithm that iteratively solves a relaxed version of the MIP until an optimal solution is found
    • …
    corecore