
Clemson University
TigerPrints

All Dissertations Dissertations

8-2019

Network Interdiction under Uncertainty
Timothy Holzmann
Clemson University, tim.holzmann@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Holzmann, Timothy, "Network Interdiction under Uncertainty" (2019). All Dissertations. 2437.
https://tigerprints.clemson.edu/all_dissertations/2437

https://tigerprints.clemson.edu/?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2437&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2437&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2437&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2437&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/2437?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F2437&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Network Interdiction under Uncertainty

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Industrial Engineering

by

Timothy W. Holzmann

August 2019

Accepted by:

Dr. J. Cole Smith, Committee Chair

Dr. Tugce Isik

Dr. Scott Mason

Dr. M. Gabriela Sava

Dr. Margaret Wiecek

Abstract

We consider variants to one of the most common network interdiction formulations: the

shortest path interdiction problem. This problem involves leader and a follower playing a zero-sum

game over a directed network. The leader interdicts a set of arcs, and arc costs increase each time

they are interdicted. The follower observes the leader’s actions and selects a shortest path in response.

The leader’s optimal interdiction strategy maximizes the follower’s minimum-cost path.

Our first variant allows the follower to improve the network after the interdiction by lowering

the costs of some arcs, and the leader is uncertain regarding the follower’s cardinality budget

restricting the arc improvements. We propose a multiobjective approach for this problem, with

each objective corresponding to a different possible improvement budget value. To this end, we

also present the modified augmented weighted Tchebychev norm, which can be used to generate

a complete efficient set of solutions to a discrete multi-objective optimization problem, and which

tends to scale better than competing methods as the number of objectives grows.

In our second variant, the leader selects a policy of randomized interdiction actions, and

the follower uses the probability of where interdictions are deployed on the network to select a path

having the minimum expected cost. We show that this continuous non-convex problem becomes

strongly NP-hard when the cost functions are convex or when they are concave. After formally

describing each variant, we present various algorithms for solving them, and we examine the efficacy

of all our algorithms on test beds of randomly generated instances.

ii

Dedication

My loving wife, Danielle, is both my rock and my flower: you have been a strong foundation to carry

our growing family through a very stressful time, and you always brought a sweet fragrance of

love and joy when I was overwhelmed. Thank you for carrying us through . . . We did it!

My first daughter, Mackenzie, is my pride: a blossoming woman of God. You see a world full of

flowers, rainbows, and righteousness (and yes, maybe even unicorns)! But with the eyes in your

heart that see such goodness; God has also given you strength in your soul to face dark truths

and not be overcome. Instead, you shine his kingdom light into the darkness and confound it.

My second daughter, Hannah, is my heart: never short of emotion. Your feelings are so big that

they infect everyone; we laugh when you laugh and weep when you weep. You have struggled

more than others, but then God just pours more mercy into your heart, and it overflows so that

your mouth speaks a gospel of grace. That’s when I know that there is no one like our God!

My third daughter, Amelia, is my warmth: full of soft hugs and tender kisses. Your sweet smile has

melted me more times than I can count. I feel myself whirling around with so many things to

do and think about, and then I turn to see you standing there with your peaceful smile. Your

patient compassion will touch many lives with the blessings of heaven.

My son, Titus, is my strength: you never stop trying. Your persistence reminds me to keep going

when I think I have nothing more to give. As you relentlessly chased me around the dining

room, I pray you never tire of running after Jesus – even when you’re going in circles. Renew

your hope, and you will find that really he’s chasing you and now lifts you up on eagles’ wings.

My fourth daughter, Katriel, is my peace: thank you for reminding me that I only need to love those

around me. When I cradle you sleeping in my arms, I know that God, by his grace, has given

me something better than any academic accolade. This dissertation is a great achievement, but

my children are a greater one, and you are the crown God has placed on our family!

iii

Acknowledgments

Praise God, from whom all blessings flow! I have been blessed abundantly in this work by

the many friends and family around me who have aided me in this research.

I first wish to thank my advisor, Dr. Cole Smith: Working with you is both an honor and

humbling experience. I am amazed at your pulchritude in explaining many IE concepts such as LP,

Benders’ cuts, bi-level programming, RLT, McCormick constraints, etc. Thank you for teaching me

(using words only some of the time) what it means to be a professor and researcher. Thank you also

to my committee members for your support, critiques, and insights. You have shown me a glimpse

into a much larger world of research.

I am also indebted to countless others: faculty, staff, administrators, the university food

workers, the janitorial staff of Freeman Hall, the computer network engineers, the librarians, and

many others – I am amazed at how many people have come together to make enrich this educational

experience. Each one has touched my time here, and I thank you for your dedicated service.

More personally, my parents and in-laws provided encouragement throughout these years,

and the members of Eternal Shepherd Lutheran Church enfolded our family into their community

and loved us. But what lifts me from the deepest valleys, inspires me to the loftiest hopes, and

carries me through marathon periods of no apparent progress are my wife and children, to whom

this dissertation is dedicated.

Finally, to acknowledge my research sponsors: this work was supported by the Air Force

Office of Scientific Research [grant number FA9550-12-1-0353]; and the Office of Naval Research

[grant numbers N00014-13-1-0036, N00014-17-1-2421]. I am also grateful to Artelys for providing an

HPC license of their software for the study in Chapter 5. The views expressed in this dissertation

are those of the author and do not necessarily reflect the official policy or position of the Air Force,

the Department of Defense or the U.S. Government.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 Background and Literature Review . 1
1.2 Contribution and Motivation . 4
1.3 Dissertation Organization . 6

2 Modified Augmented Weighted Tchebychev Scalarizations 7
2.1 Chapter Introduction . 7
2.2 Algorithm . 13
2.3 Algorithm Proof . 16
2.4 Example . 19
2.5 Computational Study . 22
2.6 Conclusion . 30

3 The Shortest Path Interdiction Problem with Arc Improvement Recourse . . . 31
3.1 Problem description . 31
3.2 Transforming the SPIP-I into a SPIP instance . 35
3.3 Recursion algorithm for series-parallel graphs . 37
3.4 Improved recursive algorithm . 46
3.5 Computational study . 51
3.6 Conclusion . 59

4 The shortest Path Interdiction Problem with Randomized Strategies 60
4.1 Problem Statement and Background . 60
4.2 The Convex Case . 64
4.3 The Concave Case . 71
4.4 Sample Average Approximation for General SPIP-RS 78
4.5 Computational Study . 80
4.6 Conclusion and Future Work . 88

Appendices . 89

v

A Algorithms . 90

Bibliography .102

vi

List of Tables

2.1 |ZN | for instances in our testbed. 22
2.2 Summary of computation times. All times are in seconds and significant to the nearest

second. 25
2.3 Number of IPs solved for each algorithm on completed problem instances in our

testbed. “N/A” indicates the algorithm failed to complete a sufficient number of
problem instances to compute the summary statistic. 27

2.4 Running times (in seconds) and number of IPs solved by BOX-NBR along with
respective average percent improvement over BOX. 28

3.1 Cost functions, cij(x
L,xF), for arcs in Figure 3.1. 34

3.2 Some interdiction strategies on the graph from Figure 3.1, recourse paths, and costs. 34
3.3 Efficient interdiction strategies on G11 and its subgraphs, G10 and G5, recourse paths,

and costs. 41
3.4 Efficient interdiction strategies on graphs of G11, G20, and G21, bF = 0 recourse paths,

and objective vector. Recourse path when bF = 1 is s→ a1 → b1 → t in all cases. . . 42
3.5 Iteration 2 strategies for G21 = G from Example 3.5. Since G20 is not updated in iter-

ation 2, these strategies and the associated zG(x) values derive from the XE(G11, κL)
sets given in Tables 3.3 and 3.4. 50

3.6 Density by |A| and |N |. 52
3.7 Algorithm running time summaries for SPG portion of the computational study. . . 54
3.8 Comparison of running times for Algorithms 3.1, 3.2, and 3.3 with p large (p = n/2).

Columns “n” and “m” column give the number of nodes and arcs in each instance,
respectively. 58

4.1 Arc costs for Figure 4.1. 61
4.2 Expected path costs given X1. 61
4.3 Expected path costs given X2. 62
4.4 Costs for arcs in Figure 4.2. 67
4.5 Comparison of SAA (with |Ω̂| = 50 scenarios) and Knitro on SPIP-RS instances with

10 nodes and 27 arcs. 82
4.6 Summary statistics for Knitro with the lazy approach. 83
4.7 Branch-and-bound study results. “NL” indicates the non-lazy approach, in contrast

to the lazy one described in Section 4.5.1. 86
4.8 Comparing objectives from Knitro and the approximation algorithm of Section 4.3.2

on convex instances. The percentage column is given by dividing the approximation
objective by the Knitro objective. 87

vii

List of Figures

2.1 Level curves for ‖z‖wε = 1 (dashed) and ‖z‖w,ε = 1 (solid). 13
2.2 Illustration of Algorithm 2.1 iterations for Section 2.4 example problem 21
2.3 Average time for Gurobi to solve one IP sub-problem in our testbed. Each line

represents an average of solver times over all IP sub-problems for one problem instance. 25
2.4 Performance profiles for algorithms. 26
2.5 Performance profiles for algorithms by p (logarithmic time axis). 26
2.6 Performance profiles for BOX-NBR (previous algorithm profiles are given as dotted

lines for comparison). 28
2.7 Performance profiles for BOX-NBR by p (logarithmic time axis, previous algorithm

profiles are given for comparison). 29

3.1 Graph for Example 3.1. Solid arcs are candidates for interdiction, and dotted arcs are
candidates for improvement. Arc costs are given by Bij (±δij) where Bij is the arc
cost without interdiction or improvement and ±δij is the increase or decrease in cost
due to a single interdiction or improvement. Additional interdictions or improvements
have no further effect. 33

3.2 Example of converting G = (N ,A) into Ḡ = (N̄ , Ā). 36
3.3 Examples of basic SPG graphs and series-parallel configurations. 38
3.4 Binary decomposition tree, T , for graph in Figure 3.1. Nodes are annotated n# (Type),

where Type is P = parallel, S = series, or L = leaf. 40
3.5 Decomposition tree for Example 3.5. Nodes needing updates each iteration are

highlighted. 50
3.6 Number of MOGA iterations for line 3 of Algorithm 3.1 (see Algorithm 2.1). 53
3.7 Mean running time of SolveSPIP (averaged over all calls per instance). 54
3.8 Running times for Algorithm 3.1 on general graphs. 55
3.9 Batch 3 results by |A|. 56
3.10 Log-log plot of running times for Algorithms 3.1, 3.2, and 3.3 on 100 SPIP-I instances

with SPGs. 56
3.11 Three instances from the computational study where Algorithm 3.1 is faster than

Algorithm 3.2. Nodes s and t (large gray dots) tend to be close in the graph. 57
3.12 Three instances from the computational study where Algorithm 3.2 is faster than

Algorithm 3.1. Nodes s and t (large gray dots) tend to be relatively distanced in the
graph. 58

4.1 Example 1 graph. 61
4.2 Gadgets used in proof of Theorem 4.3. 67
4.3 Effect of the lazy approach on the objective. “X” markers indicate non-lazy approach

timed-out before converging. 83
4.4 Effect of the lazy approach on running time. Instances with n = 80 nodes are excluded. 84
4.5 Running time (in seconds) for Knitro (using the lazy approach) by number of graph

nodes (n). 84

viii

A.1 Algorithm 2.1 search functions separated into three modules. 90

ix

Chapter 1

Introduction

First conceived in the 1960s [19, 93], network interdiction problems (NIPs) were developed

to respond to strategists concerns about worst-case scenarios of how an adversary (e.g., USSR)

might attack road or railway networks. For this application, modelers placed the adversary as the

interdicting agent and public organizations as the followers, and the assumed the interdictor had full

access to the network information. In contrast, more recent NIP applications examine how public

organizations might disrupt the networks and activities of criminals. Examples include interdiction

of nuclear smuggling [58], improvement of border protection [82], and combating human trafficking

[47]. In these formulations, the public organization is the leader and the social disruptors are the

followers. This reversal of roles warrants reconsideration of the underlying assumptions inherent in

NIP formulations.

1.1 Background and Literature Review

Smith et al. [76] present an introductory summary on network interdiction problems and

review of the relevant literature, and the seminal work of Wood [94] provides a general expanded

treatment of network interdiction problems, including the common network interdiction problem we

consider in this dissertation: the shortest path interdiction problem (SPIP). In the SPIP a leading

agent (the leader or interdictor) and a following agent (the follower) interact in a maximin game

on a network, G = (N ,A). We denote the size of this graph by n = |N | and m = |A|. The leader

selects an interdiction strategy, subject to a cardinality constraint, b, on the number of total number

1

of interdictions. We represent the leader’s interdiction decision by the vector x ∈ {0, . . . , b}m, where

each component xa denotes the number of interdictions on arc a ∈ A. Each successive interdiction on

arc a ∈ A raises the arc cost according to a nondecreasing function ca : {0, . . . , b} → R+. The follower

observes the interdiction strategy and chooses a shortest path through the interdicted network from

a source node s ∈ N to a destination node, t ∈ N . The follower’s decision is given by the vector

y ∈ {0, 1}m, where ya = 1 if arc a ∈ A is on the follower’s path, and ya = 0 otherwise. The SPIP

may be formulated as a bi-level mathematical program:

max z(x) (1.1a)

subject to:
∑
a∈A

xa ≤ b (1.1b)

xa ∈ Z+ ∀a ∈ A, (1.1c)

where z(x) = min
∑
a∈A

ca(xa)ya (1.1d)

subject to:
∑
j∈N :

(i,j)∈A

yij −
∑
j∈N :

(j,i)∈A

yji =

1 i = s

−1 i = t

0 otherwise

∀i ∈ N (1.1e)

yij ∈ Z+ ∀(i, j) ∈ A, (1.1f)

where Z+ denotes the non-negative integers. The leader’s outer problem, given in (1.1a)–(1.1c),

selects an interdiction strategy, while (1.1d)–(1.1f) capture the follower’s inner problem of finding a

shortest path. Constraint (1.1b) limits the number of interdicted arcs, and (1.1e) are the standard

flow constraints for the follower’s shortest path problem. Since the coefficient matrix for (1.1e) is

totally unimodular, we may relax the integrality constraints in (1.1f), resulting in a linear program

for the follower’s shortest path, and taking the dual of the follower’s inner problem, we can collapse

(1.1) into the following equivalent mixed integer linear program:

max ds (1.2a)

subject to: di − dj ≤ ca(xa) (1.2b)∑
a∈A

xa ≤ b (1.2c)

2

dt = 0 (1.2d)

xa ∈ Z+ ∀a ∈ A, (1.2e)

where each di is the dual variable corresponding to the ith flow constraint in (1.1e) and represents

the shortest path length from node i to node t. The assignment dt = 0 in (1.2d) gives an arbitrary

assignment for the extra dt variable since (1.1e) includes one redundant constraint. The SPIP is

NP-hard [3], and the leading approaches for solving it use cutting-plane algorithms [36, 50].

In this dissertation, we introduce uncertainty in the determistic models of (1.1) and (1.2).

Multiple works examine stochastic variations of the SPIP; these may generally be grouped into three

cases:

1. Symmetric uncertainty: Here the leader and follower lack the same information. For

example [14, 37, 63] consider scenarios with uncertain success or effectiveness of the interdiction

actions, and [29, 31] model a NIP with uncertain network topology.

