71 research outputs found

    Building a personal symbolic space model from GSM CellID Positioning Data

    Get PDF
    Série : Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 7The context in which a person uses a mobile context-aware application can be described by many dimensions, including the, most popular, location and position. Some of the data used to describe these dimensions can be acquired directly from sensors or computed by reasoning algorithms. In this paper we propose to contextualize the mobile user of context-aware applications by describing his/her location in a symbolic space model as an alternative to the use of a position represented by a pair of coordinates in a geometric absolute referential. By exploiting the ubiquity of GSM networks, we describe a method to progressively create this symbolic and personal space model, and propose an approach to compute the level of familiarity a person has with each of the identified places. The validity of the developed model is evaluated by comparing the identified places and the computed values for the familiarity index with a ground truth represented by GPS data and the detailed agenda of a few persons

    Occupancy Detection using Wireless Sensor Network in Indoor Environment

    Get PDF
    Occupancy detection plays an important role in many smart buildings such as reducing building energy usage by controlling heating, ventilation and air conditioning (HVAC) systems, monitoring systems and managing lighting systems, tracking people in hospitals for medical issues, advertising to people in malls, and to search and rescue missions. The global positioning system (GPS) is used most widely as a localization system but highly inaccurate for indoor applications. The indoor environment is difficult to handle because along with the loss of signals, privacy is a major concern. Indoor tracking has many aspects in common with sensor localization in Wireless Sensor Networks (WSN). The contribution of this work is the demonstration of a nonintrusive approach to detect an occupancy in a building using wireless sensor networks to detect energy from cell phones in a secure facility and perform indoor localization based on the minimum mean square error (MMSE). To estimate the occupancy, the detected cellular signals information such as signal amplitude, frequency, power and detection time is sent to a fusion server, matched the detected signals by time and channel information, performed localization to estimate a location, and finally estimated the occupancy of rooms in a building from the estimated locations

    Space-partitioning with cascade-connected ANN structures for positioning in mobile communication systems

    Get PDF
    The world around us is getting more connected with each day passing by – new portable devices employing wireless connections to various networks wherever one might be. Locationaware computing has become an important bit of telecommunication services and industry. For this reason, the research efforts on new and improved localisation algorithms are constantly being performed. Thus far, the satellite positioning systems have achieved highest popularity and penetration regarding the global position estimation. In spite the numerous investigations aimed at enabling these systems to equally procure the position in both indoor and outdoor environments, this is still a task to be completed. This research work presented herein aimed at improving the state-of-the-art positioning techniques through the use of two highly popular mobile communication systems: WLAN and public land mobile networks. These systems already have widely deployed network structures (coverage) and a vast number of (inexpensive) mobile clients, so using them for additional, positioning purposes is rational and logical. First, the positioning in WLAN systems was analysed and elaborated. The indoor test-bed, used for verifying the models’ performances, covered almost 10,000m2 area. It has been chosen carefully so that the positioning could be thoroughly explored. The measurement campaigns performed therein covered the whole of test-bed environment and gave insight into location dependent parameters available in WLAN networks. Further analysis of the data lead to developing of positioning models based on ANNs. The best single ANN model obtained 9.26m average distance error and 7.75m median distance error. The novel positioning model structure, consisting of cascade-connected ANNs, improved those results to 8.14m and 4.57m, respectively. To adequately compare the proposed techniques with other, well-known research techniques, the environment positioning error parameter was introduced. This parameter enables to take the size of the test environment into account when comparing the accuracy of the indoor positioning techniques. Concerning the PLMN positioning, in-depth analysis of available system parameters and signalling protocols produced a positioning algorithm, capable of fusing the system received signal strength parameters received from multiple systems and multiple operators. Knowing that most of the areas are covered by signals from more than one network operator and even more than one system from one operator, it becomes easy to note the great practical value of this novel algorithm. On the other hand, an extensive drive-test measurement campaign, covering more than 600km in the central areas of Belgrade, was performed. Using this algorithm and applying the single ANN models to the recorded measurements, a 59m average distance error and 50m median distance error were obtained. Moreover, the positioning in indoor environment was verified and the degradation of performances, due to the crossenvironment model use, was reported: 105m average distance error and 101m median distance error. When applying the new, cascade-connected ANN structure model, distance errors were reduced to 26m and 2m, for the average and median distance errors, respectively. The obtained positioning accuracy was shown to be good enough for the implementation of a broad scope of location based services by using the existing and deployed, commonly available, infrastructure

