11 research outputs found

    Fare Evasion and Ticket Forgery in Public Transport: Insights from Germany, Austria and Switzerland

    Get PDF
    Local public transport companies provide important mobility services to the general public. Although these services are usually subsidised, companies rely on revenues generated by ticket sales. Therefore, fare evasion (i.e., people using a transport service without paying for it) and ticket forgery (the production of an illegal ticket facsimile) have considerable influence on the companies' economic sustainability. As existing research regarding the economic perspective is limited, this paper presents a Delphi study that investigates the phenomena with a survey of experts in public transport companies and transport associations in Germany, Austria, and Switzerland. The findings of the survey provide insights into the overall perception and discuss relevant aspects of both fare evasion and ticket forgery, thereby not only highlighting practical implications, but also helping policy makers shape adequate policies for public transport in societies

    Exact solution of the evasive flow capturing problem

    Get PDF
    The Evasive Flow Capturing Problem is defined as the problem of locating a set of law enforcement facilities on the arcs of a road network to intercept unlawful vehicle flows traveling between origin-destination pairs, who in turn deviate from their route to avoid any encounter with such facilities. Such deviations are bounded by a given tolerance. We first propose a bilevel program that, in contrast to previous studies, does not require a priori route generation. We then transform this bilevel model into a single-stage equivalent model using duality theory to yield a compact formulation. We finally reformulate the problem by describing the extreme rays of the polyhedral cone of the compact formulation and by projecting out the auxiliary variables, which leads to facet-defining inequalities and a cut formulation with an exponential number of constraints. We develop a branch-and-cut algorithm for the resulting model, as well as two separation algorithms to solve the cut formulation. Through extensive experiments on real and randomly generated networks, we demonstrate that our best model and algorithm accelerate the solution process by at least two orders of magnitude compared with the best published algorithm. Furthermore, our best model significantly increases the size of the instances that can be solved optimally

    Exact solution of the evasive flow capturing problem

    Get PDF
    The Evasive Flow Capturing Problem is defined as the problem of locating a set of law enforcement facilities on the arcs of a road network to intercept unlawful vehicle flows traveling between origin-destination pairs, who in turn deviate from their route to avoid any encounter with such facilities. Such deviations are bounded by a given tolerance. We first propose a bilevel program that, in contrast to previous studies, does not require a priori route generation. We then transform this bilevel model into a single-stage equivalent model using duality theory to yield a compact formulation. We finally reformulate the problem by describing the extreme rays of the polyhedral cone of the compact formulation and by projecting out the auxiliary variables, which leads to facet-defining inequalities and a cut formulation with an exponential number of constraints. We develop a branch-and-cut algorithm for the resulting model, as well as two separation algorithms to solve the cut formulation. Through extensive experiments on real and randomly generated networks, we demonstrate that our best model and algorithm accelerate the solution process by at least two orders of magnitude compared with the best published algorithm. Furthermore, our best model significantly increases the size of the instances that can be solved optimally.</p

    Network Interdiction under Uncertainty

    Get PDF
    We consider variants to one of the most common network interdiction formulations: the shortest path interdiction problem. This problem involves leader and a follower playing a zero-sum game over a directed network. The leader interdicts a set of arcs, and arc costs increase each time they are interdicted. The follower observes the leader\u27s actions and selects a shortest path in response. The leader\u27s optimal interdiction strategy maximizes the follower\u27s minimum-cost path. Our first variant allows the follower to improve the network after the interdiction by lowering the costs of some arcs, and the leader is uncertain regarding the follower\u27s cardinality budget restricting the arc improvements. We propose a multiobjective approach for this problem, with each objective corresponding to a different possible improvement budget value. To this end, we also present the modified augmented weighted Tchebychev norm, which can be used to generate a complete efficient set of solutions to a discrete multi-objective optimization problem, and which tends to scale better than competing methods as the number of objectives grows. In our second variant, the leader selects a policy of randomized interdiction actions, and the follower uses the probability of where interdictions are deployed on the network to select a path having the minimum expected cost. We show that this continuous non-convex problem becomes strongly NP-hard when the cost functions are convex or when they are concave. After formally describing each variant, we present various algorithms for solving them, and we examine the efficacy of all our algorithms on test beds of randomly generated instances