2. Asymmetric uncertainty: Asymmetric access to information may benefit either the leader

or the follower. For example, [5, 72, 82] examine uncertain NIPs where the follower lacks some

of the arc cost information. In each of these articles, the follower is an evader attempting to

penetrate the network but lacks some awareness of the interdictor’s actions or their effect on

the network. In contrast, [10, 30, 51] present formulations where it is the leader who lacks

access to arc cost information. All three of these studies present multi-stage NIPs, where each

stage evolves a new interdiction strategy until the leader gains enough information to converge

to a stable strategy. Also [77] presents a formulation where the arc costs are stochastic, but

the follower adopts a “wait and see” strategy, effectively placing the leader at an information

disadvantage; they present the leader’s problem using a robust optimization formulation.

3. Uncertain Strategies: In some NIP scenarios, such as the case of deterring fare evasion on

public transit [2, 9, 15], the leader selects a randomized interdiction strategy, and the follower

observes the probabilities of various interdiction locations and then selects a preferred path.

Alternatively, in modeling the NIP as a simultaneous game, [90] show that a Nash equilibrium

is attained when both the leader and follower adopt mixed strategies.

Two common approaches to handling uncertainty include robust optimization (RO) models

[7] and stochastic programming (SP) models [8, 40]. Numerous studies [32, 35, 42, 43, 59, 64, 73]

3

explore the possibility of expressing RO and SP techniques using multiobjective formulations, but

application of multiobjective formulations to uncertain problems are extremely limited in practice.

In particular, no studies to our knowledge use multiobjective methods to handle uncertainty in NIPs

(though [69, 70, 71] consider deterministic multiobjective NIPs). We find this approach is useful,

however, for in one of our models, provided the number of uncertain scenarios is limited.

1.2 Contribution and Motivation

In this dissertation, we contribute two new SPIP variants that exhibit uncertainty. For each

variant, we introduce the problem, examine its properties, propose various algorithms to exploit the

properties, and compare the algorithms in computational studies. In addition to these new SPIP

variants, we also contribute a new algorithm for generating Pareto solutions for discrete multiobjective

problems.

Our contribution of a multiobjective generating algorithm is vital to tractably handling

problems with uncertainty using multiobjective techniques. Multiobjective formulations of uncertain

problems require a separate objective for each possible scenario, and current techniques for generating

nondominated solutions to multiobjective exhibit exponential growth in running times as the number

of objectives grows. Thus, the set of possible scenarios must be kept extremely small, and hence

the applications for multiobjective approaches to uncertain problems are relatively limited. We

contribute a new algorithm, based on the augmented weighted Tchebychev norm, that tends to

scale better (with respect to the number of objectives) than other leading techniques in generating a

complete set of non-dominated solutions. This property allows us to use tractable multiobjective

methods in presenting and evaluating trade-offs in our first variant of the SPIP.

Our first variant is the SPIP with arc improvements (SPIP-I). It exhibits information

asymmetry that benefits the follower, but differs from previous studies where the (unknown) true

costs are fixed. Rather, the SPIP-I allows that (in the vernacular) “the enemy gets a vote,” by

modeling the follower as an adaptive agent, who observes the leader’s actions and reacts to mitigate

the interdiction strategy. In this variant, the follower is permitted to lower arc costs (i.e., “improve

arcs”) after observing the interdictions, subject to a budget constraint that is unknown to the the

leader. We adopt a multiobjective approach to this problem, seeking to generate a complete set of

Pareto-optimal interdiction strategies; that is, for each such strategy it is not possible to improve the

4

objective for one given value of the follower’s interdiction budget without degrading the objective

for some other value of the follower’s interdiction budget. Arc improvements encompass a variety

of situations that arise in network interdiction analysis. For example, the leader may suspect the

follower has some hidden arcs and considers a worst-case event in which the follower might use them

to avoid interdicted arcs. Another example is that the follower may commit additional resources after

the interdiction to reduce the cost of using an arc, perhaps as a nonlinear function of expenditures in

improvements (see, e.g., [52]). Both of these scenarios may be represented using our framework of

arc improvements with the interdictor uncertain of the improvement budget.

Our second variation is the shortest path interdiction problem with randomized strategies

(SPIP-RS). This variant resembles the models of [2, 9, 15] in that the leader can select a randomized

interdiction strategy and the follower must select a path knowing only the probability distribution

specified in the leader’s interdiction strategy (and not the true interdiction locations). The follower’s

goal is to select a path having minimum expected cost, given the leader’s (stochastic) interdiction

strategy. The SPIP-RS is motivated by real-life applications where randomized interdiction strategies

can be gainfully employed. This situation arises frequently in security applications, for which true

interdiction resources are dispersed among decoys. For instance, detection devices such as remote

cameras may be placed at border crossings, only some of which are monitored due to personnel

limits. (Note the equivalence between maximizing a minimum-cost path and minimizing a maximum-

evasion-probability path for an evader; see, e.g., [63].) The evader may obtain data to ascertain

evasion probabilities in the presence of cameras, but the interdictor can reasonably randomize its

monitoring activity and hide the day-to-day assignment of interdiction resources from the evader.

Unlike previous studies that assume affine cost functions, we consider the complexity of the SPIP-RS

when the cost functions are nonlinear. Returning to the border protection scenario, concave costs

might occur if mounting and monitoring additional cameras at a location yields diminishing returns

in detection probability. We also examine the case of convex cost functions, such as when monitoring

agents work in teams and are more effective as a group than they are as individuals. Lunday and

Sherali [52] provide a thorough discussion of such synergies among interdiction resources, leading to

nonlinear interdiction models such as the one we study here.

5

1.3 Dissertation Organization

Chapter 2 introduces our multiobjective approach based on the modified augmented weighted

Tchebychev (MAWT) norm. We present the MAWT algorithm and demonstrate its computations

with an example. Our computational study shows that the MAWT algorithm performs comparatively

to other leading algorithms on problems with few objectives, and it scales better as the number of

objectives increases.

After introducing our MAWT algorithm, we proceed to apply it as we consider the SPIP-I

in Chapter 3. We introduce the problem, give a formulation based on the SPIP formulation of (1.1),

and use an example to demonstrate the value of a multiobjective approach. We then present three

algorithms for solving the SPIP-I and compare their performance in a computational study. We

conclude Chapter 3 with ideas for future research on the SPIP-I.

Chapter 4 presents our study of the SPIP-RS. As in the previous chapter, we introduce

the problem, formulate it based on (1.2), and give an example. We prove that this problem is

NP-complete and present several algorithms for solving it. We provide computation results from an

experiment and conclude with areas of future research.

6

Chapter 2

Modified Augmented Weighted

Tchebychev Scalarizations

2.1 Chapter Introduction

In this chapter we examine discrete multi-objective optimization problems in which there

can exist any finite number of objective functions. The goal of this study is to provide an algorithm

that generates a complete set of efficient solutions to the problem without user intervention. Section

2.1.1 presents concepts and notation used in this chapter. Section 2.1.2 discusses literature most

closely related to our study. Section 2.1.3 states our primary contributions and gives the organization

of the chapter.

2.1.1 Preliminaries

Consider the multi-objective problem:

min [z1(x), . . . , zp(x)]

subject to: x ∈ X,

where p ∈ N, X ⊆ Rn, and zk : X → R for each k ∈ P = {1, . . . , p}. We call X the decision set

and Rn the decision space. For any X ′ ⊆ X, let z(X ′) =
⋃

x∈X′ z(x) be the image set of X ′ under

7

the vector-valued function z(x) = [z1(x), . . . , zp(x)]. We call Z = z(X) the solution set and Rp the

objective space or solution space.

We apply the standard Pareto preference ordering to the vectors in Rp, as given in the

following definitions.

Definition 1. Let za, zb ∈ Rp. Then

za 5 zb ⇔ zak ≤ zbk, ∀k ∈ P . We say za weakly dominates zb.

za ≤ zb ⇔ za 5 zb and za 6= zb. We say za dominates zb.

za < zb ⇔ zak < zbk, ∀k ∈ P . We say za strongly dominates zb.

Definition 2. z ∈ Z is

non-dominated⇔ @z′ ∈ Z : z′ ≤ z, and

weakly non-dominated⇔ @z′ ∈ Z : z′ < z.

Definition 3. The non-dominated set is ZN = {z ∈ Z : z is non-dominated}.

The necessary and sufficient conditions for our algorithm to operate correctly are given in

Assumptions 2.1 and 2.2. However, since both conditions refer to ZN , which is unknown at the

outset, it may be difficult to verify that these assumptions hold. Therefore, Lemma 2.1 states a

condition on Z that is sufficient for Assumptions 2.1 and 2.2 to hold.

Assumption 2.1. |ZN | <∞.

Assumption 2.2. ∀z ∈ Z, there exists z∗ ∈ ZN such that z∗ 5 z.

Lemma 2.1. If |Z| <∞, then Assumptions 2.1 and 2.2 hold.

Proof. Assume |Z| <∞. By construction, ZN ⊆ Z so |ZN | ≤ |Z| <∞, and Assumption 2.1 holds.

To show Assumption 2.2 holds, consider z1 ∈ Z. If z1 is non-dominated, then z1 ∈ ZN . Otherwise it

is dominated, and there exists z2 ∈ Z : z2 ≤ z1. If z2 is non-dominated, then z2 ∈ ZN . Otherwise,

∃z3 ∈ Z : z3 ≤ z2. Continuing in this manner, we can construct the sequence z1 ≥ z2 ≥ · · · ≥ zd

where {zi : 1 ≤ i ≤ d ≤ |Z|} ⊆ Z and 6 ∃z ∈ Z : z ≤ zd. Thus, zd ∈ ZN , and Assumption 2.2 holds.

This completes the proof.

8

Definition 4. For Z ′ ⊆ Rp, zlb ∈ Rp is a (weak/·/strong) lower bound if (zlb 5 z/zlb ≤ z/zlb <

z), ∀z ∈ Z ′.

Definition 5. For Z ′ ⊆ Rp, zub ∈ Rp is a (weak/·/strong) upper bound if (z 5 zub/z ≤ zub/z < zub),

∀z ∈ Z ′.

Lemma 2.2. (See [83].) Let Z ⊆ Rp. Then |Z| <∞⇔ Z is compact and discrete.

Corollary 2.2.1. ZN has a weak lower bound, zlb, and a strong upper bound, zub.

Proof. The result follows from the boundedness of ZN given by Assumption 2.1 and Lemma 2.2.

Definition 6. The step size, s, over ZN is given by min{za,zb∈ZN , k∈P}{|zak − zbk| : zak 6= zbk}.

Lemma 2.3. Let r = maxk∈P {zub
k −zlb

k } where zlb and zub are weak lower and strong upper bounds

on ZN , respectively, and let s be the step size over ZN . Then, |ZN | > 1⇒ 0 < s < r.

Proof. Assume |ZN | > 1. We note 0 < s, since s = min{za,zb∈ZN , k∈P}{|zak − zbk| : zak 6= zbk} > 0. To

show s < r, let za, zb ∈ ZN where za 6= zb. Then we have some k ∈ P such that zak < zbk, which

gives us:

zlb
k + s ≤ zak + s ≤ zbk < zub

k

⇒ zlb
k + s < zub

k

⇔ s < zub
k − zlb

k ≤ r.

Thus, 0 < s < r, and the proof is complete.

Definition 7. A point z∗ ∈ Z is k-preferred for some k ∈ P if z∗k ≤ zk, ∀z ∈ Z. A set Z ′ ⊆ Z of

preferred points is a complete set of preferred points if ∀k ∈ P , ∃z′ ∈ Z ′ such that z′ is k-preferred.

In addition to the above definitions for the solution space, we present the following definitions

regarding efficiency in the decision space.

Definition 8. Point x ∈ X is efficient if z(x) ∈ ZN . The set XE = {x ∈ X : x is efficient} is the

efficient set.

Definition 9. Any subset X ′ ⊆ XE such that z(X ′) = ZN is a complete set of efficient points.

9

2.1.2 Literature Review

Hwang and Masud [34] classify techniques to find non-dominated points into three categories,

depending on the level of decision maker interaction: a-priori methods, interactive, and a-posteriori

(or generating) methods. Our approach falls into the a-posteriori category. These methods seek to

generate the full set of non-dominated objectives, and then allow the decision maker (a-posteriori)

to select any one among those solutions. Our review of relevant literature examines five families of

generating methods.

2.1.2.1 ε-Constraint Methods

First presented by [27], the ε-constraint method constrains all objectives but one. Those

constraints are initially loose, and they are iteratively tightened. At each iteration, the algorithm

minimizes the unconstrained objective, subject to the other objectives’ constraints. The algorithm

terminates when no feasible solutions remain under the tightened constraints.

Several improvements for the ε-constraint method have been proposed. Notably, while Haimes

et al.’s algorithm may return points that are only weakly non-dominated, [21] develop the elastic

ε-constraint method, which avoids generating such weak solutions. Their method adds slack variables

to the ε-constraints and then appends a small (possibly zero) weighted contribution of those slack

variables to the objective. Both [28] and [60] improve the algorithm using a weighting scheme that

produces a lexicographical ordering for tightening the ε-constraints. [48] and [41] suggest methods

to reduce the number of search regions, which reduces computation time considerably. Also, [95]

provide further improvements via early exits and bouncing steps. Finally, [53] and [56] implement the

augmented ε-constraint method, combining the elastic method with lexigraphically-ordered searches.

2.1.2.2 Klein and Hannan’s Family of Methods

Klein and Hannan [46] develop the dominated region exclusion approach, which iteratively

identifies efficient solutions and then adds constraints to the problem that exclude those solutions

and the regions dominated by them. Sylva and Crema [84] enhance the method by using a sum of

the objective functions, but they observe that the approach is impractical for large non-dominated

sets, because the constraint set grows each iteration. Lokman and Koksalan [49] also improve the

method with two algorithms. Their first algorithm reduces the number of constraints, thus improving

10

the results in [84], but still suffering for large non-dominated sets. Their second algorithm replaces

a single subproblem with many variables and constraints, with multiple subproblems with fewer

variables and constraints. Numerical tests suggest this second algorithm seems to overcome the

computational limitations of previous efforts to generate ZN from the previous studies in this family.

2.1.2.3 Two-Phase Methods

The two-phase method was first suggested by [85]. The concept is to find solutions on the

convex hull of the non-dominated set by means of a weighted sum of the objective functions. Then a

different method, e.g., branch-and-bound as given in [85], is used to find the solutions in the interior

of the hull. This algorithm is applied to various types of bi-objective problems, including knapsack

[88], minimum spanning tree [68, 78], minimum cost flow [67] and assignment [65, 66, 85]. While all

use the weighted sum for the first phase, the authors vary their search algorithms for the second.

While most papers are restricted to biobjective problems, the paper [66] demonstrates an application

of this method to a problem having more than two objectives.

2.1.2.4 Branch-and-Bound Methods

White [91] conceives of applying branch-and-bound algorithms to multi-objective combi-

natorial optimization problems. This approach conducts the search in the decision space rather

than the solution space. Thus, it is the components of x ∈ X ⊆ Rn that are branched, fathomed,

and pruned. The benefit of this approach, as shown in [54, 55] and [87], is that it is capable of

generating a full representation of ZN even for combinatorial multi-objective mixed-integer programs

(MOMIPs) where |ZN | 6<∞. Then [81] compare the performance of a bi-objective branch-and-bound

algorithm against a two-phase algorithm on six types of combinatorial MOMIPs, demonstrating that

the branch-and-bound method performed better than the two-phase method in five of the six types of

problems. Finally, [6] demonstrate a multi-objective branch-and-bound algorithm for general integer

problems.