    Développement d'une méthode de géolocalisation à l'intérieur de bâtiments par classification des fingerprints GSM et fusion de données de capteurs embarqués

    Get PDF
    GPS has long been used for accurate and reliable outdoor localization, but it cannot operate in indoor environments, which suggests developing indoor localization methods that can provide seamless and ubiquitous services for mobile users.In this thesis, indoor localization is realized making use of received signal strength fingerprinting technique based on the existing GSM networks. A room is defined as the minimum location unit, and support vector machine are used as a mean to discriminate the rooms by classifying received signal strengths from very large number of GSM carriers. At the same time, multiple sensors, such as accelerometer and gyroscope, are widely available for modern mobile devices, which provide additional information that helps location determination. The hybrid approach that combines the GSM fingerprinting results with mobile sensor and building layout information using a particle filter provides a more accurate and fine-grained localization result.The results of experiments under realistic conditions demonstrate that correct room number can be obtained 94% of the time provided the derived model is used before significant received signal strength drift sets in. Furthermore, if the training data is sampled over a few days, the performance can remain stable exceeding 80% over a period of months, and can be further improved with various post-processing techniques. Moreover, including the mobile sensors allows the system to localize the mobile trajectory coordinates with high accuracy and reliability.L’objet de cette thèse est l’étude de la localisation et de la navigation à l’intérieur de bâtiments à l’aide des signaux disponibles dans les systèmes mobiles cellulaires et, en particulier, les signaux GSM.Le système GPS est aujourd’hui couramment utilisé en extérieur pour déterminer la position d’un objet, mais les signaux GPS ne sont pas adaptés à la localisation en intérieurIci, la localisation en intérieur est obtenue à partir de la technique des «empreintes» de puissance des signaux reçus sur les canaux utilisés par les réseaux GSM. Elle est réalisée à l’échelle de la pièce. Une classification est effectuée à partir de machines à vecteurs supports et les descripteurs utilisés sont les puissances de toutes les porteuses GSM. D’autres capteurs physiques disponibles dans les téléphones portables fournissent des informations utiles pour déterminer la position ou le déplacement de l’utilisateur. Celles-ci, ainsi que la cartographie de l’environnement, sont associées aux résultats obtenus à partir des «empreintes» GSM au sein de filtres particulaires afin d’obtenir une localisation plus précise, et sous forme de coordonnées continues.Les résultats obtenus montrent que l’utilisation des seules empreintes GSM permet de déterminer la pièce correcte dans 94% des cas sur une durée courte et que les performances restent stables pendant plusieurs mois, de l’ordre de 80%, si les données d’apprentissage sont enregistrées sur quelques jours. L’association de la cartographie du lieu et des informations issues des autres capteurs aux données de classification permettent d’obtenir les coordonnées de la trajectoire du système mobile avec une bonne précision et une bonne fiabilité

    Fingerprint location methods using ray-tracing

    Full text link
    Mobile location methods that employ signal fingerprints are becoming increasingly popular in a number of wireless positioning solutions. A fingerprint is a spatial database, created either by recorded measurement or simulation, of the radio environment. It is used to assign signal characteristics such as received signal strength or power delay profiles to an actual location. Measurements made by either the handset or the network, are then matched to those in the fingerprint in order to determine a location. Creation of the fingerprint by an a priori measurement stage is costly and time consuming. Virtual fingerprints, those created by a ray-tracing radio propagation prediction tool, normally require a lengthy off-line simulation mode that needs to be repeated each time changes are made to the network or built environment. An open research question exists of whether a virtual fingerprint could be created dynamically via a ray-trace model embedded on a mobile handset for positioning purposes. The key aim of this thesis is to investigate the trade-off between complexity of the physics required for ray-tracing models and the accuracy of the virtual fingerprints they produce. The most demanding computational phase of a ray-trace simulation is the ray-path finding stage, whereby a distribution of rays cast from a source point, interacting with walls and edges by reflection and diffraction phenomena are traced to a set of receive points. Due to this, we specifically develop a new technique that decreases the computation of the ray-path finding stage. The new technique utilises a modified method of images rather than brute-force ray casting. It leads to the creation of virtual fingerprints requiring significantly less computation effort relative to ray casting techniques, with only small decreases in accuracy. Our new technique for virtual fingerprint creation was then applied to the development of a signal strength fingerprint for a 3G UMTS network covering the Sydney central business district. Our main goal was to determine whether on current mobile handsets, a sub-50m location accuracy could be achieved within a few seconds timescale using our system. The results show that this was in fact achievable. We also show how virtual fingerprinting can lead to more accurate solutions. Based on these results we claim user embedded fingerprinting is now a viable alternative to a priori measurement schemes

