
On the Design of Clean-Slate Network Control and
Management Plane

Hammad Iqbal†, Taieb Znati‡

{hiqbal, znati}@cs.pitt.edu

†‡ School of Information Sciences
‡Department of Computer Science

University of Pittsburgh, USA
Pittsburgh, PA 15260

PITT CS TR-09-168

August 2009

Abstract

We provide a design of clean-slate control and management plane for data networks using the abstraction of 4D architecture,
utilizing and extending 4D’s concept of a logically centralized Decision plane that is responsible for managing network-wide
resources. In this paper, a scalable protocol and a dynamically adaptable algorithm for assigning Data plane devices to a physically
distributed Decision plane are investigated, that enable a network to operate with minimal configuration and human intervention
while providing optimal convergence and robustness against failures. Our work is especially relevant in the context of ISPs and
large geographically dispersed enterprise networks. We also provide an extensive evaluation of our algorithm using real-world and
artificially generated ISP topologies along with an experimental evaluation using ns-2 simulator.

This research was sponsored by the NSF under ITR Award ANI-0426886.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12214624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

On the Design of Clean-Slate Network Control and
Management Plane

I. I NTRODUCTION

Present day data networks are controlled by a variety of
distributed routing algorithms (e.g. OSPF, IS-IS, BGP, etc.),
each working independently to achieve some network-wide
objective, while operating collectively on diverse physical
network devices. This has created a situation where each
network function (e.g. inter-domain and intra-domain routing)
maintains a distinct state across many different physical de-
vices and is governed by its own set of configuration rules and
protocol logic, making it extremely difficult to control their
interactions. Consequently, the management of typical data
networks requires extensive manual configuration of individual
protocol parameters, leaving the networks fragile [1]–[3] and
insecure [4].

Effective control and management is especially a challenge
for large and geographically dispersed networks, such as first
and second tier ISPs, where it is important to efficiently
manage the network resources across a large number of het-
erogeneous network devices, while meeting strict constraints
on network availability and reliability. The control of such net-
works has additional challenges as the robustness, scalability
and responsiveness of the control functionality is impacted by
scale and geographical dispersion.

Incremental solutions to improve network management,
including the use of better management tools, have been
ineffective as they try to match the pace of changes in various
device operations and technical advances. Additionally, newer
services and objectives beyond best-effort routing place new
demands on the network control algorithms that are difficult to
meet in the presence of intricate inter-dependencies and dis-
tributed state and logic. This often necessitates the error prone
and laborious process of indirectly inducing desired behavior
in dynamic protocol operation through static configurations,
e.g. traffic engineering [5].

To tackle the challenge of management complexity, an alter-
native approach to incremental solutions involves centraliza-
tion of control state and logic. This approach is the basic tenant
of the 4D architecture [2]. The 4D architecture advocates a
new layering design of the IP networks which separates the
task of packet forwarding, a data layer function, from the task
of network control, an operation and management function.
This separation of data and control layers is in contrast with
the current practice where the data forwarding mechanism
and control logic are intertwined inside monolithic network
devices, such as network routers or switches. This approach
to network control necessitates the centralization of control
state and logic inside alogically centralizedDecision plane,

that is responsible for collecting, computing, and maintaining
the state required by the network devices to operate.

The design of an efficient and robust Decision plane requires
careful consideration of the design efficiency and robustness. A
physically centralized decision plane design was investigated
in [6], [7] where replication of physical Decision Elements
(DE) was used to ensure Decision plane robustness to DE
failures. An alternative design approach was identified in
[8], where the logical Decision plane was distributed over
physically independent DEs. In this design, each DE controls
a subset of the whole network, and works collaboratively with
other DEs to achieve overall network control. However, it is
also important to ensure that the reliability of the physically
distributed control approach matches or exceeds the reliability
offered by today’s distributed architecture.

In this paper, we focus on the design of logically centralized
clean-slate Decision plane using the 4D clean-slate network
paradigm as the basis for developing an efficient, robust, and
reliable network control architecture. We argue that the Deci-
sion plane design should be based on meeting the following
objectives:

• Scalability: The Decision plane must be scalable to net-
work size in terms of the number of routers;

• Robustness:The design should be dynamically adaptable
to failures at both Decision and Data planes.

• Optimal convergence:Total response time of the Decision
plane to any event must be minimized, and the protocol
operating at the Decision plane should be able to converge
quickly enough to operate on the time-scale of events
happening at the Data plane, e.g. router/link failures.

Achieving these objectives requires the development of a
Decision Plane Protocol (DPP) that maintains a network-
wide state across the set of physically distributed DEs, and
presents a uniform interface to the network switches or
routers1. Furthermore, the DEs and their assigned routers
must respond swiftly to events such as failures and traffic
surges. This requires that the delay between the DEs and their
assigned routers be minimized. This paper addresses these
design requirements and presents a Decision plane where a
set of DEs, each governing a subset of routers, collaboratively
maintain a network-wide state to support network-wide routing
decisions.

Our work is especially relevant in the context of ISPs and
similar large and geographically dispersed networks, where

1We use “router” as a generic label for routers or switches in the 4D Data
plane, while “DE” is used to represent Decision Elements in the 4D Decision
plane

2

network-wide control is highly desired but any Decision
plane design must meet stringent challenges of scalability and
robustness, which are explicit design objectives of our scheme.
In our design, an individual member of the Decision plane
only governs a subset of the total number of routers in the
Data plane, and Points Of Presence (POP) in ISP topologies
are naturally amenable to such grouping.