2.1.2.5 Tchebychev Norm Methods

Bowman [11] suggests the application of the Tchebychev norm for finding the non-dominated

set of a multi-objective problem. Since the norm is known to guarantee only weakly efficient solutions,

[80] propose augmenting the base (Tchebychev) norm with a weighted sum of all the objectives

11

multiplied by some constant coefficient. This augmented norm is applied successfully in interactive

methods [1, 79, 92] as well as in generating approximations to the non-dominated set [45, 74]. We

are unaware of any complete generating methods using the Tchebychev norm until the work of [17].

Dächert et al. demonstrate that, in general, no single coefficient will generate the entire non-dominated

set for a problem instance. However, by adaptively adjusting the coefficient based on the search

region, they use the augmented Tchebychev norm to generate ZN for bi-objective problems. Their

results exhibit comparable average computation time to the ε-constraint method as implemented by

[62], with about half the standard deviation.

2.1.3 Contribution and Overview

Similar to the work of Dächert et al., our approach employs a variant of the Tchebychev

norm, adaptively adjusting the search parameters without human intervention to generate ZN . Our

contribution is to propose a modification to the augmented Tchebychev norm that affords a simpler

computation of the coefficient for the augmentation term. We also give an algorithm to generate

the non-dominated set for any number of objectives. To our knowledge, this is the first generating

method that uses a variant of the Tchebychev norm to generate the non-dominated set for discrete

multi-objective optimization problems with any number of objectives. By contrast, the approach

in [17] employs the (more traditional) augmented weighted Tchebychev norm with a sophisticated

parameter scheme in order to generate a complete efficient set of solutions. The authors additionally

provide a rigorous analysis of the parameters employed in the augmented weighted Tchebychev norm.

The goal in their work is to find the largest possible augmentation parameter that still guarantees

that all non-dominated points can be found, noting that larger values of the augmentation term

tend to avoid numerical difficulties in optimization. By contrast, the structure of the variant of the

Tchebychev norm that we propose in this chapter will allow us to state a simpler weighting scheme

that can be used to automatically generate a complete efficient set of solutions with any number of

criteria.

In Section 2.2 we present our proposed modification and our algorithm. We prove the

correctness and finiteness of our algorithm in Section 2.3, and give an example in Section 2.4. In

Section 2.5 we present computational results. The chapter concludes in Section 2.6 with consideration

of future research areas.

12

(a) w =
[
1
2
, 3
4

]
and ε = 0.04. (b) w =

[
1
20
, 1
15

]
and ε = 0.01.

Figure 2.1: Level curves for ‖z‖wε = 1 (dashed) and ‖z‖w,ε = 1 (solid).

2.2 Algorithm

We provide Algorithm 2.1 in this section, which generates a complete efficient set without

requiring user intervention. Our approach uses a modification of the augmented weighted Tchebychev

norm [17, 80]. The (original) augmented weighted Tchebychev norm is given by:

‖z‖wε = ‖z‖w∞ + ε‖z‖1 = max
k∈P
{wk|zk|}+ ε

∑
k∈P

|zk|, (2.1)

where w ≥ 0 and ε > 0. Our proposed modification incorporates the same weighting into the

augmentation term as is used on the base Tchebychev norm. Thus, the modified augmented weighted

Tchebychev (MAWT) norm we propose is:

‖z‖w,ε = ‖z‖w∞ + ε‖z‖w1 = max
k∈P
{wk|zk|}+ ε

∑
k∈P

wk|zk|. (2.2)

Kaliszewski [38] also examines a modification of the Tchebychev norm similar to (2.2) in some

respects; however, there are distinct differences. Also, [39] considers a more general Tchebychev-norm

variant which, with the appropriate selection of the parameters, may be reduced to (2.2). These

papers aim at interactive (a-posteriori) multi-objective methods and do not provide the contribution

that is the focus of this chapter. We distinguish between the norms (2.1) and (2.2) by placing the ε

parameter in the superscript in (2.2) rather than the subscript as in (2.1). Figure 2.1 compares level

curves for (2.1) and (2.2).

In the initialization phase of Algorithm 2.1, we determine a weak lower bound, zlb, by

minimizing each objective individually to give a complete set of preferred points, and selecting their

13

Algorithm 2.1: Search algorithm using the MAWT norm

Input : I: Multi-objective problem instance, min {[z1(x), . . . , zp(x)] : x ∈ X}
s: Positive lower bound on single-objective step sizes in Z
zub: Strong upper bound for ZN , (i.e., zub > z, ∀z ∈ ZN)

Output : X̂E : A complete efficient set
ẐN : The non-dominated set

Initialize

1 for k ∈ P do
2 zlb

k ← minx∈X zk(x) // At the end zlb = [zlb
1 , . . . , z

lb
p]

3 Choose ε ∈ (0, s/(p(r− s))) where r = maxk∈P {zub
k − zlb

k } // e.g., ε← s/(2p(r− s))
4 X̂E ← ∅, ẐN ← ∅, j ← 0; and L← {zub}

Main Loop

5 while L 6= ∅ do
6 j ← j + 1

7 Choose z(j) ∈ L; L← L \ {z(j)}
8 for k ∈ P do

9 wk ← 1/
(

max
{
s, z

(j)
k − zlb

k

})
// At the end w = [w1, . . . , wp]

10 g(z(x))← ‖z(x)− zlb‖w,ε

11 x(j) ← argminx∈X g(z(x))

12 if g(z(x(j))) < 1 then

13 if z(x(j)) 6∈ ẐN then X̂E ← X̂E ∪ {x(j)} and ẐN ← ẐN ∪ {z(x(j))}.
14 for k ∈ P do
15 if zk(x(j)) > zlb

k then

16 z(j),−k ← [z
(j)
1 , . . . , z

(j)
k−1, zk(x(j)), z

(j)
k+1, . . . , z

(j)
p]

17 L← L ∪ {z(j),−k}

Terminate

18 return X̂E , ẐN

14

respective preferred objective values (lines 1–2). Thus zlb 5 z < zub, ∀z ∈ ZN , where zub is a strong

upper bound over ZN given as input to the algorithm. We choose not to compute zub because it

is generally non-trivial to solve for a upper bound on ZN [20]. However, a strong upper bound for

ZN is often apparent for specific problem classes (e.g., (−1, ...,−1) for a multi-objective max flow

problem).

Next, with zlb and zub, we solve r = maxk∈P {zub
k − zlb

k }, and we select a parameter ε such

that:

0 < ε <
s

p(r − s)
, (2.3)

where s > 0 is a lower bound on the step size (given as an input parameter). Recall from Lemma

2.3 that either s < r, or |ZN | ≤ 1 (moreover, |ZN | = 0 ⇒ X = ∅ by Assumption 2.2, and

|ZN | = 1 ⇒ ZN = {zlb} by construction of zlb). Finally we initialize our lists of efficient and

non-dominated objectives X̂E and ẐN as empty sets, our iteration counter j = 0, and list of search

regions, L, to contain a single entry.

Each iteration j of the main loop begins in line 5 by choosing a vector, z(j) ∈ L, and removing

it from L. The vector z(j) uniquely defines our search region for that iteration, B(j) = {z ∈ Rp :

zlb 5 z < z(j)}, a hyperbox with weak lower and strong upper bounds given by the points zlb and

z(j), respectively. To determine whether B(j) ∩ ZN = ∅, we will use (2.2), for which we require

parameters w and ε. We have the ε parameter from line 3. To find w, we consider the side-lengths

of B(j), given by (z
(j)
k − zlb

k) for each k ∈ P . Then we take:

w =

[
1

max{s, z(j)
1 − zlb

1 }
, . . . ,

1

max{s, z(j)
p − zlb

p }

]
. (2.4)

Intuitively, equation (2.4) scales the side lengths to unit values, with the caveat that all side lengths

are at least s to prevent division by zero.

In line 10, we use the MAWT norm of (2.2) to define our scalarizing function, g : Rp → R,

and in line 11 we use g to solve

min
x∈X

g(z(x)) = ‖z(x)− zlb‖w,ε, (2.5)

where ε and w are given by (2.3) and (2.4), respectively. Note that (2.5) is feasible as long

as X 6= ∅ due to Assumption 2.2, and it is bounded because the objective is non-negative. If

15

the solution, x(j), has objective value g(z(x(j))) < 1, then we claim z(x(j)) ∈ B(j) ∩ ZN . In

that case, line 13 adds the solutions x(j) and z(x(j)) to X̂E and ẐN , respectively, unless z(x(j))

already belongs to ẐN . Lines 14–17 then spawn “child” upper bounds, {z(j),−k ∈ Rp : z(j),−k =

[z
(j)
1 , . . . , z

(j)
k−1, zk(x(j)), z

(j)
k+1, . . . , z

(j)
p], k ∈ P} and add them to L. Otherwise, if g(z(x(j))) ≥ 1, we

claim B(j) ∩ ZN = ∅, and Algorithm 2.1 proceeds to the next iteration. We prove both of the

foregoing claims in Section 2.3.

Algorithm 2.1 terminates when no remaining vectors are in L, and we claim (and prove in

Section 2.3) that X̂E is a complete efficient set.

2.3 Algorithm Proof

We begin this section by demonstrating that Algorithm 2.1 generates only efficient solutions.

Proposition 2.1. The solution, x(j), obtained in line 11 of Algorithm 2.1 is efficient.

Proof. Let x(j) optimize (2.5) with ε and w given as in lines 3 and 9, respectively. By contradiction,

assume ∃z ∈ Z such that z ≤ z(x(j)). Then

‖z(x(j))− zlb‖w,ε = max
k∈P

{
wk(zk(x(j))− zlb

k)
}

+ ε
∑
k∈P

wk(zk(x(j))− zlb
k)

> max
k∈P

{
wk(zk − zlb

k)
}

+ ε
∑
k∈P

wk(zk − zlb
k)

= ‖z− zlb‖w,ε,

which contradicts the optimality of x(j). This completes the proof.

Remark 1. The inequality in the proof of Proposition 2.1 is valid because zlb ≤ z(x(j)). However, if

εwk(zk(x(j))−zlb
k) becomes very small for all k ∈ P , then round-off errors may allow a non-dominated

solution to be returned. If we assume s < r/2 and p ≥ 2, then recalling ε < s/(p(r − s)) from (2.3),

we can mitigate the potential for numerical issues by maintaining ε2 to be sufficiently large, since

wk(zk(x(j)) − zlb
k) ≥ s/r ≥ s/(p(r − s)) > ε. We therefore suggest monitoring the condition that

εs/r should be significantly larger than machine epsilon, and since εs/r < s2/(pr2), this also bounds

the granularity achievable using the MAWT norm.

16

The following theorem states that the evaluation of line 12 properly determines whether

B(j) ∩ ZN = ∅.

Theorem 2.4. Let zlb < z(j) 5 zub and x ∈ X. Then z(x) ∈ B(j) if and only if g(z(x)) < 1.

Proof. Assume g(f(x)) < 1. We know zlb 5 f(x) by our construction of zlb, so we have:

1 > max
k∈P

{
(zk(x)− zlb

k)

(z
(j)
k − zlb

k)

}
+ ε

∑
k∈P

(zk(x)− zlb
k)

(z
(j)
k − zlb

k)

≥ max
k∈P

{
(zk(x)− zlb

k)

(z
(j)
k − zlb

k)

}

⇒ z
(j)
k − z

lb
k > zk(x)− zlb

k ∀k ∈ P

⇔ z(j) > z(x), which guarantees z(x) ∈ B(j).

Conversely, assume z(x) ∈ B(j) for some x ∈ X. Then, since z(x) ∈ B(j) we know z(x) < z(j). This

gives us zlb 5 z(x) < z(j) 5 zub, and so

g(z(x)) = max
k∈P

{
(zk(x)− zlb

k)

(z
(j)
k − zlb

k)

}
+ ε

∑
k∈P

(zk(x)− zlb
k)

(z
(j)
k − zlb

k)

≤ max
k∈P

{
(z

(j)
k − zlb

k)− s
(z

(j)
k − zlb

k)

}
+ ε

∑
k∈P

(z
(j)
k − zlb

k)− s
(z

(j)
k − zlb

k)

≤ max
k∈P

{
(zub
k − zlb

k)− s
(zub
k − zlb

k)

}
+ ε

∑
k∈P

(zub
k − zlb

k)− s
(zub
k − zlb

k)

≤ r − s
r

+ ε
p(r − s)

r

<
r − s
r

+

(
s

p(r − s)

)
p(r − s)

r
=
r − s
r

+
s

r
= 1.

Thus g(z(x)) < 1, which completes the proof.

Corollary 2.4.1. If g(z(x(j))) < 1 then z(x(j)) ∈ B(j) ∩ ZN . Otherwise B(j) ∩ ZN = ∅.

Proof. We note that g(z(x(j))) ≥ 1⇔ g(z(x)) ≥ 1, ∀x ∈ X. Proposition 2.1 and Theorem 2.4 then

establish the corollary.

Our next result considers how Algorithm 2.1 continues the search over (B(j)∩ZN)\{f(x(j))}.

Lemma 2.5. Let zlb < z(j) 5 zub for some iteration j, and z ∈ (B(j) ∩ ZN) \ {z(x(j))}. Then

∃z(j),−k = [z
(j)
1 , . . . , z

(j)
k−1, zk(x(j)), z

(j)
k+1, . . . , z

(j)
p] for some k ∈ P , such that zlb < z(j),−k ≤ zub and

17

z(j),−k is added to L in line 17.

Proof. Because z ∈ B(j), we have z < z(j), and z ∈ ZN implies ∃k ∈ P such that zlb
k ≤ zk <

zk(x(j)) < z
(j)
k . This satisfies the condition of line 15, so the point z(j),−k is added to L. Moreover,

zlb ≤ z < z(j),−k ≤ z(j) 5 zub, and the proof is complete.

As a result of Lemma 2.5, when a new efficient solution is identified in the algorithm, we generate

“child” upper bounds of the form z(j),−k and add them to L. We skip in line 17 any k for which

z(x(j)) is a k-preferred point, because that child, z(j′) = z(j),−k yields an empty corresponding search

region, B(j′) = ∅. The requirement that zlb < z(j),−k ≤ zub provides the sufficient conditions to

apply Theorem 2.4 when the child is chosen in a future iteration.

We conclude this section with arguments on the finiteness and completeness of the returned

sets ẐN and X̂E .

Proposition 2.2. Algorithm 2.1 terminates finitely, having the number of iterations bounded by

O(p|ZN |).

Proof. Consider a tree graph structure, where each node corresponds to one iteration. The tree

branches correspond to the child upper bounds z(j),−k, for k ∈ P . Each node may have up to p

branches; thus, the number of nodes at level of i of the tree is no more than pi. To bound the tree depth,

consider one z(j),−k = z(j′), and its associated search region B(j′). Note z(j′) ≤ z(j) ⇒ B(j′) ⊂ B(j).

Moreover, z(x(j)) 6< z(j′) ⇒ z(x(j)) 6∈ B(j′) ⇒ (B(j+1) ∩ ZN) ⊂ (B(j) ∩ ZN). Therefore, on every

path from the root, the search regions diminish by at least one non-dominated point at each node.

Hence, no path from the root node to a leaf can contain more than |ZN | + 1 nodes, and so the

tree depth is bounded by |ZN |+ 1. The total number of nodes in the full tree is then bounded by∑|ZN |
i=0 pi, i.e., O(p|ZN |) nodes. This completes the proof.

Remark 2. The bounds generated in Proposition 2.2 are loose and do not reflect the state-of-the-art.

