774 research outputs found

    SWIFT: Predictive Fast Reroute

    Get PDF
    Network operators often face the problem of remote outages in transit networks leading to significant (sometimes on the order of minutes) downtimes. The issue is that BGP, the Internet routing protocol, often converges slowly upon such outages, as large bursts of messages have to be processed and propagated router by router. In this paper, we present SWIFT, a fast-reroute framework which enables routers to restore connectivity in few seconds upon remote outages. SWIFT is based on two novel techniques. First, SWIFT deals with slow outage notification by predicting the overall extent of a remote failure out of few control-plane (BGP) messages. The key insight is that significant inference speed can be gained at the price of some accuracy. Second, SWIFT introduces a new data-plane encoding scheme, which enables quick and flexible update of the affected forwarding entries. SWIFT is deployable on existing devices, without modifying BGP. We present a complete implementation of SWIFT and demonstrate that it is both fast and accurate. In our experiments with real BGP traces, SWIFT predicts the extent of a remote outage in few seconds with an accuracy of ~90% and can restore connectivity for 99% of the affected destinations

    On the Design of Clean-Slate Network Control and Management Plane

    Get PDF
    We provide a design of clean-slate control and management plane for data networks using the abstraction of 4D architecture, utilizing and extending 4D’s concept of a logically centralized Decision plane that is responsible for managing network-wide resources. In this paper, a scalable protocol and a dynamically adaptable algorithm for assigning Data plane devices to a physically distributed Decision plane are investigated, that enable a network to operate with minimal configuration and human intervention while providing optimal convergence and robustness against failures. Our work is especially relevant in the context of ISPs and large geographically dispersed enterprise networks. We also provide an extensive evaluation of our algorithm using real-world and artificially generated ISP topologies along with an experimental evaluation using ns-2 simulator

    Internet routing paths stability model and relation to forwarding paths

    Get PDF
    Analysis of real datasets to characterize the local stability properties of the Internet routing paths suggests that extending the route selection criteria to account for such property would not increase the routing path length. Nevertheless, even if selecting a more stable routing path could be considered as valuable from a routing perspective, it does not necessarily imply that the associated forwarding path would be more stable. Hence, if the dynamics of the Internet routing and forwarding system show different properties, then one can not straightforwardly derive the one from the other. If this assumption is verified, then the relationship between the stability of the forwarding path (followed by the traffic) and the corresponding routing path as selected by the path-vector routing algorithm requires further characterization. For this purpose, we locally relate, i.e., at the router level, the stability properties of routing path with the corresponding forwarding path. The proposed stability model and measurement results verify this assumption and show that, although the main cause of instability results from the forwarding plane, a second order effect relates forwarding and routing path instability events. This observation provides the first indication that differential stability can safely be taken into account as part of the route selection process

    Fast emergency paths schema to overcome transient link failures in ospf routing

    Full text link
    A reliable network infrastructure must be able to sustain traffic flows, even when a failure occurs and changes the network topology. During the occurrence of a failure, routing protocols, like OSPF, take from hundreds of milliseconds to various seconds in order to converge. During this convergence period, packets might traverse a longer path or even a loop. An even worse transient behaviour is that packets are dropped even though destinations are reachable. In this context, this paper describes a proactive fast rerouting approach, named Fast Emergency Paths Schema (FEP-S), to overcome problems originating from transient link failures in OSPF routing. Extensive experiments were done using several network topologies with different dimensionality degrees. Results show that the recovery paths, obtained by FEPS, are shorter than those from other rerouting approaches and can improve the network reliability by reducing the packet loss rate during the routing protocols convergence caused by a failure.Comment: 18 page

    Optimization of BGP Convergence and Prefix Security in IP/MPLS Networks

    Get PDF
    Multi-Protocol Label Switching-based networks are the backbone of the operation of the Internet, that communicates through the use of the Border Gateway Protocol which connects distinct networks, referred to as Autonomous Systems, together. As the technology matures, so does the challenges caused by the extreme growth rate of the Internet. The amount of BGP prefixes required to facilitate such an increase in connectivity introduces multiple new critical issues, such as with the scalability and the security of the aforementioned Border Gateway Protocol. Illustration of an implementation of an IP/MPLS core transmission network is formed through the introduction of the four main pillars of an Autonomous System: Multi-Protocol Label Switching, Border Gateway Protocol, Open Shortest Path First and the Resource Reservation Protocol. The symbiosis of these technologies is used to introduce the practicalities of operating an IP/MPLS-based ISP network with traffic engineering and fault-resilience at heart. The first research objective of this thesis is to determine whether the deployment of a new BGP feature, which is referred to as BGP Prefix Independent Convergence (PIC), within AS16086 would be a worthwhile endeavour. This BGP extension aims to reduce the convergence delay of BGP Prefixes inside of an IP/MPLS Core Transmission Network, thus improving the networks resilience against faults. Simultaneously, the second research objective was to research the available mechanisms considering the protection of BGP Prefixes, such as with the implementation of the Resource Public Key Infrastructure and the Artemis BGP Monitor for proactive and reactive security of BGP prefixes within AS16086. The future prospective deployment of BGPsec is discussed to form an outlook to the future of IP/MPLS network design. As the trust-based nature of BGP as a protocol has become a distinct vulnerability, thus necessitating the use of various technologies to secure the communications between the Autonomous Systems that form the network to end all networks, the Internet

    Issues in Routing Mechanism for Packets Forwarding: A Survey

    Get PDF
    Nowadays internet has become more popular to each and every one. It is very sensitive to nodes or links failure due to many known or unknown issues in the network connectivity. Routing is the important concept in wired and wireless network for packet transmission. During the packet transmission many times some of the problems occur, due to this packets are being lost or nodes not able to transmit the packets to the specific destination. This paper discusses various issues and approaches related to the routing mechanism. In this paper, we present a review and comparison of different routing algorithms and protocols proposed recently in order to address various issues. The main purpose of this study is to address issues for packet forwarding like network control management, load balancing, congestion control, convergence time and instability. We also focus on the impact of these issues on packet forwarding

    End-Site Routing Support for IPv6 Multihoming

    Get PDF
    Multihoming is currently widely used to provide fault tolerance and traffic engineering capabilities. It is expected that, as telecommunication costs decrease, its adoption will become more and more prevalent. Current multihoming support is not designed to scale up to the expected number of multihomed sites, so alternative solutions are required, especially for IPv6. In order to preserve interdomain routing scalability, the new multihoming solution has to be compatible with Provider Aggregatable addressing. However, such addressing scheme imposes the configuration of multiple prefixes in multihomed sites, which in turn causes several operational difficulties within those sites that may even result in communication failures when all the ISPs are working properly. In this paper we propose the adoption of Source Address Dependent routing within the multihomed site to overcome the identified difficulties.Publicad
    • …
    corecore