The main contribution of our work is the design of a scalable
logically centralized and physically distributedDecision plane.
The first building block in our design is the formulation of
an optimization problem focused on efficient assignment of
routers to DEs. The solution of this problem leads to an
algorithm that minimizes network delay between the DEs
and their assigned routers while balancing the load at the
DEs. This algorithm is then used in the proposed protocol
that is responsible for the operation of logically centralized
Decision plane. Our paper is organized as follows: We de-
scribe the network model used in our paper in§II. Trade-
offs in the design of assignment algorithm are considered in
§III. In §IV, formulation of the router assignment problem
is presented along with a novel adaptive algorithm for its
solution. §V describes our proposed protocol for logically
centralized Decision plane operation.§VI provides an analysis
of the algorithm’s performance on real world and artificially
generated topologies and§VII describes the simulation results
of our Decision plane implementation. We explore related
work in §VIII and §IX concludes our paper.

II. N ETWORK MODEL

We utilize the abstraction for 4D architecture [2], which
decomposes a data network into four separate planes viz. Data,
Discovery, Dissemination, and Decision plane. This layering
provides a separation of the data forwarding mechanisms,
such as packet forwarding and filtering, from the state and
logic required to manage the network. The Decision plane
of this architecture is therefore responsible for maintaining
information about the state of network devices and utilizing
this centralized view for computing the mechanisms (such
as routing tables) that are required by the network devices.
However physical centralization of the network control logic
is undesirable to avoid potential problems with scalability and
fault-tolerance. Logical centralization of network control is an
alternative, explored earlier in [8] that proposed using a set of
Decision Elements (DEs) which can collaborate to perform the
function of network-wide control, adding a level of distribution
in the Decision plane. We model the Decision plane in this
paper utilizing the same abstraction of logical centralization;
the high-level design of which is exemplified in Fig. 1 for an
ISP topology spanning the continental US with several POPs.
The figure also illustrates the few basic assumptions taken in
our network model.

1) The entire network topology is under a single adminis-
trative control.

2) The Decision plane is fully connected, i.e. there is a path
from each DE to all other DEs that is not dependent on
the operation of Data plane.

POP1

POP2

POP3

DATA PLANE

DECISION PLANE

Logical Link

Physical Link

Fig. 1. Overview of the Decision plane design

3) Positioning of DEs corresponds to the natural geograph-
ical clustering of routers in the Data plane, e.g. within
an ISP POP.

We believe these assumptions are easy to meet in any
reasonably large network where control and management is
presently an issue. The first assumption is necessary for
consistent network-wide management and deserves no further
explanation. The use of dedicated out-of-band control paths
in the second assumption is in contrast with the in-band paths
used in current IP networks, where data and routing informa-
tion packets share the same channels. Although it is possible to
use the same scheme in logically centralized Decision plane
design, we have purposely avoided the potential complexity
and network fragility introduced by piggybacking control
information over data paths. Our use of out-of-band paths is
analogous to the SS7 signaling used in PSTN networks [9]
and can be similarly implemented. Use of separate time-
slots or wavelength channels for control messages is one
way this separation could be accomplished. Finally, our third
assumption positions DEs in accordance with the clustering
of routers in the underlying Data plane, using the techniques
discussed in [8]. This ensures that latency of Decision plane
response, and convergence delay in case of failures, is kept
close to minimum.

In our design, each DE is only responsible for computing
routing tables for the routers under its direct control, i.e.
a subset of the total number of routers in a network. We
refer to this (sub)set of routers as anarea and it marks the
extent of a DE’s direct control over the network. Moreover,
DEs exchange reachability information about their areas and
utilize this information in establishing routing paths between
different areas. In the case of shortest-paths routing, which
we employ for route computation, a path between routers in
two different areas must travel the inter-area links between
them. This results in optimal routes only under the condition
that a similar routing process on the complete topology would
have selected the same path. Similar argument also applies to
the intra-area routes. It is easy to see that this condition is
fulfilled in topologies where distances between routers inside
geographical clusters are less than the distance between the
clusters. We believe network size and geographical distances
between sub-entities in enterprise and ISP networks naturally
allow the fulfillment of this condition.

3

e1 e2r1

r4

r3r2

Fig. 2. Effect of contiguity constraint on a sample topology where multi-hop
router assignments are indicated by dashed lines. The (infeasible) assignment
of router r4 to DE e2 would have resulted in minimal delay and optimal
load-balancing.

III. T RADE-OFFS INDECISION PLANE DESIGN

Robustness of the Decision plane is dependent on the
mechanisms employed to ensure its continued functioning in
case of failures. While the Decision plane routing logic deals
with failures happening at the Data plane, the mitigation of
failures at the Decision plane is dependent on its own design.
An approach to this problem was presented in [7], where the
Decision plane was designed to be physically centralized and
multiple hot-standby DEs were used to increase its robustness
in case the current “master” DE fails.

In contrast, a DE in a logically centralized Decision plane
is not required to control the entire AS; only a subset of the
total number of routers are under the control of a single DE.
Any DE failure would therefore orphan the routers under its
control. This calls for a scheme that reassigns orphaned routers
to the functional DEs so that network control is reinstated.