This is due to the simple decomposition of the search elements in Algorithm 2.1. As we find in

our computational experiments, Algorithm 2.1 solves many more IPs than other recent generating

algorithms. Better results may be obtained using more advanced decomposition schemes such as

those of [44] and [18]. We discuss these improvements further in Section 2.5.3. The decomposition

proposed in Algorithm 2.1, however, is simpler for our initial exposition and sufficient for the proof

of finiteness.

18

Theorem 2.6. At termination, Algorithm 2.1 returns ẐN = ZN .

Proof. To show ẐN ⊆ ZN , note that only solutions to (2.5) are added to ẐN in line 13, and by

Proposition 2.1, those solutions are non-dominated. To show that ZN ⊆ ẐN , consider some z ∈ ZN ,

and assume that z ∈ B(j) for some j ∈ N. Since B(j) ∩ ZN 6= ∅, by Corollary 2.4.1, g(z(x(j))) < 1,

meeting the condition of line 12. Now we have two cases:

Case 1: z = z(x(j)): Then line 13 guarantees z ∈ ẐN .

Case 2: z 6= z(x(j)): Then from Lemma 2.5, we know some z(j′) = z(j),−k is added to L in line 17,

where z < z(j′) ≤ zub ⇒ z ∈ B(j′) and the algorithm continues.

Observe from these cases that Algorithm 2.1 cannot terminate unless z = z(x(j)) for some j.

Then because Proposition 2.2 shows the algorithm must terminate, we have z ∈ ẐN at termination,

and the proof is complete.

Note that every time an element z(x(j)) is added to ẐN in line 13, its pre-image x(j) is also added to

X̂E , which guarantees by Theorem 2.6 that X̂E is a complete efficient set at termination.

2.4 Example

In this section, we illustrate Algorithm 2.1 on the following bounded, non-convex bi-objective

problem:

min [z1(x) = x1, z2(x) = x2]

subject to: (x1, x2) ∈ (X1 ∪X2) ∩ Z2, where

X1 =

{
(x1, x2) ∈ R2 :

√
(x1 − 7)2

3
+

(x2 − 2)2

1.5
≤ 1

}

X2 =

{
(x1, x2) ∈ R2 :

3

2
x1 + x2 ≥ 9, −2

5
x1 − x2 ≥ −8, x2 ≥ 4

}
.

A lower bound on the step size is s = 1. A strict upper bound on ZN is zub = [11, 8].

In Figure 2.2 we show the regions X1 and X2 as shaded. The point zlb is marked with a star.

Dominated points are dull circles, non-dominated points are bold circles, and the non-dominated

solution to (2.5) in each iteration, x(j), is a filled circle. Also for each iteration, the upper bound,

z(j), is a filled diamond, and the child upper bounds spawned from that iteration, z(j),−k, are empty

19

diamonds. Finally, for each iteration we show the level curves {z ∈ Rp : g(z) = g(z(x(j)))} (solid

line) and {z ∈ Rp : g(z) = 1} (dashed line).

Initialization: (See Figure 2.2a.) We initialize by first solving for the lower bound,

zlb = (2, 1). Then, we choose ε = 0.05 < 1/16 = s/p(r − s). Finally, we initialize L = {(11, 8)}.

Iteration 1: (See Figure 2.2b.) We choose z(1) = (11, 8) and remove this vector from L.

Solving (2.5), we get x(1) = z(x(1)) = (4, 2) with g(z(x(1))) ≈ 0.2405. Since g(z(x(1))) < 1, we

add x(1) to our solution set, so that X̂E = ẐN = {(4, 2)}. Next, we find the child upper bounds

z(1),−1 = (4, 8) and z(1),−2 = (11, 2) and add them to L = {(4, 8), (11, 2)}.

Iteration 2: (See Figure 2.2c.) We choose z(2) = (4, 8) and remove this vector from L.

Solving (2.5), we get x(2) = z(x(2)) = (3, 5) with g(z(x(2))) = 0.625. Since g(z(x(2))) < 1, we add

x(2) to our solution set, so that X̂E = ẐN = {(3, 5), (4, 2)}. Next, we find the child upper bounds

z(2),−1 = (3, 8) and z(2),−2 = (4, 5) and add them to L = {(11, 2), (3, 8), (4, 5)}.

Iteration 3: (See Figure 2.2d.) We choose z(3) = (3, 8) and remove this vector from

L. Solving (2.5), we get x(3) = z(x(3)) = (2, 6) with g(z(x(3))) = 0.75. Since g(z(x(3))) < 1, we

add x(3) to our solution set, so that X̂E = ẐN = {(2, 6), (3, 5), (4, 2)}. Note z(x(3)) is 1-preferred

because z1(x(3)) = zlb
1 , so we do not generate a 1-child for z(3). However, we still add the 2-child,

z(3),−2 = (3, 6), to L = {(11, 2), (4, 5), (3, 6)}.

Iteration 4: (See Figure 2.2e.) We choose z(4) = (3, 6) and remove this vector from L.

Solving (2.5), we get x(4) = z(x(4)) = (2, 6) with g(z(x(4))) = 1.05. Since g(z(x(4))) > 1, we move on

to the next iteration, selecting a new upper bound from L = {(11, 2), (4, 5)}.

Iteration 5: (See Figure 2.2f.) We choose z(5) = (4, 5) and remove this vector from L.

Solving (2.5), we get x(5) = z(x(5)) = (4, 2) with g(z(x(5))) = 1.0625. Since g(z(x(5))) > 1, we move

on to the next iteration, selecting a new upper bound from L = {(11, 2)}.

Iteration 6: (See Figure 2.2g.) We choose z(6) = (11, 2) and remove this vector from L.

Solving (2.5), we get x(6) = z(x(6)) = (5, 1) with g(z(x(6))) = 0.35. Since g(z(x(6))) < 1, we add x(6)

to our solution set, so that X̂E = ẐN = {(2, 6), (3, 5), (4, 2), (5, 1)}. Because z2(x(6)) = zlb
2 , we add

only z(6),−1 = (5, 2) to L = {(5, 2)}.

Iteration 7: (See Figure 2.2h.) We choose z(7) = (5, 2) and remove this vector from L.

Solving (2.5), we get x(7) = z(x(7)) = (5, 1) with g(z(x(7))) = 1.05. Since g(z(x(7))) > 1 and L is

empty, the algorithm terminates, returning X̂E = ẐN = {(2, 6), (3, 5), (4, 2), (5, 1)}.

20

(a) Initialization (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

(e) Iteration 4 (f) Iteration 5

(g) Iteration 6 (h) Iteration 7

Figure 2.2: Illustration of Algorithm 2.1 iterations for Section 2.4 example problem

21

Table 2.1: |ZN | for instances in our testbed.

Instance number
p n 1 2 3 4 5 6 7 8 9 10

3
10 (KP) 10 19 18 22 6 27 15 14 8 14
25 (AP) 20 22 12 10 10 22 11 6 9 15

4

8 (KP) 16 22 12 13 54 17 21 11 19 13
9 (AP) 3 3 3 2 6 5 5 4 6 4
10 (KP) 27 45 22 57 47 77 15 31 32 64
20 (KP) 110 160 664 611 482 708 451 328 197 372
25 (AP) 31 26 43 25 35 23 32 28 16 17
64(AP) 185 212 292 389 264 310 362 190 254 141
100 (AP) 1,359 1,186 1,043 310 524 546 999 1,378 500 837

5
10 (KP) 76 96 57 175 48 86 72 49 82 59
25 (AP) 24 36 73 60 52 35 81 18 35 41

6
10 (KP) 101 115 97 166 153 91 124 102 45 86
25 (AP) 67 66 49 76 38 75 48 50 46 67

2.5 Computational Study

2.5.1 Implementation

We conducted an empirical study to compare the efficiency of searches using the MAWT

norm versus those performed by recently published algorithms. For this study, we refer to our

implementation of Algorithm 2.1 as “BOX.” For comparison, we implemented the ε-constraint

algorithm of [41], which we refer to as “KS,” and we implemented the recursive ε-constraint algorithm

of [61], which we refer to as “OBM.” Our implementations were written in Python 2.7, and we used

Gurobi 7.5 to solve the scalarized sub-problems, minx∈X g(z(x)), in each iteration.

For the study we ran 60 multi-objective cardinality-constrained knapsack and 70 multi-

objective assignment problem instances. The number of non-dominated objectives for these 130

instances is given in Table 2.1.

We generated the knapsack problems by varying the number of binary decision variables

n ∈ {8, 10, 20} while holding the number of objectives p = 4, and then we varied the number of

objectives p ∈ {3, 5, 6} while holding decision variables n = 10. For each of the six (n, p) combinations

we generated 10 instances, giving 60 instances in total. Our knapsack problems were formulated as:

min [−wT
1 x, . . . ,−wT

p x]

subject to:

n∑
i=1

xi ≤ n/2

22

x ∈ {0, 1}n,

where each wk ∈ {0, . . . , 10}n for k ∈ P was randomly generated using a discrete uniform distribution.

To initialize BOX, we used zub = e = [1, . . . , 1], and s = 1, and we chose ε = 1/pr < s/(p(r − s)).

Observing that the minimum possible objective in any component is −10n/2, our ε parameter was

smallest on the instances where p = 4, n = 20, which give ε ≥ 1/(4 ∗ (−1 − (−10 ∗ 10))) = 1/396.

Thus, we easily avoided numerical stability issues for our knapsack problems.

For our assignment problems we used complete bipartite graphs having node set N1 ∪N2,

with |N1| = |N2|. We varied the number of nodes over |N1| ∈ {3, 5, 8, 10} while holding p = 4. Since

the number of arcs in a complete bipartite graph is given by |N1|2, this varied the number of decision

variables over n ∈ {9, 25, 64, 100} with p = 4. We then varied the number of objectives p ∈ {3, 5, 6}

while holding n = 25 (i.e., |N1| = 5). Again, for each (n, p) combination, we generated 10 instances,

resulting in a total of 70 instances. Our assignment problems were formulated as:

min [wT
1 x, . . . ,wT

p x]

subject to :
∑
j∈N2

xij = 1 ∀i ∈ N1∑
i∈N1

xij = 1 ∀j ∈ N2

xij ∈ {0, 1} ∀(i, j) ∈ N1 ×N2,

where each wk ∈ {0, . . . , 10}n for k ∈ P was randomly generated using a discrete uniform distribution.

For the assignment problems, our upper bound input was zub = 10npe, and s = 1. As before, we

chose ε = 1/pr. Since zero is a lower bound on any component objective, we can form a lower

theoretical bound on ε over our test suite using instances where p = 6 and n = 10, which give

ε ≥ 1/(6 ∗ (10 ∗ 10 ∗ 6 − 0)) = 1/3600, which again was large enough to ensure that we did not

encounter numerical stability issues.

We executed each algorithm five times on each instance and recorded data on the fastest

total computational time observed. The study was run on an Intel Core i5 1.8GHz processor with

4GB of 1600MHz DDR3 RAM. We imposed an 1800 second time limit, after which the algorithm

terminated and returned the partial non-dominated set, ẐN , obtained at termination.

23

2.5.2 Computational Results

The first measure of merit in our experiment was how quickly Gurobi solved the integer

programming (IP) sub-problems for each algorithm. Since KS and OBM employed lexicographic

preferences to find each non-dominated point, each IP required multiple calls to Gurobi: OBM

required p calls per IP, and KS required two. We scored these multiple calls as solving a single

IP, summing Gurobi’s solving time over the multiple calls to get the total time to solve the IP

sub-problem. Our experiment indicates that Gurobi consistently solved KS’s sub-problems faster

than either BOX’s or OBM’s (see Figure 2.3). The times were comparable, however, with differences

usually less than one order of magnitude. Usually, Gurobi solved OBM’s sub-problems in less

time than it did for BOX, but as n grew large this trend reversed. Gurobi’s time to solve BOX’s

sub-problems became increasingly comparatively slower than the other two as p increased.

Surprisingly, however, the faster computation of sub-problems did not always translate

to faster time to termination (see Table 2.2). Figure 2.4 shows the performance profiles for each

algorithm, depicting the cumulative percentage of problems solved by each algorithm within time

limits appearing on the horizontal axis. Figure 2.4a depicts these performance profiles on a linear

time axis, which demonstrates that our proposed BOX algorithm outperforms both KS and OBM

over the aggregated set of test instances we generated. However, this plot hides the behavior of the

algorithms when they terminate relatively quickly. Figure 2.4b shows the performance profiles on a

logarithmic time axis instead, revealing that these both outperform BOX on instances that require

about ten seconds or less of computational time. Figure 2.5 provides further insight to this trend,

showing that BOX underperformed when p ≤ 4, but tended to be faster when p ≥ 5.

2.5.3 Running Time Improvement

Our study demonstrated that using the MAWT norm as implemented in Algorithm 2.1 is

comparable with two recently published algorithms and that it shows improved performance as the

number of objectives increases. However, in comparing the number of IPs solved (see Table 2.3),

it is clear that the BOX algorithm still has not reached its fullest potential, since it solves many

more IPs than necessary (see Remark 2). Klamtroth et al. [44] describe two techniques to avoid such

redundant searches: redundancy elimination (RE) and redundancy avoidance (RA). Upon inspection,

it may be seen that both KS and OBM implement RE variants. Dächert et al. provide an RA routine

24

Figure 2.3: Average time for Gurobi to solve one IP sub-problem in our testbed. Each line represents
an average of solver times over all IP sub-problems for one problem instance.

Table 2.2: Summary of computation times. All times are in seconds and significant to the nearest
second.

BOX KS OBM
p n Min Median Max Min Median Max Min Median Max

3
10 (KP) < 0.5 < 0.5 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5
25 (AP) < 0.5 < 0.5 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5

4

8 (KP) < 0.5 1 8 < 0.5 < 0.5 10 < 0.5 < 0.5 2
9 (AP) 0.51 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5
10 (KP) 1 4 15 < 0.5 2 13 < 0.5 2 13
20 (KP) 23 392 867 15 281 474 16 116 572
25 (AP) 1 4 9 1 2 4 < 0.5 2 8
64(AP) 204 790 1800 134 262 790 44 206 457
100 (AP) 862 1,800 1,800 307 1,800 1,800 531 1,530 1,800

5
10 (KP) 8 55 286 27 213 1,356 12 82 899
25 (AP) 2 36 241 5 109 1800 3 85 873

6
10 (KP) 20 236 1,576 920 1,800 1,800 55 1,766 1,800
25 (AP) 75 184 1,299 1,800 1,800 1,800 261 1,800 1,800

25

(a) Performance profiles with linear time axis. (b) Performance profiles with logarithmic time axis.

Figure 2.4: Performance profiles for algorithms.

(a) Performance profiles for p = 3. (b) Performance profiles for p = 4.

(c) Performance profiles for p = 5. (d) Performance profiles for p = 6.

Figure 2.5: Performance profiles for algorithms by p (logarithmic time axis).

26

Table 2.3: Number of IPs solved for each algorithm on completed problem instances in our testbed.
“N/A” indicates the algorithm failed to complete a sufficient number of problem instances to compute
the summary statistic.

