5,723 research outputs found

    Randomized Local Model Order Reduction

    Get PDF
    In this paper we propose local approximation spaces for localized model order reduction procedures such as domain decomposition and multiscale methods. Those spaces are constructed from local solutions of the partial differential equation (PDE) with random boundary conditions, yield an approximation that converges provably at a nearly optimal rate, and can be generated at close to optimal computational complexity. In many localized model order reduction approaches like the generalized finite element method, static condensation procedures, and the multiscale finite element method local approximation spaces can be constructed by approximating the range of a suitably defined transfer operator that acts on the space of local solutions of the PDE. Optimal local approximation spaces that yield in general an exponentially convergent approximation are given by the left singular vectors of this transfer operator [I. Babu\v{s}ka and R. Lipton 2011, K. Smetana and A. T. Patera 2016]. However, the direct calculation of these singular vectors is computationally very expensive. In this paper, we propose an adaptive randomized algorithm based on methods from randomized linear algebra [N. Halko et al. 2011], which constructs a local reduced space approximating the range of the transfer operator and thus the optimal local approximation spaces. The adaptive algorithm relies on a probabilistic a posteriori error estimator for which we prove that it is both efficient and reliable with high probability. Several numerical experiments confirm the theoretical findings.Comment: 31 pages, 14 figures, 1 table, 1 algorith

    Fast computation of spectral projectors of banded matrices

    Full text link
    We consider the approximate computation of spectral projectors for symmetric banded matrices. While this problem has received considerable attention, especially in the context of linear scaling electronic structure methods, the presence of small relative spectral gaps challenges existing methods based on approximate sparsity. In this work, we show how a data-sparse approximation based on hierarchical matrices can be used to overcome this problem. We prove a priori bounds on the approximation error and propose a fast algo- rithm based on the QDWH algorithm, along the works by Nakatsukasa et al. Numerical experiments demonstrate that the performance of our algorithm is robust with respect to the spectral gap. A preliminary Matlab implementation becomes faster than eig already for matrix sizes of a few thousand.Comment: 27 pages, 10 figure

    Computing the eigenvalues of symmetric H2-matrices by slicing the spectrum

    Get PDF
    The computation of eigenvalues of large-scale matrices arising from finite element discretizations has gained significant interest in the last decade. Here we present a new algorithm based on slicing the spectrum that takes advantage of the rank structure of resolvent matrices in order to compute m eigenvalues of the generalized symmetric eigenvalue problem in O(nmlogαn)\mathcal{O}(n m \log^\alpha n) operations, where α>0\alpha>0 is a small constant

    Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations

    Get PDF
    Stochastic Galerkin methods for non-affine coefficient representations are known to cause major difficulties from theoretical and numerical points of view. In this work, an adaptive Galerkin FE method for linear parametric PDEs with lognormal coefficients discretized in Hermite chaos polynomials is derived. It employs problem-adapted function spaces to ensure solvability of the variational formulation. The inherently high computational complexity of the parametric operator is made tractable by using hierarchical tensor representations. For this, a new tensor train format of the lognormal coefficient is derived and verified numerically. The central novelty is the derivation of a reliable residual-based a posteriori error estimator. This can be regarded as a unique feature of stochastic Galerkin methods. It allows for an adaptive algorithm to steer the refinements of the physical mesh and the anisotropic Wiener chaos polynomial degrees. For the evaluation of the error estimator to become feasible, a numerically efficient tensor format discretization is developed. Benchmark examples with unbounded lognormal coefficient fields illustrate the performance of the proposed Galerkin discretization and the fully adaptive algorithm

    Spectral methods for CFD

    Get PDF
    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched
    corecore