This assignment of routers takes place both at network
bootstrap and as a result of DE failures. It involves a trade-
off in minimizing routing convergence delay, response time,
and load balancing at the Decision layer. The routing con-
vergence delay — transient time period between DE failure
and orphaned routers’ reception of new routing assignments
— represents loss of management control over the orphaned
devices, and must be minimized. Similarly, in normal oper-
ation the response time of Decision plane also needs to be
minimized. In both cases, aggregate router-DE delay provides
a natural metric for the minimization objective. Additionally,
large variation in DE loads must be avoided as it can result in
slower Decision plane response in parts of the networks and
increased potential for DE failures.

Assignment mechanism is also constrained in a unique
way as any router assignment must adhere to the underlying
physical data plane topology. Specifically, since a DE only
controls the routers in its own area, the assignment mechanism
must avoid any assignment that involves the usage of inter-
area paths between routers belonging to the same area. This
condition is necessary to ensure that routers in an area can be
governed locally without requiring global network knowledge.
Therefore, there must be a physical path between routers that
are assigned to the same DE that does not involve any links or
routers not totally contained within the same area. We refer to
this condition as the contiguity constraint and Fig. 2 illustrates
a simple example where the assignment that is optimal in terms
of delay and load balancing objectives does not satisfy the
contiguity requirement.

Trade-offs also exist between complexity of a recovery

scheme and the desired level of robustness. For example, we
can generalize a simple scheme of using backups as proposed
in [7], [10], where each router is statically configured with
a primary and an ordered list of standby DEs. Failure of
the primary DE automatically results in the assignment of its
orphaned routers to their highest-ranked functional DEs. How-
ever, it is easy to show that this scheme can lead to uneven DE
workloads in case of multiple DE failures, potentially causing
severe performance degradation. Therefore, we note that while
fixed ordering schemes may work for single DE failure sce-
narios, it is desirable to have an adaptive mechanism, that can
assign orphaned routers to feasible DEs while, 1., balancing
the DE workload and, 2., minimizing the propagation delays
between routers and DEs. In the following section we describe
our design of such adaptive router assignment mechanism.

IV. A DAPTIVE ASSIGNMENT OFDATA PLANE DEVICES

Let R = {r1, r2, ..., rm} be the collection of routers in a
AS, assumed to be homogeneous in terms of their demands of
Decision plane resources, andE = {e1, e2, ..., en} be the set
of n functional DEs in the network. For anyri, N(ri) denotes
the set of routers in physical open neighborhood ofri, i.e. ri

and all of its physically adjacent routers. We defineA(ej) to
be the set of routers assigned toej and A as the adjacency
matrix of router assignments for all DEs inE, which is the
output of the assignment problem. Letx(ri, ej) be a binary
indicator variable defined asx(ri, ej) = 1 ⇐⇒ ej ← ri. Let
d(ri, ej) be the minimum delay between routerri and a DE
ej , andD[d(ri, ej)]mxn be the matrix of all such delays. Let
Lj =

∑
ri∈R x(ri, ej) be the load on DEej and Qj be the

capacity, i.e. the maximum number of routers, thatej is able
to govern.

We assume that information about the network topology,
specifically router adjacencies and delay, would be available
to the Decision plane as part of the service offered by the
Discovery and Dissemination planes of 4D architecture. Use
of source routes [7], [10] is one method by which such
information can be collected, and§V-B discusses the protocol
primitives that can be used for inter-layer communication.
However, the design specifics of Discovery and Dissemination
planes are beyond the scope of this work.

A. ILP Formulation

From the discussion of the previous section, the objective
of the assignment problem is to assign routers inR to DEs
in E in such a way that aggregate delay between routers
and their assigned DEs is minimized, while ensuring that the
DE workload is balanced. Formally, we define our objective
function as

∑
ej∈E

∑
ri∈Rd(ri, ej)x(ri, ej) and introduce a

constraint to balance the loads using the average loadLavg,
and a load balancing parameter∆ ≥ 1.

Lavg = m/
∑
ej

Qj 0 < Lavg ≤ 1

4

The optimization problem can be formulated as the following
ILP:

Minimize
∑

ej∈E

∑
ri∈R

d(ri, ej)x(ri, ej) (1)

s.t.∑
ej∈E

x(ri, ej) = 1 ∀ri∈R (2)

∑
ri∈R

x(ri, ej)−Qj ≤ 0 ∀ej∈E (3)

Lj ≤ d∆LavgQje ∀ej∈E (4)∑
rk∈N(ri)

x(rk, ej) ≥ x(ri, ej) |A(ej)|≥1,∀ri∈R (5)

x(ri, ej) ∈ {0, 1} ∀ri∈R,ej∈E (6)

The objective function minimizes aggregate delay between
routers and their assigned DEs. Constraint (2) ensures that
each router inR is assigned, (3) ensures that the DE workload
capacities are not violated, and (5) imposes the contiguity
requirement.

The load balancing constraint (4) is weighted by a param-
eter, ∆, which controls the maximum deviation of a DE’s
normalized workload from the average normalized workload
for all DEs. Setting∆ = 1 would force workloads of all DEs
to be exactly equal to the average normalized workload, or in
other words each DE will have the same fractional utilization
of its capacity as all others. In case of homogeneous DE
capacities this translates to an equal workload for all DEs.
On the other hand,∆ > 1 allows the normalized workload of
at least one DE to be higher than the average by(∆−1)∗100
percentage.