BOX KS OBM
p n Min Median Max Min Median Max Min Median Max

3
10 (KP) 14 69 138 8 35 66 12 34 54
25 (AP) 19 57 106 12 28 66 14 25 43

4

8 (KP) 91 185 1,064 36 69 414 51 91 252
9 (AP) 7 21 64 5 14 27 9 18 32
10 (KP) 235 572 1,758 57 169 497 77 186 399
20 (KP) 2,522 24,815 44,057 403 2,335 3,586 462 1,605 2,751
25 (AP) 214 449 962 85 182 306 90 185 301
64(AP) 5,936 17,844 27,755 1,226 1,999 3,420 786 1,534 2,127
100 (AP) 17,265 N/A N/A 1,480 4,336 4,918 1,815 2,822 3,430

5
10 (KP) 1,036 6,666 26,855 370 998 3,302 585 1,412 3,152
25 (AP) 419 3,781 19,242 159 735 2,973 294 1,296 4,082

6
10 (KP) 3,189 26,131 147,968 745 N/A N/A 1,117 6,891 7,632
25 (AP) 9,091 17,944 96,117 N/A N/A N/A 2,799 5,306 6,560

for managing search regions using a neighbor relationship between the search region upper bounds.

Dächert et al. prove that if all solutions are in general position (i.e., no two solutions have objectives

equal in any component) their routine complexity is bounded in the order of the size of the upper

bounding set over ZN . In our testbed, the general position assumption does not hold, and while

Dächert et al. describe how to modify their routine for the non-general-position case, they provide no

complexity results for such a scenario. We implemented the list management routine of Dächert et

al., still using the MAWT norm to identify non-dominated objectives in the search regions. We call

resulting algorithm “BOX-NBR.”

After implementing these improvements, we tested BOX-NBR on the same instances from

our computational study. The results demonstrate marked improvement over the base routine (see

Table 2.4). Over the entire testbed, BOX-NBR exhibited an average of 64.0% improvement over BOX

running times; moreover, the running time reductions tended to increase as p increased. Overall,

BOX-NBR significantly outperformed all three of the previous algorithms over the comprehensive

testbed, but was slower than KS and OBM on instances taking less than 1 second (see Figure 2.6).

As before, the strength of the MAWT norm becomes most apparent as the number of objectives

is increased (see Figure 2.7). Notably, of the four algorithms tested, BOX-NBR was the only one

to successfully solve all testbed instances within 1800 seconds. Nevertheless, we also observe that

BOX-NBR still required more IP sub-problems than OBM on a number of problems (see Table 2.4).

27

Table 2.4: Running times (in seconds) and number of IPs solved by BOX-NBR along with respective
average percent improvement over BOX.

Running Time IP’s Solved
p n Min Median Max % Improved Min Median Max % Improved

3
10 (KP) < 0.5 < 0.5 < 0.5 -19.5% 29 51 90 -19.7%
25 (AP) < 0.5 < 0.5 < 0.5 -30.9% 25 44 78 -25.3%

4

8 (KP) < 0.5 < 0.5 3 -55.7% 67 98 321 -57.6%
9 (AP) < 0.5 < 0.5 < 0.5 +8.3% 28 36 49 +25.8%
10 (KP) < 0.5 2 5 -65.5% 88 212 450 -70.8%
20 (KP) 8 51 104 -87.0% 563 2,549 4,571 -89.2%
25 (AP) 1 1 3 -65.7% 96 166 243 -69.0%
64(AP) 36 88 180 -89.4% 792 1,583 2,766 -91.8%
100 (AP) 110 572 1,128 -67.0% 1,815 5,844 9,017 -82.8%

5
10 (KP) 1 5 20 -88.6% 479 825 2,934 -88.9%
25 (AP) 1 5 20 -88.6% 143 424 1,196 -90.9%

6
10 (KP) 5 35 89 -91.5% 546 2,724 6,097 -93.7%
25 (AP) 9 23 70 -93.1% 751 1,593 3,843 -94.7%

(a) Performance profiles with linear time axis. (b) Performance profiles with logarithmic time axis.

Figure 2.6: Performance profiles for BOX-NBR (previous algorithm profiles are given as dotted lines
for comparison).

This is likely because the OBM routine, as an ε-constraint method, conducts its search in Rp−1 space

rather than Rp, and it is reasonable to expect that fewer search regions are required for a full search

in the lower-dimensional space.

28

(a) Performance profiles for p = 3. (b) Performance profiles for p = 4.

(c) Performance profiles for p = 5. (d) Performance profiles for p = 6.

Figure 2.7: Performance profiles for BOX-NBR by p (logarithmic time axis, previous algorithm
profiles are given for comparison).

29

2.6 Conclusion

We contribute the MAWT norm and an associated algorithm, which, under fairly general

assumptions, generates the entire non-dominated set for a multi-objective optimization problem

having any number of objectives. Numerical experiments suggest that the MAWT norm yields

scalarized sub-problems that may be more difficult to solve than comparable ε-constraint sub-problems.

However, the algorithm still produced comparable computational results to two recently published

algorithms. In particular, our computational investigation showed that the proposed BOX algorithm

is preferable to the ε-constraint algorithms when the number of objectives was relatively large (more

than four). However, our testbed includes only a limited set of problems, none of which are NP–hard

in the single linear objective case. We also consider an improvement to our algorithm leveraging the

work of [18] and [44] and show significant reductions in running time by avoiding redundant searches.

Our observations motivate further computational study of various scalarization-based gen-

erating methods, including ε-constraint methods, Klein and Hannan’s family of methods, and the

MAWT norm. Each of these methods can be integrated with advanced approaches for managing

the list of search regions and avoiding redundant searches. The integration of various scalarization

methods with the diverse list management and redundancy mitigation schemes in the literature

warrants further attention. Future studies may also examine the performance of these combinations

on a variety of problem classes, including nonlinear, non-convex, and ill-conditioned problems.

30

Chapter 3

The Shortest Path Interdiction

Problem with Arc Improvement

Recourse

3.1 Problem description

The SPIP with arc improvement (SPIP-I) is a SPIP variant where the follower has an

opportunity to improve arcs, resulting in lower arc costs. That is, instead of the usual arc cost

functions, ca : {0, . . . , b} → R+, the SPIP-I uses the non-negative cost function, ca(x
L
a , x

F
a), where

xLa , x
F
a ∈ Z+ represent the leader’s and follower’s respective efforts to interdict or improve arc a.

The marginal cost functions are non-decreasing over xLa and non-increasing over xFa . The follower’s

objective is to select an improvement strategy, represented by variables xF , and a path, represented

by variables y, that minimize the cost to travel from a source node, s ∈ N , to a sink node, t ∈ N .

The leader’s objective is to select an interdiction strategy, xL, that maximizes the follower’s minimum

cost. The leader’s interdiction effort is constrained by
∑
a∈A x

L
a ≤ bL, and similarly the total amount

of improvement is constrained by
∑
a∈A x

F
a ≤ bF , where bL and bF are non-negative integers. As

we will later show, the cardinality restriction on the leader’s budget can easily be generalized as a

knapsack constraint, but significant computational difficulties can result by changing the follower’s

budget constraint to the general knapsack form.

31

As in the traditional SPIP formulation, each player acts with full knowledge of the other’s

actions, taking turns in three sequential moves as follows:

Move 1: The leader chooses an interdiction strategy, xL ∈ Z|A|+ , with
∑

(i,j)∈A x
L
ij ≤ bL.

Move 2: The follower chooses an improvement strategy, xF ∈ Z|A|+ , with
∑

(i,j)∈A x
F
ij ≤ bF .

Move 3: Finally, the follower selects a shortest path from s to t, represented by y ∈ {0, 1}|A|, where

yij = 1 if arc (i, j) is on the path, and yij = 0 otherwise.

Both players are aware of all data and previous decisions in the SPIP-I, with the exception that the

leader is unaware of the improvement budget, bF . Here, the leader is only aware that bF ∈ {0, . . . , p}

for some p ∈ Z+. Parameterizing the objective function by bF , we formulate the single-objective

SPIP-I as:

max
xL

zbF (xL) (3.1a)

subject to:
∑
a∈A

xLa ≤ bL (3.1b)

xLa ∈ Z+ ∀a ∈ A, (3.1c)

where zbF (xL) = min
(xF ,y)

∑
a∈A

ca(xLa , x
F
a)ya (3.1d)

subject to:
∑
j∈N :

(i,j)∈A

yij −
∑
j∈N :

(j,i)∈A

yji =

1 i = s

−1 i = t

0 otherwise

∀i ∈ N (3.1e)

∑
a∈A

xFa ≤ bF (3.1f)

ya ∈ {0, 1} ∀a ∈ A (3.1g)

xFa ∈ Z+ ∀a ∈ A. (3.1h)

Formulation (3.1) is equivalent to the SPIP formulation from (1.1), with the addition of constraints

(3.1f) and (3.1h), which restrict the follower’s improvements.

The leader’s ideal interdiction strategy would be simultaneously optimal for all values

bF ∈ {0, . . . , p}. However, this is not always possible (see Example 3.1). Often an interdiction

strategy that is relatively effective for one value of bF may be relatively ineffective for another value,

32

s

a1

a2

b110 (+1)

b2
20 (+20)

c110 (+1)

c21 (+24)

t

10 (+5)

100 (−90)

20 (+22)

100 (−98)

100 (−99)

10 (+10)

1 (+0)

Figure 3.1: Graph for Example 3.1. Solid arcs are candidates for interdiction, and dotted arcs are
candidates for improvement. Arc costs are given by Bij (±δij) where Bij is the arc cost without
interdiction or improvement and ±δij is the increase or decrease in cost due to a single interdiction
or improvement. Additional interdictions or improvements have no further effect.

and vice-versa. A robust approach would consider only the case where bF = p, but this approach

may miss certain strategies that yield near-optimal degradation in the case that bF = p while giving

significant improvement in the case that bF < p. In contrast, our multi-objective approach creates a

separate objective function for each bF ∈ {0, . . . , p} and seeks to generate a set of strategies where,

for any strategy, it is not possible to improve one objective without degrading another. This allows

us to consider the full range of trade-off options, and remains computationally feasible when the

range of possible values for bF is limited. Our multiobjective SPIP-I is defined as:

max
xL

[z0(xL), . . . , zp(x
L)]

subject to: (3.1b)–(3.1c),

(3.2)

where zbF (xL) is defined as in (3.1d)–(3.1h). Let X = {xL ∈ Z|A|+ :
∑

(i,j)∈A x
L
ij ≤ bL}, and let

Z =
⋃

xL∈X{z(xL)} ⊂ Rp+1. Throughout this chapter, except where specified otherwise, we refer by

default to SPIP-I as the multiobjective version of the problem, and we seek to find a complete set of

non-dominated solutions z(x) ⊆ ZN (using the definitions of efficiency and non-dominance from the

previous chapter).

Example 3.1. Throughout this chapter, we illustrate the SPIP-I by the graph given in Figure 3.1, with

the arc cost functions, cij(x
L,xF), given in Table 3.1. We set bL = 3 and p = 1 (i.e., bF ∈ {0, 1}).

The cost functions in this example effectively partition the arcs into two sets: candidates

for improvement and candidates for interdiction. Expending improvement budget on candidates for

interdiction will have no effect, nor will expending interdiction budget on candidates for improvement.

33

Table 3.1: Cost functions, cij(x
L,xF), for arcs in Figure 3.1.

Candidates for interdiction Candidates for improvement

(i, j)
xLij = 0, xLij ≥ 1,

(i, j)
xLij ∈ Z+, xLij ∈ Z+,

xFij ∈ Z+ xFij ∈ Z+ xFij = 0 xFij ≥ 1

(s, a1) 10 15 (s, b1) 100 10
(s, a2) 20 42 (b1, t) 100 2
(a1, b1) 10 11 (b2, t) 100 1
(a2, b2) 20 40
(b1, c1) 10 11
(b2, c2) 1 25
(c1, t) 10 20
(c2, t) 1 1

Table 3.2: Some interdiction strategies on the graph from Figure 3.1, recourse paths, and costs.

xL y for bF = 0 z(xL) Domination
x1 ≡ {(s, a1), (a2, b2), (c1, t)} s→ a1 → b1 → c1 → t (55, 27) Non-dominated
x2 ≡ {(s, a1), (s, a2), (c1, t)} s→ a1 → b1 → c1 → t (55, 27) Non-dominated
x3 ≡ {(s, a1), (b2, c2), (c1, t)} s→ a1 → b1 → c1 → t (55, 27) Non-dominated
x4 ≡ {(s, a1), (s, a2), (a1, b1)} s→ a1 → b1 → c1 → t (46, 28) Non-dominated
x5 ≡ {(s, a1), (a1, b1), (a2, b2)} s→ a1 → b1 → c1 → t (46, 28) Non-dominated
x6 ≡ {(s, a1), (a1, b1), (b2, c2)} s→ a1 → b1 → c1 → t (46, 28) Non-dominated
x7 ≡ {(s, a1), (b1, c1), (c1, t)} s→ a2 → b2 → c2 → t (42, 27) z(x4) > z(x7)
x8 ≡ {(s, a1), (a1, b1)} s→ a1 → b1 → c1 → t (42, 28) z(x4) ≥ z(x8)

Moreover, expending one unit of either the interdiction or improvement budget on any arc reduces

the marginal effect for additional expenditures to zero. Thus, each interdiction and improvement

choice is essentially binary. Since xL,xF ∈ {0, 1}|A|, rather than giving the interdiction and

improvement strategies in vector form, we present them using their equivalent incidence sets,

xL ≡ {(i, j) ∈ A : xLij = 1} and xF ≡ {(i, j) ∈ A : xFij = 1}. Also, rather than giving the path y in

its vector form, we present it as a sequence of nodes s→ · · · → t. We will hold these conventions in

our other examples as well.

Table 3.2 gives several interdiction strategies and the corresponding optimal follower recourse

paths for bF = 0 and the costs for both cases. For bF = 1, the optimal follower recourse path is

s → a1 → b1 → t, regardless of the leader’s interdiction strategy. If the leader wishes to optimize

primarily for the case of bF = 0, breaking ties by optimizing for the case of bF = 1, then the

optimal interdiction will be one of {x1,x2,x3}. However, if the leader optimizes for bF = 1 first,

breaking ties for the bF = 0 case, then one of {x4,x5,x6} is optimal. All other feasible strategies are

dominated. For example, z(x7) is strongly dominated, and z(x8) is dominated. The non-dominated

set is ZN = {[55, 27], [46, 28]}. The efficient set is XE = {x1,x2,x3,x4,x5,x6}. A complete efficient

34

set is given by XCE = {xa,xb} where xa ∈ {x1,x2,x3} and xb ∈ {x4,x5,x6}.

In addition to demonstrating the concepts of non-dominance and efficiency in the context

of the SPIP-I, this example also motivates the benefit of the proposed multiobjective approach. In

this example, if the leader assumed that bF = 1, then the leader would select one of {x4,x5,x6,x8}.

Solution x8 is dominated by the first three, though, and would not be generated by our multiobjective

approach. Furthermore, the multiobjective approach also uncovers efficient strategies that raise the

follower’s cost by 9 units when bF = 0, while sacrificing only one unit in the case that bF = 1.

The remainder of this chapter focuses on solving the SPIP-I. Section 3.2 presents an algorithm

to generate a complete set of efficient solutions for (3.2). For the case in which G is a series-parallel

graph, we provide an alternative approach to generate a complete set of efficient solutions in Section

3.3. Section 3.4 revises the approach in Section 3.3 by avoiding algorithmic steps over portions of the

graph that the follower does not use. We present computational results of all three algorithms in

Section 3.5 and finally conclude our chapter in Section 3.6.

