12 research outputs found

    An intuitive control space for material appearance

    Get PDF
    Many different techniques for measuring material appearance have been proposed in the last few years. These have produced large public datasets, which have been used for accurate, data-driven appearance modeling. However, although these datasets have allowed us to reach an unprecedented level of realism in visual appearance, editing the captured data remains a challenge. In this paper, we present an intuitive control space for predictable editing of captured BRDF data, which allows for artistic creation of plausible novel material appearances, bypassing the difficulty of acquiring novel samples. We first synthesize novel materials, extending the existing MERL dataset up to 400 mathematically valid BRDFs. We then design a large-scale experiment, gathering 56,000 subjective ratings on the high-level perceptual attributes that best describe our extended dataset of materials. Using these ratings, we build and train networks of radial basis functions to act as functionals mapping the perceptual attributes to an underlying PCA-based representation of BRDFs. We show that our functionals are excellent predictors of the perceived attributes of appearance. Our control space enables many applications, including intuitive material editing of a wide range of visual properties, guidance for gamut mapping, analysis of the correlation between perceptual attributes, or novel appearance similarity metrics. Moreover, our methodology can be used to derive functionals applicable to classic analytic BRDF representations. We release our code and dataset publicly, in order to support and encourage further research in this direction

    An intuitive control space for material appearance

    Get PDF
    Many different techniques for measuring material appearance have been proposed in the last few years. These have produced large public datasets, which have been used for accurate, data-driven appearance modeling. However, although these datasets have allowed us to reach an unprecedented level of realism in visual appearance, editing the captured data remains a challenge. In this paper, we present an intuitive control space for predictable editing of captured BRDF data, which allows for artistic creation of plausible novel material appearances, bypassing the difficulty of acquiring novel samples. We first synthesize novel materials, extending the existing MERL dataset up to 400 mathematically valid BRDFs. We then design a large-scale experiment, gathering 56,000 subjective ratings on the high-level perceptual attributes that best describe our extended dataset of materials. Using these ratings, we build and train networks of radial basis functions to act as functionals mapping the perceptual attributes to an underlying PCA-based representation of BRDFs. We show that our functionals are excellent predictors of the perceived attributes of appearance. Our control space enables many applications, including intuitive material editing of a wide range of visual properties, guidance for gamut mapping, analysis of the correlation between perceptual attributes, or novel appearance similarity metrics. Moreover, our methodology can be used to derive functionals applicable to classic analytic BRDF representations. We release our code and dataset publicly, in order to support and encourage further research in this direction

    Real-time Cinematic Design Of Visual Aspects In Computer-generated Images

    Get PDF
    Creation of visually-pleasing images has always been one of the main goals of computer graphics. Two important components are necessary to achieve this goal --- artists who design visual aspects of an image (such as materials or lighting) and sophisticated algorithms that render the image. Traditionally, rendering has been of greater interest to researchers, while the design part has always been deemed as secondary. This has led to many inefficiencies, as artists, in order to create a stunning image, are often forced to resort to the traditional, creativity-baring, pipelines consisting of repeated rendering and parameter tweaking. Our work shifts the attention away from the rendering problem and focuses on the design. We propose to combine non-physical editing with real-time feedback and provide artists with efficient ways of designing complex visual aspects such as global illumination or all-frequency shadows. We conform to existing pipelines by inserting our editing components into existing stages, hereby making editing of visual aspects an inherent part of the design process. Many of the examples showed in this work have been, until now, extremely hard to achieve. The non-physical aspect of our work enables artists to express themselves in more creative ways, not limited by the physical parameters of current renderers. Real-time feedback allows artists to immediately see the effects of applied modifications and compatibility with existing workflows enables easy integration of our algorithms into production pipelines