The value of ∆ also dictates the trade-off between the
objectives of minimum aggregate delay and load balancing
as it changes the feasible set of solutions. A large value of∆
optimizes a solution for the objective of minimizing aggregate
delay, while a tighter constraint will show significant trade-off
in favor of load balancing. The addition of a hard constraint for
load balancing comes at the cost of reduced feasibility where
optimal solutions could be infeasible because of a choice
of ∆ which is too low. This situation is likely to arise in
tightly constrained problems especially in the event of reduced
capacity as a result of DE failures. However, the dependence
of (4) on the average normalized workload ensures that the
formulation dynamically adapts to failures, as a DE failure
lowers the total available capacity thereby increasing right
hand side of the constraint. This will result in higher workload
shares for the remaining functional DEs to accommodate the
orphaned routers. If the total capacity of the remaining DEs is
less than the workload offered by the Data plane, no feasible
solution will exist for the problem.

Our approach is different from the traditional load balancing
method of minimizing the maximum load, and provides better
control to a network operator while ensuring robust and
efficient operation of the Decision plane. The sub-problem
with only the minimum delay objective and (2), (3) and (6) is
commonly referred to as Terminal Assignment Problem [11].

B. Two-phase Router Assignment Algorithm

We construct a two-phase exact algorithm to solve the opti-
mization problem. The first phase of the algorithm constructs
an ordering of routers,S, where S is the sorted order of
minimum delay assignments for each router, and greedily
assigns routers in the order ofS to their closest (min-delay)
feasible DEs, if such assignments are possible. To meet the
contiguity constraint (5), a routerri’s assignment is made to
the closest DEej if d(ri, ej) is strictly less than the delay
betweenri and any other DE andej has slack capacity. On
the other hand, if there are other DEs at same delay from
ri as ej , ri is assigned to a feasible DE that has an existing
assignment inN(ri). Otherwise,ri is kept unassigned.

The goal of the first phase of algorithm is to make all
feasible lowest-cost assignments that can be made without
changing any previously made assignments. This phase con-
structs an optimal solution for the assigned routers. Any
routers that remain unassigned after the first phase are assigned
by the second phase using a branch exchange algorithm that
iteratively accommodates previously unassigned routers, while
maintaining feasibility of the solution. Our solution isO(m2n)
in the worst case, and finds optimal solution to the assignment
problem if it exists.

1) Greedy Phase:We utilize a greedy heuristic to assign
routers to DEs while maintaining the feasibility of solution.
Since, by definition, a greedy approach does not make any
changes to its local decisions, the order in which decisions
are taken becomes important. Our approach considers routers
in the order of lowest assignment costs for each router.
Assignments are made only with a feasible min-delay DE,
where feasibility is determined by the constraints given in
§IV-A. Fig. 3 describes the definitions and operation of this
phase.

Lemma 1:Let x(rsi , e
si

k) be an assignment made in the
greedy phase. By construction,d(rsi

, esi

k) ≤ d(rsi
, esi

j) ∀esi
j ∈

Esi i.e. esi

k must be the minimum cost feasible assignment for
rsi

.
The algorithm explicitly checks a potential assignment

against the capacity (3) and load balancing (4) constraints,
while implicitly meeting the contiguity constraint (5) accord-
ing to the following Lemma:

Lemma 2 (Greedy Phase meets(5)): Since router assign-
ments are done strictly in the order of min-delay, it suffices
to show that routers assigned in this order will meet the
contiguity constraint. We prove this Lemma by induction on
the assignment of a routerrsi

: If A(esi
1) = φ, the Lemma

trivially holds asrsi
must be directly connected withesi

1 by
Lemma 1. For the case ofA(esi

1) 6= φ, we assume that Lemma
holds for i− 1 assignments andrsi is the ith assignment that
violates the Lemma, implying∃ra /∈ A(esi

k) ∀ra ∈ N(rsi
)

Conditioning onra, we observe that there must be a path
from rsi

to esi

k which passes throughra. Hence,d(rsi
, esi

k) =
d(rsi

, ra) + d(ra, esi

k) which impliesd(ra, esi

k) < d(rsi
, esi

k).
Therefore,ra must have been picked by the algorithm before
rsi

and sinceesi

k is a feasible choice forrsi
it must have been

a feasible choice forra. This implies ra is assigned to an
arbitrary DEea

1 whereea
1 6= esi

k and d(ra, ea
1) < d(ra, esi

k).
By substitution, it can be seen that this results ind(rsi

, ea
1) <

5

∀rsi ∈ S rsi → e
si
1

d(rsi , e
si
1) <

d(rsi , e
si
2)

e
si
1 = e

si
k

d(rsi , e
si
k) >

d(rsi , e
si
1)

rsi → U

e
si
q = φ rsi → e

si
q

No

No

Yes

No

Yes

Yes

Yes

No

Ei = {e1i, e2
i, .., en

i} : d(ri, ej
i) ≤ d(ri, ej+1

i)

S = {rs1 , rs2 , .., rsm} : d(rsi , e1
si) ≤ d(rsi+1 , e1

si+1)

U = {Set of unassigned routers}

k = Index of the first feasible DE in Ei

esi
q ∈ Esi k ≤ q < n :

∃ra ∈ N(rsi), A(esi
q)

d(rsi , e
si
q) = d(rsi , e

si
1)

Fig. 3. Greedy Phase Algorithm

d(rsi
, esi

k), thus violating Lemma 1. Therefore,ith assignment
must be valid.