3.2 Transforming the SPIP-I into a SPIP instance

In this section we present an algorithm for generating a complete set of efficient solutions to

the SPIP-I for general instances. This method reformulates the problem as a (multiobjective) SPIP

instance, removing the complicating decision variables, xF . To transform a SPIP-I instance into a

SPIP instance, we create an instance of SPIP having a graph Ḡ = (N̄ , Ā) (see Figure 3.2), where

• N̄ = {nh : n ∈ N , h ∈ {0, . . . , p}}, and

• Ā = {(ih, jh+`) : (i, j) ∈ A, h ∈ {0, . . . , p}, ` ∈ {0, . . . , p− h}}.

Thus, Ḡ contains p + 1 “layers,” where for each h ∈ {0, . . . , p}, the set {nh ∈ N̄} constitutes the

nodes in one layer of Ḡ. For every arc (i, j) ∈ A, we have multiple corresponding arcs, (ih, jh+`) ∈ Ā,

within each layer, and from each layer to every higher layer. Selecting arc (ih, jh+`) ∈ Ā represents

the event where the follower uses arc (i, j) ∈ A, expending h units of the improvement budget on the

s→ i path and an additional ` units on arc (i, j).

We restate (3.2) as the following multiobjective SPIP on Ḡ:

max
xL

[z0(xL), . . . , zp(x
L)] (3.3a)

35

s a

b t

(a) G = (N ,A)

s0 a0

b0 t0

s1 a1

b1 t1

(b) Ḡ = (N̄ , Ā) for p = 1

s0 a0

b0 t0

s1 a1

b1 t1

s2 a2

b2 t2

(c) Ḡ = (N̄ , Ā) for p = 2

Figure 3.2: Example of converting G = (N ,A) into Ḡ = (N̄ , Ā).

subject to:
∑

(i,j)∈A

xLij ≤ bL (3.3b)

xLij ∈ Z+ ∀(i, j) ∈ A, (3.3c)

where zbF (xL) = min
ȳ

∑
(ih,jh+`)∈Ā

cij(x
L
ij , `)ȳihjh+` (3.3d)

subject to:
∑
j∈N̄ :

(i,j)∈Ā

ȳij −
∑
j∈N̄ :

(j,i)∈Ā

ȳji =

1, i = s0

−1, i = tbF

0, otherwise

∀i ∈ N̄ (3.3e)

ȳij ≥ 0 ∀(i, j) ∈ Ā. (3.3f)

Note that unlike (3.1d), the objective function in (3.3d) is linear, because the choice of variable xFij

is implicit in the new arc-flow variable, ȳ(ih,jh+`). The cost of removing the complicating discrete

variable xF and linearizing the inner objective is captured in the larger graph size, since Ḡ has O(p)

times the number of nodes and O(p2) times the number of arcs as G. The formulation of (3.3) may

be further reduced to a single-level multiobjective mixed integer linear program by taking the dual of

(3.3d)–(3.3f) and combining the two maximization optimization problems (see [76]).

Our proposed method to solving the general SPIP-I is captured in Algorithm 3.1. Algorithm

3.1 accepts as input a graph, G, and a collection of associated cost functions, {cij}(i,j)∈A. We assume

the parameters bL and p are implicit in {cij}(i,j)∈A. The algorithm returns a complete efficient set

of interdiction strategies. The algorithm uses two auxiliary routines: Layerize and MOGA. Layerize

36

Algorithm 3.1: SolveXE1(G, {cij}(i,j)∈A)

Input :G: A directed graph
{cij}(i,j)∈A: Cost functions for each (i, j) ∈ A, where cij : Z2

+ → R+

Output :XCE(G): A complete set of efficient interdiction strategies
Dependencies : Layerize(G, p): Returns a graph, Ḡ (see Figure 3.2)

MOGA(P): Multiobjective generating algorithm. Returns efficient
solutions to P

1 Ḡ← Layerize(G, p)
2 P ← (3.3) formulated using Ḡ

3 X̂CE ← MOGA(P)

4 return X̂CE

accepts as input a graph, G, and a parameter, p, and it returns the layered graph, Ḡ, described

previously. The auxiliary routine MOGA is a multiobjective generating algorithm that accepts as input

a multiobjective problem, P , and returns a complete set of efficient solutions to P . There are a

variety of algorithms that could fill the role of MOGA, including ε-constraint [46, 61], two-phase [66, 85],

and branch-and-bound methods [55, 81, 87]. Our implementation (see Algorithm 2.1 in Appendix

A.2) is based on the modified augmented weighted Tchebychev (MAWT) norm in Chapter 2, and

tends to perform better than competing methods when p > 2. The following lemma holds due to the

equivalence of formulations (3.2) and (3.3) and is stated without proof for brevity.

Lemma 3.1. Algorithm 3.1 returns a complete set of efficient interdiction strategies.

3.3 Recursion algorithm for series-parallel graphs

In this section, we present an alternative algorithm to generate efficient solutions to the

SPIP-I on series-parallel graphs (SPGs) (see [86]). SPGs are applicable in a variety of scenarios (e.g.,

precedence constraints in sequencing and scheduling [57]), and they have a useful decomposition

structure that may be exploited to solve the SPIP-I. Specifically, our method leverages the recursive

decomposition of an SPG to derive efficient solutions for the composed graph from the efficient

solutions for the subgraphs. Thus, while this algorithm pertains only to SPGs, it avoids the solving

of mixed integer programs on a larger graph as in Section 3.2. To begin we establish the following

notational conventions:

• Henceforth we do not need to explicitly model the improvement strategy, xF . For notational

convenience, therefore, we omit the L superscript on the interdiction strategy.

37

Ga:
a a′

Gb:
b b′

Gc:
c c′

(a) Three basic SPGS:SPIPI. Ga, Gb, Gc

a

a′ = b = c

b′ = c′

(b) The composed SPG: Ga ⊗ (Gb ⊕Gc)

Figure 3.3: Examples of basic SPG graphs and series-parallel configurations.

• When Ga = (N a,Aa) and Gb = (N b,Ab) are non-intersecting (i.e., N a ∩N b = ∅) SPGs, then

Ga ⊕Gb and Ga ⊗Gb denote Ga and Gb in parallel and series constructions, respectively (see

Figure 3.3).

• With a slight abuse in notation, when composing G = Ga ⊕Gb or G = Ga ⊗Gb, we represent

subgraph interdiction strategies xa ∈ Z|A
a|

+ × {0}|Ab| on Ga and xb ∈ {0}|Aa| × Z|A
b|

+ on Gb,

while denoting the composition of these strategies on G as x = xa + xb ∈ Z|A
a∪Ab|

+ .

• We superscript our objective, zG(x), to highlight that z is a vector of shortest path lengths in

graph G when the leader uses interdiction strategy x. As before, each element of z corresponds

to a different improvement budget for the follower.

• X(G, κL) = {x ∈ Z|A|+ :
∑

(i,j)∈A xij = κL} denotes the set of feasible interdiction strategies on

G that expend an interdiction budget of κL ≤ bL arcs.

• XE(G, κL) (similarly, XCE(G, κL)) is the efficient set (similarly, a complete efficient set) of

strategies over X(G, κL).

We now develop the mathematical foundation for our recursive algorithm. Our first lemma

argues that efficiency in the subgraph strategies is a necessary condition for efficiency on a series-

composed graph.

Lemma 3.2. If x ∈ XE(Ga ⊗ Gb, κL), then x = xa + xb where xa ∈ XE(Ga, κLa) and xb ∈

XE(Gb, κL − κLa) with κLa =
∑

(i,j)∈A x
a
ij .

38

Proof. Assume by contradiction that xa /∈ XE(Ga, κLa), and so zG
a

(x′) ≥ zG
a

(xa) for some x′ ∈

X(Ga, κLa). Then

z(x′ + xb) =
[
zG

a

0 (x′) + zG
b

0 (xb), . . . , zG
a

p (x′) + zG
b

p (xb)
]

≥
[
zG

a

0 (xa) + zG
b

0 (xb), . . . , zG
a

p (xa) + zG
b

p (xb)
]

= z(x),

which contradicts the efficiency of x. Thus, we know xa ∈ XE(Ga, κLa). A similar argument shows

xb ∈ XE(Gb, κL − κLa), and the proof is complete.

Example 3.2. We continue Example 3.1. Figure 3.4 gives a binary decomposition tree, T , of the

graph in Figure 3.1. Each node, n# ∈ T , corresponds to a subgraph of Figure 3.1 induced by the

arcs mapped from the leaves of the subtree rooted at n#. We refer to this subgraph as G#. Each

branch node in T is labeled in Figure 3.4 as Type S (series) or P (parallel). Leaves are labeled with

Type L. The root of the tree is n21, with G21 = G.

Consider G11 as a series composition of the two subgraphs: G5, induced by the arc set

{(s, a1), (a1, b1), (s, b1)}, and G10, induced by the arc set {(b1, c1), (c1, t), (b1, t)}. Table 3.3 gives

efficient strategies on the subgraphs G5, G10, and G11. Note that for each κL = 0, . . . , 3, the

efficient strategies in XE(G11, κL) are composed of efficient strategies on G5 and G10. For example,

x ≡ {(s, a1), (a1, b1), (c1, t)} ∈ XE(G11, 3) is composed of xa ≡ {(s, a1), (a1, b1)} ∈ XE(G5, 2) and

xb ≡ {(c1, t)} ∈ XE(G10, 1). Conversely, not every feasible pairing of efficient strategies from G5 and

G10 creates an efficient strategy on G11. For example, combining xa ≡ {(s, a1)} ∈ XE(G5, 1) and

xb ≡ {(b1, c1), (c1, t)} ∈ XE(G10, 2) gives x = xa + xb ≡ {(s, a1), (b1, c1), (c1, t)} 6∈ XE(G11, 3).

By contrast, for parallel-composed graphs, it is possible to create an efficient solution by

composing a non-efficient subgraph strategy with an efficient subgraph strategy. However, the

following lemma shows that every efficient strategy is equivalent to one that is composed entirely of

efficient subgraph strategies.

Lemma 3.3. Let x ∈ XE(Ga ⊕Gb, κL). Then there exist efficient strategies x̄a ∈ XE(Ga, κLa) and

x̄b ∈ XE(Gb, κL − κLa), such that zG
a⊕Gb(x) = zG

a⊕Gb(x̄a + x̄b).

Proof. Define xa ∈ Z|Aa| × {0}|Ab| and xb ∈ {0}|Aa| × Z|Ab| such that x = xa + xb, and set

κLa =
∑

(i,j)∈A x
a
ij . Let x̄a ∈ XE(Ga, κLa) and x̄b ∈ XE(Gb, κL − κLa), giving zG

a

(x̄a) = zG
a

(xa) and

39

n
2
1

(P
)

n
2
0

(S
)

n
1
9

(S
)

n
1
8

(P
) n

1
7

(L
)

(b
2
,t

)

n
1
6

(S
)

n
1
5

(L
)

(c
2
,t

)

n
1
4

(L
)

(b
2
,c

2
)

n
1
3

(L
)

(a
2
,b

2
)

n
1
2

(L
)

(s
,a

2
)

n
1
1

(S
)

n
1
0

(P
) n

9
(L

)

(b
1
,t

)

n
8

(S
) n
7

(L
)

(c
1
,t

)

n
6

(L
)

(b
1
,c

1
)

n
5

(P
) n

4
(L

)

(s
,b

1
)

n
3

(S
) n
2

(L
)

(a
1
,b

1
)

n
1

(L
)

(s
,a

1
)

Figure 3.4: Binary decomposition tree, T , for graph in Figure 3.1. Nodes are annotated n# (Type),
where Type is P = parallel, S = series, or L = leaf.

40

Table 3.3: Efficient interdiction strategies on G11 and its subgraphs, G10 and G5, recourse paths,
and costs.

Graph Set Strategy bF = 0 path (z0(x)) bF = 1 path (z1(x))

G5
XE(G5, 2) {(s, a1), (a1, b1)} s→ a1 → b1 (26) s→ b1 (10)
XE(G5, 1) {(s, a1)} s→ a1 → b1 (25) s→ b1 (10)
XE(G5, 0) ∅ s→ a1 → b1 (20) s→ b1 (10)

G10
XE(G10, 2) {(b1, c1), (c1, t)} b1 → c1 → t (31) b1 → t (2)
XE(G10, 1) {(c1, t)} b1 → c1 → t (30) b1 → t (2)
XE(G10, 0) ∅ b1 → c1 → t (20) b1 → t (2)

G11

XE(G11, 3)
{(s, a1), (a1, b1),

s→ a1 → b1 → c1 → t (56) s→ a1 → b1 → t (28)
(c1, t)}

XE(G11, 2)
{(s, a1), (a1, b1)} s→ a1 → b1 → c1 → t (46) s→ a1 → b1 → t (28)
{(s, a1), (c1, t)} s→ a1 → b1 → c1 → t (55) s→ a1 → b1 → t (27)

XE(G11, 1)
{(s, a1)} s→ a1 → b1 → c1 → t (45) s→ a1 → b1 → t (27)
{(c1, t)} s→ a1 → b1 → c1 → t (50) s→ a1 → b1 → t (22)

XE(G11, 0) ∅ s→ a1 → b1 → c1 → t (40) s→ a1 → b1 → t (22)

zG
b

(x̄b) = zG
b

(xb). We then find:

zG
a⊕Gb

bF
(x) = min{zG

a

bF (xa), zG
b

bF (xb)} ∀bF ∈ {0, . . . , p}

≤ min{zG
a

bF (x̄a), zG
b

bF (x̄b)} ∀bF ∈ {0, . . . , p}

= zG
a⊕Gb

bF
(x̄a + x̄b) ∀bF ∈ {0, . . . , p}

⇒ zG
a⊕Gb(x) 5 zG

a⊕Gb(x̄a + x̄b).

However, by the efficiency of x, we know zG
a⊕Gb(x) 6≤ zG

a⊕Gb(x̄a+ x̄b), so zG
a⊕Gb(x) = zG

a⊕Gb(x̄a+

x̄b).

Example 3.3. Continuing from Example 3.1, consider the graph G = G21 = G11 ⊕ G20. Ta-

ble 3.4 describes all efficient strategies for G11, G20, and G21. As in the series case, not every

pairing of efficient strategies on G11 and G20 generates an efficient strategy for G21. For ex-

ample, xa ≡ {(s, a1)} ∈ XE(G11, 1) and xb ≡ {(s, a2), (a2, b2)} ∈ XE(G20, 2) combine to form

xa + xb ≡ {(s, a1), (s, a2), (a2, b2)} /∈ XE(G21, 3). Unlike the series case, the converse also fails.

In this scenario, there are four efficient interdiction strategies in XE(G21, 3) that are derived by

combining efficient strategies from G11 and G20 (namely, x2, x3, x4, and x6) and two efficient

strategies (namely, x1 and x5) that combine an efficient strategy from XE(G11, 2) with a non-efficient

interdiction strategy on G20. However, zG(x2) = zG(x1) and zG(x4) = zG(x5) are equivalent

strategies composed of efficient subgraph strategies as described in Lemma 3.3.

41

Table 3.4: Efficient interdiction strategies on graphs of G11, G20, and G21, bF = 0 recourse paths,
and objective vector. Recourse path when bF = 1 is s→ a1 → b1 → t in all cases.