    Artistic Path Space Editing of Physically Based Light Transport

    Get PDF
    Die Erzeugung realistischer Bilder ist ein wichtiges Ziel der Computergrafik, mit Anwendungen u.a. in der Spielfilmindustrie, Architektur und Medizin. Die physikalisch basierte Bildsynthese, welche in letzter Zeit anwendungsübergreifend weiten Anklang findet, bedient sich der numerischen Simulation des Lichttransports entlang durch die geometrische Optik vorgegebener Ausbreitungspfade; ein Modell, welches für übliche Szenen ausreicht, Photorealismus zu erzielen. Insgesamt gesehen ist heute das computergestützte Verfassen von Bildern und Animationen mit wohlgestalteter und theoretisch fundierter Schattierung stark vereinfacht. Allerdings ist bei der praktischen Umsetzung auch die Rücksichtnahme auf Details wie die Struktur des Ausgabegeräts wichtig und z.B. das Teilproblem der effizienten physikalisch basierten Bildsynthese in partizipierenden Medien ist noch weit davon entfernt, als gelöst zu gelten. Weiterhin ist die Bildsynthese als Teil eines weiteren Kontextes zu sehen: der effektiven Kommunikation von Ideen und Informationen. Seien es nun Form und Funktion eines Gebäudes, die medizinische Visualisierung einer Computertomografie oder aber die Stimmung einer Filmsequenz -- Botschaften in Form digitaler Bilder sind heutzutage omnipräsent. Leider hat die Verbreitung der -- auf Simulation ausgelegten -- Methodik der physikalisch basierten Bildsynthese generell zu einem Verlust intuitiver, feingestalteter und lokaler künstlerischer Kontrolle des finalen Bildinhalts geführt, welche in vorherigen, weniger strikten Paradigmen vorhanden war. Die Beiträge dieser Dissertation decken unterschiedliche Aspekte der Bildsynthese ab. Dies sind zunächst einmal die grundlegende Subpixel-Bildsynthese sowie effiziente Bildsyntheseverfahren für partizipierende Medien. Im Mittelpunkt der Arbeit stehen jedoch Ansätze zum effektiven visuellen Verständnis der Lichtausbreitung, die eine lokale künstlerische Einflussnahme ermöglichen und gleichzeitig auf globaler Ebene konsistente und glaubwürdige Ergebnisse erzielen. Hierbei ist die Kernidee, Visualisierung und Bearbeitung des Lichts direkt im alle möglichen Lichtpfade einschließenden "Pfadraum" durchzuführen. Dies steht im Gegensatz zu Verfahren nach Stand der Forschung, die entweder im Bildraum arbeiten oder auf bestimmte, isolierte Beleuchtungseffekte wie perfekte Spiegelungen, Schatten oder Kaustiken zugeschnitten sind. Die Erprobung der vorgestellten Verfahren hat gezeigt, dass mit ihnen real existierende Probleme der Bilderzeugung für Filmproduktionen gelöst werden können

    Data-driven approaches for interactive appearance editing

    Get PDF
    This thesis proposes several techniques for interactive editing of digital content and fast rendering of virtual 3D scenes. Editing of digital content - such as images or 3D scenes - is difficult, requires artistic talent and technical expertise. To alleviate these difficulties, we exploit data-driven approaches that use the easily accessible Internet data (e. g., images, videos, materials) to develop new tools for digital content manipulation. Our proposed techniques allow casual users to achieve high-quality editing by interactively exploring the manipulations without the need to understand the underlying physical models of appearance. First, the thesis presents a fast algorithm for realistic image synthesis of virtual 3D scenes. This serves as the core framework for a new method that allows artists to fine tune the appearance of a rendered 3D scene. Here, artists directly paint the final appearance and the system automatically solves for the material parameters that best match the desired look. Along this line, an example-based material assignment approach is proposed, where the 3D models of a virtual scene can be "materialized" simply by giving a guidance source (image/video). Next, the thesis proposes shape and color subspaces of an object that are learned from a collection of exemplar images. These subspaces can be used to constrain image manipulations to valid shapes and colors, or provide suggestions for manipulations. Finally, data-driven color manifolds which contain colors of a specific context are proposed. Such color manifolds can be used to improve color picking performance, color stylization, compression or white balancing.Diese Dissertation stellt Techniken zum interaktiven Editieren von digitalen Inhalten und zum schnellen Rendering von virtuellen 3D Szenen vor. Digitales Editieren - seien es Bilder oder dreidimensionale Szenen - ist kompliziert, benötigt künstlerisches Talent und technische Expertise. Um diese Schwierigkeiten zu relativieren, nutzen wir datengesteuerte Ansätze, die einfach zugängliche Internetdaten, wie Bilder, Videos und Materialeigenschaften, nutzen um neue Werkzeuge zur Manipulation von digitalen Inhalten zu entwickeln. Die von uns vorgestellten Techniken erlauben Gelegenheitsnutzern das Editieren in hoher Qualität, indem Manipulationsmöglichkeiten interaktiv exploriert werden können ohne die zugrundeliegenden physikalischen Modelle der Bildentstehung verstehen zu müssen. Zunächst stellen wir einen effizienten Algorithmus zur realistischen Bildsynthese von virtuellen 3D Szenen vor. Dieser dient als Kerngerüst einer Methode, die Nutzern die Feinabstimmung des finalen Aussehens einer gerenderten dreidimensionalen Szene erlaubt. Hierbei malt der Künstler direkt das beabsichtigte Aussehen und das System errechnet automatisch die zugrundeliegenden Materialeigenschaften, die den beabsichtigten Eigenschaften am nahesten kommen. Zu diesem Zweck wird ein auf Beispielen basierender Materialzuordnungsansatz vorgestellt, für den das 3D Model einer virtuellen Szene durch das simple Anführen einer Leitquelle (Bild, Video) in Materialien aufgeteilt werden kann. Als Nächstes schlagen wir Form- und Farbunterräume von Objektklassen vor, die aus einer Sammlung von Beispielbildern gelernt werden. Diese Unterräume können genutzt werden um Bildmanipulationen auf valide Formen und Farben einzuschränken oder Manipulationsvorschläge zu liefern. Schließlich werden datenbasierte Farbmannigfaltigkeiten vorgestellt, die Farben eines spezifischen Kontexts enthalten. Diese Mannigfaltigkeiten ermöglichen eine Leistungssteigerung bei Farbauswahl, Farbstilisierung, Komprimierung und Weißabgleich
    corecore