2) Exchange Phase:The greedy phase makes all the fea-
sible min-cost router assignments that can be made without
changing any existing assignment. Consequently, assignment
of an unassigned router after the greedy phase’s completion
may involve a trade-off between sub-optimal assignment to
available DEs or reassignment/exchange of already assigned
routers to allow a lower cost assignment. Therefore, in order to
ensure optimality of the solution, the assignment mechanism
must be able to find the lowest-cost set of exchanges that
allow the assignment of an unassigned router. This mechanism
is provided by the exchange phase, which utilizes a branch-
exchange algorithm, similar in design to the method described
in [11], to construct an auxiliary graph of the network and
uses shortest path algorithm for computing lowest-cost assign-
ments.

In simple terms, auxiliary graph represents the feasible
combinations of router assignment exchanges between DEs,
weighed by the cost of such exchanges. The min-cost path
through the graph represents the min-delay assignment for a
previously unassigned router. Therefore, edges of the graph
represent possible feasible exchanges (and new assignments)
between DEs which, themselves, are represented by the
graph’s vertices. Similar to the greedy phase, feasibility of any
exchange or new assignment depends on conformance to the
constraints presented in§IV-A. Auxiliary graph is constructed

2

1 1

1 1 3

2

1

4

e1 e2

r1 r2 r3 r4

(a) Topology withr1 unassigned.

S F

5

2 2

e1 e2r1

(b) Auxiliary graph where(S, e1) = e1 ← r1 and
(e1, F) = e2 ← r3

Fig. 4. Operation of the exchange phase on a network example where
∆ = 1 and edges are annotated with delay values. The min-cost
assignment is along(S, e1), (e1, F)

according to the following rules:

• There are two special verticesS and F that represent
the source and destination vertices for the shortest path
computation. The shortest path fromS to F , at each
iteration of exchange phase, provides the lowest cost
assignment of one unassigned router.

• There are additional vertices,Y = Y1, Y2, .., Yk, each
corresponding to a fully loaded DE.

• There is an edge(S, Yk) corresponding to potential as-
signment of an unassigned routerYk ← ri : ∃ra ∈
A(Yk), ra ∈ N(ri) with an edge weightd(ri, Yk).
• There is an edge(Yk, Yl) corresponding to a routerri at the

border ofYk andYl’s areas, such thatx(ri, Yk) = 1, ∃ra ∈
A(Yl), ra ∈ N(ri) and the weightd(ri, Yl) − d(ri, Yk) is
positive.

• There is an edge(Yk, F) corresponding to a routerri’s
feasible re-assignment fromYk to a DE ej with slack
capacity. The weight of this edge isd(ri, ej)− d(ri, Yk).
• There is an edge(S, F) with weightd(ri, ej) for ej ← ri.

Lemma 3 (The auxilary graph has no negative cycles):
There can not be any negative cycles involvingS and F
vertices, and so it only remains to be shown that the vertices
in Y do not have any negative cycles between them. We
observe that only edges with positive weights are allowed
between vertices inY , and since a negative cycle implies
edges with negative weights, the Lemma is proven by
construction.
Dijkstra’s shortest path algorithm is used to compute the
shortest path fromS to F on the directed auxiliary graph.
Lemma 3 establishes that Dijkstra’s algorithm, which can only
be used in graphs with no negative cycles, is applicable to the
auxiliary graph. This shortest path represents the minimum
cost set of exchanges that are needed to assign a previously
unassigned router. The auxiliary graph is updated after the

6

assignment and the process repeated until all routers have
been assigned. Fig. 4(a) shows the operation of the exchange
phase for a simple network example and Fig. 4(b) shows the
construction of its auxiliary graph.

3) Complexity: The greedy phase of the algorithm is
O(m). The exchange phase’s complexity is dependent on
the shortest path computation, with worst case complexity
of O(n2). The exchange phase calls Dijkstra’s algorithm for
each unassigned router, resulting in an overall worst case
complexity of O(mn2). In reality, the greedy phase assigns
most of the routers, and the few unassigned routers in tightly-
constrained DE failure scenarios each require one iteration of
the exchange phase. This results in average-case complexity
of Θ(m + kn2), wherek � m. Also, since the number of
routers in a network are expected to be much higher than
the number of DEs, i.e.m � n, complexity of the scheme
is dominated by the complexity of greedy phase, resulting in
very fast run-times e.g. less than3.5s on average in a network
with (m,n,∆) = (1500, 10, 1.0) as described in§VI.

V. DPP PROTOCOL FORDECISION PLANE OPERATION

In this section we discuss the design of an experimental
protocol for the operation of logically centralized Decision
plane using the router assignment algorithm. A discussion of
the main functional requirements of DPP protocol is presented,
followed by a description of the protocol structure and states,
and finally we discuss how the protocol interacts with other
layers of the 4D architecture.

A. Functional Requirements

The protocol operating at the Decision layer is responsible
for management of DEs in providing a uniform network-wide
Decision plane. To effectively meet the design goals specified
in §I, the design needs to conform to the following basic
functional requirements:

• Robustness to multiple failures in the Decision and Data
planes must be insured. This implies a design that incorpo-
rates redundant control logic and storage of network state.

• Any pre-configuration of protocol parameters should be
minimized and the protocol must be able to operate without
constant human intervention.

• Protocol must be easily extensible and evolvable to include
additional functionalities.

• To improve scalability of the Decision plane, the protocol
must distinguish between events which have network-wide
significance vs. events which have their impact limited
within a local DE’s control boundaries. For example,
failure of a redundant link totally contained within a local
area may not have AS-wide significance, while failure
of a backbone link connecting two different areas might
require re-computation of routing matrices at multiple DEs
to redirect traffic away from the affected link.