Graph Set Strategy bF = 0 path z(x))

G11

XE(G11, 3) {(s, a1), (a1, b1), (c1, t)} s→ a1 → b1 → c1 → t (56, 28)

XE(G11, 2)
{(s, a1), (a1, b1)} s→ a1 → b1 → c1 → t (46, 28)
{(s, a1), (c1, t)} s→ a1 → b1 → c1 → t (55, 27)

XE(G11, 1)
{(s, a1)} s→ a1 → b1 → c1 → t (45, 27)
{(c1, t)} s→ a1 → b1 → c1 → t (50, 22)

XE(G11, 0) ∅ s→ a1 → b1 → c1 → t (40, 22)

G20

XE(G20, 3) {(s, a2), (a2, b2), (b2, c2)} s→ a2 → b2 → c2 → t (108, 83)

XE(G20, 2)
{(s, a2), (a2, b2)} s→ a2 → b2 → c2 → t (84, 83)
{(s, a2), (b2, c2)} s→ a2 → b2 → c2 → t (88, 42)

XE(G20, 1)
{(s, a2)} s→ a2 → b2 → c2 → t (64, 63)
{(b2, c2)} s→ a2 → b2 → c2 → t (66, 41)

XE(G20, 0) ∅ s→ a2 → b2 → c2 → t (42, 41)

G21

XE(G21, 3)

x1 ≡ {(s, a1), (a2, b2), (c1, t)} s→ a1 → b1 → c1 → t (55, 27)
x2 ≡ {(s, a1), (s, a2), (c1, t)} s→ a1 → b1 → c1 → t (55, 27)
x3 ≡ {(s, a1), (b2, c2), (c1, t)} s→ a1 → b1 → c1 → t (55, 27)
x4 ≡ {(s, a1), (s, a2), (a1, b1)} s→ a1 → b1 → c1 → t (46, 28)
x5 ≡ {(s, a1), (a1, b1), (a2, b2)} s→ a1 → b1 → c1 → t (46, 28)
x6 ≡ {(s, a1), (a1, b1), (b2, c2)} s→ a1 → b1 → c1 → t (46, 28)

XE(G21, 2)

{(s, a1), (s, a2)} s→ a1 → b1 → c1 → t (45, 27)
{(s, a1), (b2, c2)} s→ a1 → b1 → c1 → t (45, 27)
{(s, a1), (a2, b2)} s→ a1 → b1 → c1 → t (45, 27)
{(c1, t), (s, a2)} s→ a1 → b1 → c1 → t (50, 22)
{(c1, t), (a2, b2)} s→ a1 → b1 → c1 → t (50, 22)
{(c1, t), (b2, c2)} s→ a1 → b1 → c1 → t (50, 22)

XE(G21, 1) {(s, a1)} s→ a2 → b2 → c2 → t (42, 27)
XE(G21, 0) ∅ s→ a1 → b1 → c1 → t (40, 22)

42

Corollary 3.3.1. Let XGa

CE and XGb

CE be complete efficient sets on SPGs Ga and Gb, respectively. If

G = Ga ⊕Gb or G = Ga ⊗Gb, then there exists XG
CE ⊆ {xa + xb : xa ∈ XGa

CE , xb ∈ XGb

CE}.

Proof. Let zG(x̄) be a non-dominated objective. If G = Ga ⊗ Gb or G = Ga ⊕ Gb, then by

Lemma 3.2 or Lemma 3.3, respectively, we have zG(x̄) = zG(x̄a + x̄b) for some x̄a ∈ XGa

E and

x̄b ∈ XGb

E . If x̄a /∈ XGa

CE or x̄b /∈ XGb

CE , then since XGa

CE and XGb

CE are complete efficient sets,

we can find xa ∈ XGa

CE or xb ∈ XGb

CE with zG
a

(x̄a) = zG
a

(xa) and zG
b

(x̄b) = zG
b

(xb). Thus,

∃x ∈ {xa + xb : xa ∈ XGa

CE , xb ∈ XGb

CE} such that zG(x) = zG(xa + xb) = zG(x̄a + x̄b) = zG(x̄).

We now present Algorithm 3.2 to solve the SPIP-I on SPGs. The algorithm accepts as

input an SPG, G, and a collection of cost functions, {cij}(i,j)∈A, and it returns a complete efficient

set of interdiction strategies, XCE(G, bL). It does this by means of a recursive routine, SP, given

in lines 4–26. Algorithm 3.2 requires several auxiliary routines: DecompTree, Children, and Type.

DecompTree generates a tree, T , representing the binary decomposition of G, and returns the tree

root node, r (see Appendix A.2.3). The Children routine returns the child nodes of a branch node

in T , or the arc in G represented by a leaf node in T .

The outer processing of Algorithm 3.2 is given in lines 1–3. Line 1 generates a decomposition

tree, T , and receives the root, r. Line 2 then calls the subroutine SP on the tree root, receiving

a collection of sets of efficient interdiction strategies on G (one for each κL ∈ {0, . . . , bL}). The

algorithm then terminates on line 3 by returning the complete set of efficient strategies that expend

bL of the interdiction budget.

The key functionality of Algorithm 3.2 lies in the recursive subroutine SP, which takes as

input a node, n ∈ T , and returns a collection, {XCE(Gn, κL)}κL∈{0,...,bL}. The base case for SP(n),

handled in lines 4–8, has n a leaf, and Gn contains a single arc. The arc is identified in line 5 by

calling Children(n). Line 6 gives for each κL = 0, . . . , bL the interdiction strategy expending κL

interdictions on that arc. The associated objective vector of costs to travel the subgraph Gn for each

possible κF ∈ {0, . . . , p} is computed in line 7. Line 8 returns these results.

In the recursion case (lines 9–26), SP begins calling Children(n) and receives nodes ca

and cb, corresponding to subgraphs Ga and Gb, respectively. Then lines 11–12 recursively identify

efficient strategies on Ga and Gb. Next, line 13 initializes a loop to obtain X̂CE(Gn, κL) for each

κL. The algorithm initializes X̂CE(Gn, κL) as an empty set in line 14. Then lines 15–16 consider

every possible distribution of κL interdictions between the subgraphs, Ga and Gb, by κa and κb,

43

respectively. Lines 17–21 combine efficient subgraph interdiction strategies, xa and xb, to make

xa + xb, and they compute zG
n

(xa + xb) by a sequence of minimization evaluations on zG
a

(xa) and

zG
b

(xb). Those evaluations depend on whether Gn is a parallel or series composition of Ga and

Gb. The strategy is added to the set of candidate efficient vectors in line 22. Lines 23–24 evaluate

each pair of candidate efficient vectors to see if any are dominated by another. The redundant and

dominated ones are removed by line 25, leaving a complete set of efficient vectors. After generating

X̂CE(Gn, κL) for each κL ∈ {0, . . . , bL}, Algorithm 3.2 returns the collection of these sets.

Proposition 3.1. Each X̂CE(G, κL) returned by Algorithm 3.2 is a complete efficient set of inter-

diction strategies expending total interdiction effort κL on graph G.

Proof. In the base case, Gn contains one arc. Trivially, then X(Gn, κL) = XE(Gn, κL) =

X̂CE(Gn, κL) for each κL = 0, . . . , p, so that line 8 returns a complete efficient set. In the re-

cursion case, Corollary 3.3.1 provides that the set X̂CE(Gn, κL), composed in lines 15–22 from

complete efficient sets of sub-graph strategies, contains a complete efficient set. Inefficient strategies

are removed by the inspection subroutine of lines 23–25, leaving a complete efficient set of interdiction

strategies on the composed graph.

44

Algorithm 3.2: SolveXE2(G, {cij}(i,j)∈A)

Input :G: A series-parallel graph
{cij}(i,j)∈A: Collection of arc cost functions

Output :XCE : A complete efficient set of interdiction strategies
Dependency : DecompTree(G): Decomposes G into tree, and returns the tree root, r

Children(n): returns the children nodes of n
Type(n): returns the type (S, P, or L) of node n

1 r ← DecompTree(G)

2

{{
(x, z(x)) : x ∈ X̂CE(G, κL)

}}bL
κL=0

← SP(r)

3 return X̂CE(G, bL)

SP(n)
4 if Type(n) = “L” then // Base Case

5 a← Children(n)

6 xκL ← [0, . . . , 0, κL, 0, . . . , 0] for each κL = 0, . . . , bL // ath term is κL

7 z(xκL)← [ca(κL, 0), . . . , ca(κL, p)] for each κL = 0, . . . , bL

8 return {{(xκL , z(xκL))}}b
L

κL=0

9 else // Recursion Case

10 (ca, cb)← Children(n)

11
{
{(xa, zGa(xa)) : xa ∈ XE(Ga, κL)}

}bL
κL=0

← SP(ca)

12

{
{(xb, zGb(xb)) : xb ∈ XE(Gb, κL)}

}bL
κL=0

← SP(cb)

13 for κL = 0, . . . , bL do

14 X̂CE(Gn, κL)← ∅
15 for κa = 0, . . . , κL do
16 κb = κL − κa
17 for xa ∈ XE(Ga, κa) AND xb ∈ XE(Gb, κb) do
18 if Type(n) = “P” then
19 zG

n

(xa + xb)←[
min

{
zG

a

0 (xa), zG
b

0 (xb)
}
,min

{
zG

a

1 (xa), zG
b

1 (xb)
}
, . . . ,

min
{
zG

a

p (xa), zG
b

p (xb)
}]

20 else // Type(n) = “S”
21 zG

n

(xa + xb)←[(
zG

a

0 (xa) + zG
b

0 (xb)
)
, min
κ∈{0,1}

{
zG

a

κ (xa) + zG
b

1−κ(xb)
}
, . . . ,

min
κ∈{0,...,p}

{
zG

a

κ (xa) + zG
b

p−κ(xb)
}]

22 X̂CE(Gn, κL)← X̂E(Gn, κL) ∪ {(xa + xb)}

23 for xa,xb ∈ X̂CE(Gn, κL) do
24 if zG

n

(xa) = zG
n

(xb) then

25 X̂CE(Gn, κL)← X̂CE(Gn, κL) \ {xb}

26 return
{{

(x, z(x)) : x ∈ X̂CE(Gn, κL)
}}bL

κL=0

45

3.4 Improved recursive algorithm

A weakness of Algorithm 3.2 is that it generates non-dominated strategies on all parallel-

composed subgraphs, regardless of whether arcs in these subgraphs are potentially desirable to the

follower.

Example 3.4. Continuing Example 3.1, Table 3.3 shows that regardless of the interdiction strategy

on G11, the follower never chooses to traverse arc (s, b1). Thus, when Algorithm 3.2 parses node n4

in Figure 3.4, it gains no useful information in generating the complete set of efficient interdiction

strategies. In general, as the number of unused arcs increases, the amount of effort required to

execute Algorithm 3.2 can in the worst case grow exponentially.

In this section we present Algorithm 3.3, which composes efficient interdiction strategies

in a manner similar to Algorithm 3.2, but parses only over a restricted portion of G. Throughout

the course of the algorithm, we will track a set of used arcs in G, which are those arcs the follower

has used in constructing short paths. Interdiction strategies are computed over a restricted graph

that contains only used arcs. We then compute the objective vector zG(x) by fixing x and finding

the follower’s shortest s0 → th paths for each h ∈ {0, . . . , p} in the layered graph, Ḡ, given x. The

algorithm examines these paths for new arcs, and if it finds any then it updates the list of used

arcs and finds a new interdiction strategy. The key to Algorithm 3.3 lies in finding these new

interdiction strategies by updating information from the previous iteration rather than recomputing

all interdiction strategies from scratch.

As in Algorithms 3.1 and 3.2, Algorithm 3.3 takes as input a graph and a collection of cost

functions and returns a complete efficient set of interdiction strategies. Additional auxiliary routines

required by Algorithm 3.3 are Parent, Dijkstra, Arcs, and SP*. Parent is the inverse of Children,

returning the parent of a node n ∈ T , or when given an arc in G, it returns the corresponding leaf in

T . Dijkstra accepts a graph, G, a source node, s, a set of sink nodes, T , and a vector of arc costs,

c, and it returns a collection of shortest s→ t paths, {πt}t∈T . Arcs returns the set of arcs on path

π. Finally the routine SP* is a variant of SP from Algorithm 3.2 where the recursive calls of lines 11

and 12 are replaced with a call to GetEff, the routine given in lines 22–25 of Algorithm 3.3.

Algorithm 3.3 maintains a list UsedArcs. Also for each node in T that is an ancestor of

an arc in UsedArcs, the algorithm maintains a collection of interdiction strategies for that node.

The collection consists of sets that, assuming that the follower is limited to arcs in UsedArcs,

46

Algorithm 3.3: SPTree(G, {cij}(i,j)∈A)

Input :G: A series-parallel graph
Output :XCE : A complete efficient set of interdiction strategies
Dependency : DecompTree(G): Performs a tree decomposition for G, and returns the

root, r
Layerize(G, p): Returns a graph, Ḡ, having p+ 1 layers (see Figure 3.2)
Parent(n): Returns the parent node of n in T
Dijkstra(G, s, T, c): Returns the collection {πt}t∈T where each πt is a

shortest s→ t path on graph G, given arc costs c ∈ R|A|+

Arcs(π): Returns the set of arcs along path π
SP*(n): Lines 4–26 of Algorithm 3.2, with lines 11–12 replace by call to
GetEff

Main Routine

1 (r)← DecompTree(G)
2 Ḡ← Layerize(G, p)
3 for n ∈ T \ {r} do

4 X̂CE(Gn, 0)← {0}; zGn(0)← [∞, . . . ,∞]

5 X̂CE(Gn, κL)← ∅ for κL = 1, . . . , bL

6 NeedsUpdate(n)← False

7 UsedArcs← ∅; NeedsUpdate(r)← True

8 while NeedsUpdate(r) do

9

{
{(x, zG(x) : x ∈ X̂CE(G, κL)}

}bL
κL=0

← GetEff(r)

10 for x ∈
⋃bL
κL=0 X̂CE(G, κL) do

11 for (ih, jh+`) ∈ Ā do

12 c(ih,jh+`) ← cij(xij , `) // At the end, c ∈ R|Ā|

13 {πh}ph=0 ← Dijkstra(Ḡ, s0, {th}ph=0, c)
14 for a ∈

⋃
π=π0,...,πp

Arcs(π) do

15 if a /∈ UsedArcs then
16 UsedArcs← UsedArcs ∪ {a}
17 n← Parent(a)
18 while NeedsUpdate(n) = False AND n 6= ∅ do
19 NeedsUpdate(n)← True

20 n← Parent(n) // Parent(r) = ∅

21 return X̂CE(G, bL)

GetEff(n)
22 if NeedsUpdate(n) then
23 NeedsUpdate(n)← False

24

{
{(x, zGn(x) : x ∈ X̂CE(Gn, κL)}

}bL
κL=0

← SP*(n)

25 return
{
{(x, zGn(x) : x ∈ X̂CE(Gn, κL)}

}bL
κL=0

47

compose complete efficient sets of strategies, expending κL units of the interdiction budget, for each

κL ∈ {0, . . . , bL}. We denote this collection by {XCE(Gn, κL)}p
κL=0

. Initially UsedArcs = ∅, so for

each n ∈ T , the collection of strategies {X̂CE(Gn, κL)}bLκL=0 has elements:

X̂CE(Gn, κL) =

{0}, κL = 0

∅, 1 ≤ κL ≤ bL,

where 0 indicates a strategy of expending no interdictions on any arc. Finally, for the SP* routine,

we associate with each strategy an upper bound on the objective. Initially, this upper bound is

zGn(0) = [∞, . . . ,∞]. At each iteration, if a node is not flagged for updating, GetEff returns the

incumbent collection of strategies for Gn and the associated objective upper bounds, thus avoiding

redundant computations within the decomposition tree.

Algorithm 3.3 begins the initialization process by generating the decomposition tree, T ,

in line 1, receiving the tree root, r, in return, and then constructing the layered graph, Ḡ in line

2. Then for every node except the root, lines 3–6 establish the initial set of strategies and set flag

NeedsUpdate(n) = False. The final initialization step creates the empty set UsedArcs, and it flags

the root for needing an update.