    A fuzzy logic approach to localisation in wireless local area networks

    Get PDF
    This thesis examines the use and value of fuzzy sets, fuzzy logic and fuzzy inference in wireless positioning systems and solutions. Various fuzzy-related techniques and methodologies are reviewed and investigated, including a comprehensive review of fuzzy-based positioning and localisation systems. The thesis is aimed at the development of a novel positioning technique which enhances well-known multi-nearest-neighbour (kNN) and fingerprinting algorithms with received signal strength (RSS) measurements. A fuzzy inference system is put forward for the generation of weightings for selected nearest-neighbours and the elimination of outliers. In this study, Monte Carlo simulations of a proposed multivariable fuzzy localisation (MVFL) system showed a significant improvement in the root mean square error (RMSE) in position estimation, compared with well-known localisation algorithms. The simulation outcomes were confirmed empirically in laboratory tests under various scenarios. The proposed technique uses available indoor wireless local area network (WLAN) infrastructure and requires no additional hardware or modification to the network, nor any active user participation. The thesis aims to benefit practitioners and academic researchers of system positioning

    Indoor Location-Based Services In The Telecommunications Network

    Get PDF
    ‘Location-based services’ are services that take the location of mobile devices into account. Traditionally, these services have revolved around positioning and navigation. However, with the advent of smartphones equipped with GPS receivers, a number of innovative location-based services have come into the market and caught users’ interest. Users spend nearly 90% of their time indoors and GPS receivers do not function well within buildings. Hence, there is a need for a reliable indoor positioning system. Alongside technological research, a study of indoor location-based services is also necessary. ‘Open Telco’ refers to the endeavour by mobile operators to follow in the footsteps of internet companies and embrace open innovation and open APIs (Application Programming Interfaces). Network service exposure and the ecosystem approach are believed to be critical to the future success of mobile operators. This Thesis attempts to bring together these three dissimilar but related topics- indoor positioning, location-based services and network service exposure. This is done via the study of existing literature and the implementation of a service prototype

    Smart hierarchical WiFi localization system for indoors

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2013-2014En los últimos años, el número de aplicaciones para smartphones y tablets ha crecido rápidamente. Muchas de estas aplicaciones hacen uso de las capacidades de localización de estos dispositivos. Para poder proporcionar su localización, es necesario identificar la posición del usuario de forma robusta y en tiempo real. Tradicionalmente, esta localización se ha realizado mediante el uso del GPS que proporciona posicionamiento preciso en exteriores. Desafortunadamente, su baja precisión en interiores imposibilita su uso. Para proporcionar localización en interiores se utilizan diferentes tecnologías. Entre ellas, la tecnología WiFi es una de las más usadas debido a sus importantes ventajas tales como la disponibilidad de puntos de acceso WiFi en la mayoría de edificios y que medir la señal WiFi no tiene coste, incluso en redes privadas. Desafortunadamente, también tiene algunas desventajas, ya que en interiores la señal es altamente dependiente de la estructura del edificio por lo que aparecen otros efectos no deseados, como el efecto multicamino o las variaciones de pequeña escala. Además, las redes WiFi están instaladas para maximizar la conectividad sin tener en cuenta su posible uso para localización, por lo que los entornos suelen estar altamente poblados de puntos de acceso, aumentando las interferencias co-canal, que causan variaciones en el nivel de señal recibido. El objetivo de esta tesis es la localización de dispositivos móviles en interiores utilizando como única información el nivel de señal recibido de los puntos de acceso existentes en el entorno. La meta final es desarrollar un sistema de localización WiFi para dispositivos móviles, que pueda ser utilizado en cualquier entorno y por cualquier dispositivo, en tiempo real. Para alcanzar este objetivo, se propone un sistema de localización jerárquico basado en clasificadores borrosos que realizará la localización en entornos descritos topológicamente. Este sistema proporcionará una localización robusta en diferentes escenarios, prestando especial atención a los entornos grandes. Para ello, el sistema diseñado crea una partición jerárquica del entorno usando K-Means. Después, el sistema de localización se entrena utilizando diferentes algoritmos de clasificación supervisada para localizar las nuevas medidas WiFi. Finalmente, se ha diseñado un sistema probabilístico para seguir la posición del dispositivo en movimiento utilizando un filtro Bayesiano. Este sistema se ha probado en un entorno real, con varias plantas, obteniendo un error medio total por debajo de los 3 metros
    • …
    corecore