• The protocol must be able to deal with synchronization
issues expected in the control of a large geographically-
dispersed AS.

Init

Elect
Topology

Discovery

Full

Topology

Update

Assignment

Computation

RT

Computation

E1
E2

E3

E4

E5

E6

E7E8

E9

E10E11

E12

E13E14

E15

E16

E17

Event Description
E1 Network Bootstrap
E2 Addition of a new DE in the network
E3 Reception of topology and assignment from leader
E4 Reboot
E5 Only if not in network bootstrap
E6 Reception of assignment from leader
E7 Local area event
E8 DE failure or router addition. (Leader only)
E9 Leader failure
E10 Reception of new assignment or reachability update
E11 Send RTs and reachability update
E12 Stable network
E13 Reception of new assignment or intra-area event
E14 Send the assignment to other DEs in the network
E15 Network Bootstrap
E16 Only in the case of leader DE
E17 Inter-area event (Leader only)

Fig. 5. State transition diagram for the Decision Plane Protocol

These requirements are not meant to be exhaustive but to
serve as a guideline for the protocol design.

B. Protocol Design

The functional requirements of the previous section provide
a basis for the design of DPP protocol where we incorporate
the following salient design features:

Leader Election: Router assignment algorithm is computed
only by the DE which has been chosen to act as leader. We
utilize a simple leader election protocol based on unique pre-
configured DE identifiers. The leader election protocol is used
at network bootstrap, after the setup of control paths between
DEs, and leader’s failure event. This mechanism fulfills the
design requirements in several ways. Firstly, it does not require
any pre-configuration on part of network operator beyond the
DE identifiers. Secondly, it avoids the potential assignment
conflicts that could arise due to asynchronous computation
of assignments by DEs. Finally, it allows a robust design
as failure of any particular machine does not jeopardize the
network operation.

Network State and Logic: The network state, consist-
ing of the topology information of Data plane and routes

7

Construct Function
get_topo() Request network topology discovery from

the 4D Discovery plane.
send_RT() Send a new RT to the specified router using

the 4D Dissemination plane.
push_event() Used by the 4D Dissemination plane to

signal an event in a DE’s area

TABLE I
APIS USED FOR INTER-LAYER COMMUNICATION

advertised by DEs, is replicated across the Decision plane.
The route advertisements, in the form of DE-DE messages,
provide reachability information about a DE’s area. Frequent
collection of topology information from the lower layers of
the architecture is avoided as it is a costly process in terms
of overhead and delay. This is because the abstraction of area
boundaries does not extend to any lower layers and a request
from the Decision plane for collecting topology information
encompasses the entire network topology. Therefore, we limit
topology discovery to the cases of network bootstrap and
new DE addition only. In other cases, e.g. when a DE is
restarted after a failure, topology discovery is not required
as it had been done previously and the persistent network
state can be acquired from the current leader along with router
assignments.

We make a distinction between events at Data plane by
categorizing them into, 1., Inter-area events, i.e. those affecting
links and routers between Decision plane areas and, 2., Intra-
area events, which are contained within a DE’s area. Only
the former category of events require re-computation of router
assignments and each DE is responsible for the computation
and dissemination of Routing Tables (RT) for its assigned
routers.

Interaction with Other 4D Layers DPP is designed to
require only a small set of APIs from the underlying layers
of the 4D architecture, as listed in table I. This mechanism
is selected with the aim of improving extensibility of the
architecture, allowing this basic set of APIs to be re-used in
any additional control features beyond shortest-paths routing.
The implementation of these APIs in the lower architectural
layers is not explored in this work.

C. Protocol States

A DE is transitioned through several states from initial-
ization to full operation and undergoes further state changes
in response to network events. Fig. 5(a) illustrates the state
machine of the DPP protocol where we utilize the following
states to describe its operation:

Init or initialization state follows immediately after boot-
up. Secure channels for the exchange of control messages
are immediately established with each of DE’s neighbors in
the fully-connected Decision plane. If there are no previously
initialized neighbors, all DEs are transitioned through the
leader election protocol. Otherwise, the current leader checks
a newly booted DE’s identifier to find out if it was previously
initialized.

Elect state is used when there is no leader DE in the
network, which will be the case at network bootstrap, or

in case of leader’s failure. Each DE in the network is pre-
configured with a unique integer identifier. The DEs exchange
their identifiers to elect the one associated with the lowest
identifier as leader.

Topology Discovery In this state, network topology in-
formation is requested from the 4D Discovery layer using
the get_topo() construct. The topology is in the form
of a weighted graph where vertices indicate routers and
edges specify physical adjacencies, which are weighted by
propagation delay of the links. The topology information is
exchanged between DEs to ensure full replication of network
state across the Decision plane.

Router AssignmentThe leader DE transitions into this state
in the event of a DE failure, failure at inter-area links, or an
addition of a new router.

Routing Table Computation is done by each DE for the
routers in its area whenever it receives a new assignment
from leader DE, in case of intra-area events, and when
it receives new reachability information from another DE.
The completion of routing table computation is immediately
followed by an update of each router’s routing table using the
send_RT() construct to the 4D Dissemination plane, and
an update of reachability information to other DEs if the new
computation results in changes to the routes available to their
areas.

Topology Updateis a result of an event in a DE’s area. It re-
quires sending topology update to other DEs in Decision plane
in order to synchronize the network state. Apush_event()
construct allows 4D Dissemination plane to signal such events
to the Decision plane.