    Strategies to Decrease Disorder and Diminishing Transit Ridership Through Fare Enforcement

    Get PDF
    AbstractUrban rail transit systems are experiencing a decrease in ridership in part due to the perception of increased crime and disorder. To ensure passengers continue riding rail transportation, agency leaders must develop strategies to decrease crime and disorder caused by fare evasion. Grounded in the Kano model and Lean Six Sigma, the purpose of this qualitative case study was to explore strategies urban rail transit leaders use to reduce declining ridership associated with a perceived disorder caused by fare evasion. Data were collected using semistructured interviews of six urban rail transit leaders who manage fare enforcement efforts and a review of documents associated with fare enforcement. Data were analyzed using thematic analysis, and three themes were identified: (a) hot spot policing, (b) focus on education over enforcement, and (c) investigative follow-up. A key recommendation is for transit leaders to conduct focused fare enforcement to educate transit riders while remaining attentive to criminal activity. The implications for positive social change include the potential to lower urban traffic congestion based on increased rail ridership. Additionally, reducing crime will allow those who rely on public transportation, such as the economically challenged, physically challenged, the elderly, and urban youth, to conduct daily tasks

    Essays on Economics and Computer Science

    Get PDF
    146 pagesThis dissertation considers a number of problems in pure and applied game theory. The first chapter considers the problem of how the introduction of fines and monitoring affects welfare in a routing game. I characterize equilibria of the game and discuss network topologies in which the introduction of fines can harm those agents which are not subject to them. The second, and primary, chapter considers the computational aspects of tenable strategy sets. I characterize these set-valued solution concepts using the more familiar framework of perturbed strategies, introduce strong alternatives to the problems of verifying whether a strategy block satisfies the conditions of tenability, and provide some hardness results regarding the verification of fine tenability. Additionally, I show an inclusion relation between the concept of coarse tenability and the notion of stability introduced by Kohlberg and Mertens (1986). Finally, I show how the methods developed for tenability provide an alternative characterization for proper equilibria in bimatrix games. This characterization gives a bound on the perturbations required in the definition of proper equilibria, though such bounds cannot be computed efficiently in general. The third, and final, chapter develops a model of contracting for content creation in an oligopolistic environment of attention intermediaries. I characterize symmetric equilibria in single-homing (exclusive) and multi-homing regimes. The focus is on the trade-off between reductions in incentives offered by intermediaries and the benefits of access to additional content for consumers. I show that when the extent of multi-homing is exogenous in the absence of exclusivity clauses, consumer surplus is always higher with multi-homing than under exclusivity, despite weaker incentives offered by platforms to content creators

    Fare Evasion in Transit Networks

    No full text
    Public transit systems in major urban areas usually operate under deficits and therefore require significant subsidies. An important cause of this deficit, particularly in the developing world, is the high fare evasion rate mainly due to an ineffective control policy or the lack of it. In this paper we study new models for optimizing fare inspection strategies in transit networks based on bilevel programming. In the first level, the leader (the network operator) determines probabilities for inspecting passengers at different locations, while in the second level, the followers (the fare-evading passengers) respond by optimizing their routes given the inspection probabilities and travel times. To model the followers' behaviorwe study both a nonadaptive variant, in which passengers select a path a priori and continue along it throughout their journey, and an adaptive variant, in which they gain information along the way and use it to update their route. For these problems, which are interesting in their own right, we design exact and approximation algorithms, and we prove a tight bound of 3/4 on the ratio of the optimal cost between adaptive and nonadaptive strategies. For the leader's optimization problem, we study a fixed-fare and a flexible-fare variant, where ticket prices may or may not be set at the operator's will. For the latter variant, we design an LP-based approximation algorithm. Finally, employing a local search procedure that shifts inspection probabilities within an initially determined support set, we perform an extensive computational study for all variants of the problem on instances of the Dutch railway and the Amsterdam subway network. This study reveals that our solutions are within 5% of theoretical upper bounds drawn from the LP relaxation. We also derive exact nonlinear programming formulations for all variants of the leader's problem and use them to obtain exact solutions for small instance sizes
    corecore