Full DE in this state indicates a fully initialized Decision
plane. This state would be maintained in normal operation.

VI. N UMERICAL EVALUATION

In this section we provide results of our evaluation of the
assignment algorithm on real-world and a variety of artificially
generated topologies.

The first set consists of the ISP backbone topologies col-
lected by Rocketfuel project [12]. The second set are artificial
two-tiered hierarchical topologies generated by BRITE [13]
using the GLP model [14]. GLP model along with BRITE
has been reported to generate ISP-like topologies [15], which
we use to model a large-sized ISP topology consisting of
1500 routers and15 DEs. Our evaluation was focused on
determination of the following characteristics:

1) Reassignment of non-orphaned routers: The accommo-
dation of routers orphaned as a result of a DE failure,
may necessitate re-assignment of non-orphaned routers
from other DEs to balance the load among the surviving
DEs. A large percentage of such reassignments could
have an adverse effect on the Decision plane perfor-
mance and it is desirable to reduce such router churn.
We measure this as a percentage of non-orphaned routers
undergoing re-assignment out of the total number of
routers in the network.

2) Computation time: Each failure in the Decision plane
triggers the re-computation of the router assignments.

8

79:294 87:322 104:302 138:744 161:656 315:972
1

1.2

1.4

1.6

1.8

2

Topology (routers:links)

M
in

im
um

 ∆

10%
20%
30%
40%

1 2 3 4 5
1

1.1

1.2

1.3

Number of DE Failures

M
in

im
um

 ∆

d=2
d=4
d=6
d=8

Fig. 6. Trade-off between load balancing and percentage of non-
orphaned router re-assignment. Plots show the minimum value of∆
needed to limit the re-assignments below a given percentage. Top:
(a) Rocketfuel backbone topologies, Bottom: (b) BRITE topologies
of m = 1500 with max. 5% re-assignments

79:147 87:161 104:151 138:372 161:328 315:972

0

0.01

0.02

0.03

0.04

0.05

0.06

Topology (routers:links)

A
ss

ig
nm

en
t C

om
pu

ta
tio

n
Ti

m
e

(s
)

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5
Number of DE Failures

A
ss

ig
nm

en
t C

om
pu

ta
tio

n
Ti

m
e

(s
)

Fig. 7. Box Plot of the computation time for router re-assignment
with ∆ = 1. The box shows the first and third quartile along with the
median. Whiskers show the min. and max. values, while the outliers
are plotted as “+”. Top: (a) Rocketfuel backbone topologies, Bottom:
(b) BRITE topologies withm = 1500

We measured the time taken for each run of the assign-
ment algorithm on a 64 bit 3.6 Ghz machine.

In each topology, we determine the best positioning of
a set of DEs based on the discussion in [8]. Results were
obtained by removing all combinations of “failed” DEs from
the original set. Maximum number of DEs (nmax) was limited
to 15 in BRITE and 10 in Rocketfuel sets. The minimum
number of DEsnmin was constant at5 in both sets, which was
found to be sufficient in attaining near-optimal convergence
delays [8]. The capacities of individual DEs were assumed to
be a non-limiting factor and, in the case of BRITE set, our

experiments were repeated for different degree distributions
(d) of Decision plane areas.

Fig. 6(a) shows non-orphaned router reassignment for the
case of Rocketfuel backbone topologies, where we present
results by bounding the maximum percentage of router re-
assignments in a network and presenting the minimum value
of ∆ that is needed to ensure that reassignment rate remains
below the bound. We observe that even in this very limiting
case of backbone topologies, the rate of reassignment falls
off rapidly with an increase in∆ and relatively small values
of ∆ are sufficient in achieving tight bounds on router reas-
signment. In the case of BRITE topologies, we observe even
better performance as full topological information is available.
Fig. 6(b) shows results for the case of BRITE topologies where
we report the observed minimum values of∆ required in
bounding maximum reassignments to5% for different area
degrees.

The computation time required to run each iteration of the
algorithm is plotted in Fig. 7 for both sets of topologies, with a
worst-case DE capacity constraint of∆ = 1.0. The plot shows
that even in case of very large network topologies and worst-
case constraints on load-balancing router assignment algorithm
converges to a solution within very reasonable times.

VII. S IMULATION RESULTS

We analyzed the convergence performance of the DPP
protocol with simulations on Rocketfuel topologies used in the
previous section, using ns-2 simulator [16] where we created
new modules to implement the functionality of 4D Decision
plane. We collected results on the convergence delay in cases
of network bootstrap and DE failures.

The convergence delays are computed by randomly forc-
ing the failure of a DE and measuring the time until all
routers in the network receive re-computed routing tables. This
convergence delay includes, 1., delay at the Decision plane
between the time a failure actually occurs and when it is
detected by the functional DEs, 2., computation time of router
assignment algorithm, 3., reception of new assignments by the
DEs, 4., new routing table computation, and 5., reception of
new routing tables at each router. The Decision plane failures
are detected by a DE keep-alive timers which expire when no
keep-alive message is received by a neighboring DE within a
time period equal to the maximum delay between DEs. We
utilized results obtained in the previous section for routing
assignment computation time while RT computation time was
kept constant at1ms. Simulation were repeated for the range
of DE failure combinations withnmax = 10, nmin = 3.

Table 8(b) shows convergence and maximum network de-
lays in the case of network bootstrap. Box plot of the con-
vergence delays is shown in Fig. 8(a). The results show that
DPP protocol achieves sub-second convergence delays even in
largest of the simulated topologies.

VIII. R ELATED WORK

Several recent studies have embraced centralization of net-
work logic as a way of overcoming management complexity

9

104:151 87:161 161:328 79:147 317:972 138:372

0.1

0.2

0.3

0.4

Topology (routers:links)

Pr
ot

oc
ol

 C
on

ve
rg

en
ce

 D
el

ay
 (s

)

Topology Max. Network Delay Bootstrap Delay
(routers:links) (ms) (ms)
104:151 28 95.13
87:161 35 126.35
161:328 47 175.12
79:147 72 235.3
317:972 86 306.4
138:372 97 383.2

Fig. 8. Simulation results of protocol convergence delay for Rocketfuel
topologies withnmax = 10. Top: (a) Box Plot of the protocol convergence
delay with∆ = 1. The box shows the first and third quartile along with the
median. Whiskers show the min. and max. values, while the outliers are plotted
as “+”. Bottom: (b) Bootstrap convergence delays for Rocketfuel topologies

or providing new services that are presently difficult to imple-
ment. Greenberg et al. [2] provide a comprehensive survey of
the issues in network control and management, and propose
the architectural vision embraced and extended in this paper.

Centralized control has been explored in BGP design where
RCP [1], [17] was proposed as a logically centralized point for
computing BGP routes and improving the scalability of large
networks. However, RCP is limited to BGP route computation
and does not extend to Interior Gateway Protocol (IGP) routes.

Recently, CONMAN [18] utilized the concept of manage-
ment plane and centralization in the design and operation of
“network managers” that are used to manage the protocols
running on individual routers.

Several efforts in open router design [10], [19] have also
advocated migration of control functions away from routers to
reduce their complexity, where they utilize “control elements”
for the implementation of distributed network algorithms, and
design protocols to enable communication between different
network elements. In contrast, our work uses 4D’s approach
of network-wide decision making and presents a robust and
scalable design for the Decision plane that is not limited to
the implementation of current distributed algorithms.

IX. CONCLUSION

We presented the design of a clean-slate control and man-
agement plane to simplify the management complexity in
large enterprise and ISP networks. Within the architectural
framework of 4D architecture, the proposed Decision plane is
designed to meet its stated goals of achieving high scalability
and robustness, while minimizing the response time to any
event.

Our work included a novel method of adaptive assignment
of routers to the logically centralized Decision Elements (DE)
and a protocol that allows distributed operation of the DEs

while ensuring replication and synchronization of network
state across the entire Decision plane. The evaluation of our
protocol and algorithm through different mechanisms and
models supports the adherence of our design to its goals,
and the feasibility and benefit of using a logically centralized
Decision plane.

The main avenues of related future research include the
interoperable design of lower 4D layers, extension of man-
agement functions e.g. to include provision for system main-
tainence, and detailed specification and analysis of DPP.

REFERENCES

[1] N. Feamsteret al., “The case for separating routing from routers,” in
ACM SIGCOMM FDNA Workshop, 2004.

[2] A. Greenberget al., “A clean slate 4D approach to network control and
management,”SIGCOMM CCR., vol. 35, no. 5, 2005.

[3] D. A. Maltz, G. Xie, J. Zhan, and H. Zhang, “Routing design in
operational networks: A look from the inside,” inin Proc. ACM
SIGCOMM. ACM Press, 2004.

[4] A. Wool, “A quantitative study of firewall configuration errors,”IEEE
Computer, vol. 37, no. 6, 2004.

[5] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional
IP routing protocols,”IEEE Communications Magazine, vol. 40, 2002.

[6] A. Greenberget al., “Refactoring network control and management: A
case for the 4D architecture,” Carnegie Mellon University, Tech. Rep.
CMU-CS-05-117, Sept 2005.

[7] H. Yan et al., “Tesseract: A 4D network control plane.” inUSENIX
NSDI, 2007.

[8] H. Iqbal and T. Znati, “Distributed control plane for 4D architecture,”
in Globecom 2007. IEEE, 2007.

[9] I. T. Union, “ITU-T recommendation Q.700: Introduction to CCITT
Signalling System No. 7,” 1993.

[10] T. V. Lakshmanet al., “The SoftRouter architecture,” inHotNets-III,
2004.

[11] A. Kershenbaum, “Telecomm. network design algorithms,” 1993.
[12] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link

weights using end-to-end measurements,” inIn ACM SIGCOMM IM
Workshop, 2002.

[13] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An approach
to universal topology generation,” 2001.

[14] T. Bu and D. Towsley, “On distinguishing between internet power law
topology generators,” inin Proc. IEEE INFOCOM, 2002.

[15] O. Heckmann, M. Piringer, J. Schmitt, and R. Steinmetz, “On realistic
network topologies for simulation,” inSIGCOMM MoMeTools Work-
shop, 2003.

[16] The Network Simulator - ns-2, Information Sciences Institute.
[17] M. Caesaret al., “Design and implementation of a routing control

platform,” in USENIX NSDI, 2005.
[18] H. Ballani and P. Francis, “CONMan: a step towards network manage-

ability,” SIGCOMM CCR, vol. 37, no. 4, 2007.
[19] L. Yang, R. D. T. Anderson, and R. Gopal, “RFC 3746 Forwarding and

Control Element Separation Framework,” 2004.