The main loop of Algorithm 3.3 is lines 8–20, which continue to iterate as long as the

root needs updating. The main loop begins by calling the routine, GetEff(r), given in lines 22–25.

Beginning at the root, this routine checks if a node n needs updating. If n does need updating, then

Algorithm 3.3 calls SP*, storing and returning the result, but if it does not, then GetEff simply

returns the incumbent collection of interdiction strategies for Gn without calling SP*. In this way,

GetEff executes SP* only on nodes needing updates, and after the recursion is complete all nodes

are properly updated for the set UsedArcs. After receiving a collection of interdiction strategies for

Gr = G in line 9, Algorithm 3.3 proceeds in lines 10–20 to check whether non-updated arcs might

provide more favorable recourse paths for the follower. Line 10 initiates a loop through all of the

latest strategies. Lines 11–13 construct a set of arc costs in Ḡ that correspond to the strategy and

find a corresponding set of shortest s0 → th path in Ḡ for each h ∈ {0, . . . , p}. Finally, lines 14–20

iterate through all arcs in all shortest paths, and if any arc was previously unused, then it and all its

ancestors (including the root) are flagged for updating. If no new arcs are found, then no nodes are

flagged for updating, and since the root does not need updating, the algorithm terminates in line 21

48

by returning the complete efficient set of strategies that expends an interdiction budget of bL.

Recall from Example 3.4 that Algorithm 3.2 generates a complete efficient set of strategies

by parsing the entire tree in Figure 3.4. We now examine how Algorithm 3.3 would process the

problem of Example 3.4 differently.

Example 3.5. Algorithm 3.3 begins by generating T , Ḡ, and setting the initially empty sets of

strategies for every node in T \ {r}. Initially, UsedArcs is empty, and only the root needs updating.

After initialization the algorithm enters the main while loop because the root needs updating.

Since the root requires updating, Algorithm 3.3 enters the first loop. In GetEff(r), it

calls SP*(r), and since neither child of r requires updating, it returns the incumbent solutions,

XCE(G11, 0) = XCE(G20, 0) = {0}, without calling SP*(n11) or SP*(n20). SP*(r) combines these

results to get {XCE(G21, 0)} = {0} with the corresponding objective zG21(0) = [∞, . . . ,∞]. Next,

line 10 iterates through each strategy in the set
⋃bL
κL=0 X̂CE(G, κL) = {0}. After lines 11–12

construct the appropriate vector of arc costs, c, line 13 finds the shortest s0 → th paths in Ḡ given no

interdictions. From Table 3.4 in the XE(G21, 0) row, Dijkstra returns π0 ≡ s→ a1 → b1 → c1 → t

with cost 40 and π1 ≡ s → a1 → b1 → t with cost 22. Since UsedArcs is empty, lines 14–20 adds

each arc in these paths to UsedArcs, flagging all the ancestor nodes to each one for updating in the

process.

The root needs updating, so Algorithm 3.3 enters the main while loop for a second iteration.

Proceeding to the GetEff routine, GetEff(n21) calls SP*(n21), which recursively calls GetEff(n11)

and GetEff(n20). Since n20 does not need updating, GetEff immediately returns the incumbent

collection, {XCE(G20, κL)}bLκL=0, without calling SP*(n20). However, n11 does need updating, so

SP*(n11) is called, and the recursion process continues. Table 3.5 outlines the strategies for G21 = G

at the end of the recursion process. These are returned to Algorithm 3.3, which then validates them

against a set of shortest paths from the Dijkstra routine (also given in Table 3.5). Of the arcs

on these paths, {(s, a1), (a1, b1), (b1, c1), (b1, t), (c1, t)} ⊆ UsedArcs, so lines 14–20 only add (s, a2),

(a2, b2), (b2, c2), and (c2, t) to UsedArcs, flagging leaf nodes n12, n13, n14, and n15, respectively, and

their ancestors for updating.

The root needs updating, so a third iteration is performed. The GetEff routine calls SP*(n21),

which then finds child nodes n11 and n20. Node n11 does not need updating, so GetEff(n11) returns

the incumbent solutions from iteration 2, given in Table 3.5. However, n20 does require updating,

so GetEff(n20) calls SP*(n20) and the recursion continues. In the end, GetEff(n20) returns the

49

n
2
1

(P
)

n
2
0

(S
)

n
1
9

(S
)

n
1
8

(P
) n

1
7

(L
)

(b
2
,t

)

n
1
6

(S
)

n
1
5

(L
)

(c
2
,t

)

n
1
4

(L
)

(b
2
,c

2
)

n
1
3

(L
)

(a
2
,b

2
)

n
1
2

(L
)

(s
,a

2
)

n
1
1

(S
)

n
1
0

(P
) n

9
(L

)

(b
1
,t

)

n
8

(S
) n
7

(L
)

(c
1
,t

)

n
6

(L
)

(b
1
,c

1
)

n
5

(P
) n

4
(L

)

(s
,b

1
)

n
3

(S
) n
2

(L
)

(a
1
,b

1
)

n
1

(L
)

(s
,a

1
)

(a) Iteration 2 updates are highlighted.

n
2
1

(P
)

n
2
0

(S
)

n
1
9

(S
)

n
1
8

(P
) n

1
7

(L
)

(b
2
,t

)

n
1
6

(S
)

n
1
5

(L
)

(c
2
,t

)

n
1
4

(L
)

(b
2
,c

2
)

n
1
3

(L
)

(a
2
,b

2
)

n
1
2

(L
)

(s
,a

2
)

n
1
1

(S
)

n
1
0

(P
) n

9
(L

)

(b
1
,t

)

n
8

(S
) n
7

(L
)

(c
1
,t

)

n
6

(L
)

(b
1
,c

1
)

n
5

(P
) n

4
(L

)

(s
,b

1
)

n
3

(S
) n
2

(L
)

(a
1
,b

1
)

n
1

(L
)

(s
,a

1
)

(b) Iteration 3 updates are highlighted.

Figure 3.5: Decomposition tree for Example 3.5. Nodes needing updates each iteration are highlighted.

Table 3.5: Iteration 2 strategies for G21 = G from Example 3.5. Since G20 is not updated in iteration
2, these strategies and the associated zG(x) values derive from the XE(G11, κL) sets given in Tables
3.3 and 3.4.

Set Strategy zG(x) bF = 0 path (zG0 (x)) bF = 1 path (zG1 (x))

X̂CE(G, 3)
{(s, a1), (a1, b1),

[56, 28] s→ a2 → b2 → c2 → t (42) s→ a1 → b1 → t (28)
(c1, t)}

X̂CE(G, 2)
{(s, a1), (a1, b1)} [46, 28] s→ a2 → b2 → c2 → t (42) s→ a1 → b1 → t (28)
{(s, a1), (c1, t)} [55, 27] s→ a2 → b2 → c2 → t (42) s→ a1 → b1 → t (27)

X̂CE(G, 1)
{(s, a1)} [45, 27] s→ a2 → b2 → c2 → t (42) s→ a1 → b1 → t (27)
{(c1, t)} [50, 22] s→ a2 → b2 → c2 → t (42) s→ a1 → b1 → t (22)

X̂CE(G, 0) ∅ [40, 22] s→ a1 → b1 → c1 → t (40) s→ a1 → b1 → t (22)

50

set of strategies in the G20 row of Table 3.4. When SP*(r) computes the parallel composition of

the strategies of nodes G11 and G20, it finds a true complete set of efficient interdiction strategies

(a subset of those in the G21 row of Table 3.4). The GetEff(G) routine returns the collection of

strategies to Algorithm 3.3, which then validates them against the shortest paths from the Dijkstra

routine. The paths are as given in Table 3.4. All arcs on these paths were used in either iteration 1

or 2, and no nodes are flagged for updating.

Since the root does not need updating, the algorithm terminates, returning X̂CE(G, bL)

after three iterations. It never processed leaf nodes n4 and n7 (corresponding to (s, b1) and (b2, t),

respectively), since none of the paths use these arcs under any of the evaluated interdiction strategies.

All other nodes in the tree were processed by SP* exactly once, with the exception of the root node,

n21, which was processed three times.

3.5 Computational study

We divide our computational study into two portions: a general graph portion and a portion

dedicated to SPGs. The general graph portion examines the difficulty of solving SPIP-I instances on

various randomly generated graphs. The SPG portion compares the performance of Algorithms 3.1,

3.2, and 3.3 using a common set of problem instances. In Section 3.5.1 we present our methodology

for the study, and Sections 3.5.2 and 3.5.3 examine the results of the general graph and SPG portions,

respectively.

3.5.1 Methodology

For this study, we implemented Algorithms 3.1, 3.2, and 3.3 in Python 2.7, and we used

iGraph’s Python library [16] to generate the SPIP-I instances. All algorithms were run on an Intel

Core i5 1.8 GHz processor with 4 GB of 1600 MHz DDR3 RAM. In computing the running time

for each algorithm, we ignored the time spent loading the instance graph and the time used by the

Layerize routine (line 1 of Algorithm 3.1 and line 2 of Algorithm 3.3).

For the general graph portion of our study we generated a total of 980 instances in three

batches. Our first batch included 540 SPIP-I instances, where we set |N | = 100 and varied arc

densities over values in the set {10%, 20%, . . . , 90%} (where the maximum number of arcs in the

graph is given by |N | ·(|N |−1)) and p over the set {1, . . . , 6}. For each (density, p) pair, we generated

51

Table 3.6: Density by |A| and |N |.

|N | |A|
3960 4950 5940 6930 7920 8910

100 40% 50% 60% 70% 80% 90%
150 17.7% 22.1% 26.6% 31.0% 35% 39.9%
200 9.9% 12.4% 14.9% 17.4% 19.9% 22.4%
250 6.4% 8.0% 9.5% 11.1% 12.7% 14.3%

10 Erős-Rényi random graphs [22], giving a total of 540 instances. The first batch allows us to inspect

the running time dependency on |ZN | and p. For the second batch, we generated an additional 200

instances, holding p = 4 constant, varying |N | ∈ {100, 150, 200, 250} and arc densities over the set

{30%, 40%, 50%, 60%, 70%}, and again generating 10 instances per (density, |N |) pair. We used the

second batch of instances to examine the running time dependence on |N |. Finally, we generated 240

instances with p = 4 constant, and varying |N | ∈ {100, 150, 200, 250} and |A| over the values given

in Table 3.6. This third batch allowed us to examine the running time dependence on |A| and the

arc density. We set bL = 4 for all instances. For the arc cost functions in each of the 980 instances,

we populated (for each arc) a bL × p matrix with random integers between 0 and (10 ·max{bL, p}).

Then we sorted the matrices row-wise in decreasing order, column-wise in increasing order, and again

row-wise in decreasing order. This resulted in a bL × p matrix of integers that was non-increasing in

each row and non-decreasing in each column.

For the comparison of Algorithms 3.1, 3.2, and 3.3 on SPGs, we randomly generated 100

SPGs, fifty graphs each having 100 and 200 nodes. For the 100-node graphs, we used bL = 3 and

p = 4. For the 200-node graphs we used bL = 6 and p = 8. Finally, to show the difference in how the

algorithms scale, we generated 10 additional SPGs with 100 nodes, bL = 10, and p = 50. The arc

costs for SPGs were generated in the same manner as in the random graphs.

3.5.2 Results from the general graph study

We first note that |ZN | > 1 for over 90% of our randomly-generated general graph instances,

giving empirical evidence that our multiobjective approach provides value over alternatives such as

robust optimization. Algorithm 3.1’s average running time to generate a complete efficient set over

all 980 instances was 38.69 seconds, with a minimum value of 0.81 seconds and a maximum of 454.83

seconds. These times were influenced by various instance parameters. We display these dependencies

in the box-and-whiskers plots of Figures 3.6–3.9. The boxes give the 25th–75th quantile range; the

52

(a) Batch 1 iterations by |ZN |. (b) Batch 1 iterations by p.

Figure 3.6: Number of MOGA iterations for line 3 of Algorithm 3.1 (see Algorithm 2.1).

mid-line gives the median value; and the “whiskers” give 1.5 × inter-quartile range. The notches

(when present) give the 95% confidence intervals on the median value, and dots are outliers.

The computational time required by Algorithm 3.1 depends on the number of points in the

upper bounding set for the Pareto frontier and the mean time to solve SPIP subproblems on Ḡ. The

number of upper bounding points is driven by |ZN | and p (see Figure 3.6), which corresponds to

the result of [12] that bounds the number of upper bounding pounts by O(|ZN |bp/2c). Meanwhile,

the running time of each subproblem is predominantly determined by the time required to execute

SolveSPIP in Algorithm 2.1, and that time is driven by |N | and |A| (see Figure 3.7). Figure

3.8 displays the effect of these parameters on the overall instance running time of Algorithm 3.1.

Theoretically and empirically, arc densities do not have a strong influence on the running time of

instances in our study (see Figure 3.8e).

Figure 3.8d depicts a decline in the median running time for those instances with the greatest

number of arcs. This result is unexpected; however, the overlapping notches indicate that this trend

is not significant when we consider the 95% confidence interval on the medians. Moreover, Figure

3.7b indicates a consistent exponential growth in the mean SolveSPIP running time with respect

to |A|. Thus, we must conclude that this decrease in the median running time for Algorithm 3.1

depicted in Figure 3.8d is a result of fewer iterations within the MOGA routine (see Figure 3.9a).

Such reduction in the number of iterations may be due to a smaller median |ZN | (see Figure 3.9b),

combined with unusually structured arrangements of |ZN | in Rp+1 that reduce the cardinality of the

upper bound sets over ZN .

53

(a) Batch 2 mean SPIPSolver running times
by |N |.

(b) Batch 3 mean SPIPSolver running times
by |A|.

Figure 3.7: Mean running time of SolveSPIP (averaged over all calls per instance).

Table 3.7: Algorithm running time summaries for SPG portion of the computational study.

of Algorithm 3.1 Algorithm 3.2 Algorithm 3.3
Category Instances Min Mean Max Min Mean Max Min Mean Max
|ZN | = 1 56 0.04 0.15 1.04 0.60 0.12 13.65 0.01 0.12 0.65
|ZN | = 2 24 0.17 0.59 2.90 0.54 2.02 4.81 0.02 0.23 0.60
|ZN | = 3 9 0.33 2.63 8.40 0.74 4.66 11.06 0.08 0.49 1.22
|ZN | = 4 3 2.13 4.11 7.84 3.78 4.32 5.02 0.30 0.47 0.64
|ZN | = 5 3 0.85 1.37 1.70 0.68 1.74 3.79 0.16 0.21 0.24
|ZN | = 6 2 6.42 20.88 35.33 4.51 5.01 5.51 0.45 0.71 0.97
|ZN | = 8 1 10.68 10.68 10.68 3.59 3.59 3.59 0.83 0.83 0.83
|ZN | = 10 2 15.73 46.12 76.51 3.94 4.07 4.20 0.57 0.95 1.34
|N | = 100 50 0.04 0.21 1.70 0.54 0.72 1.23 0.01 0.10 0.35
|N | = 200 50 0.11 3.94 76.51 3.18 4.80 13.65 0.03 0.36 1.34

3.5.3 Results from the SPG study

Table 3.7 gives summaries of the running times for Algorithms 3.1, 3.2, and 3.3 among the

100 SPIP-I instances on SPGs, and Figure 3.10 compares these times on log-log plots. The data

demonstrates that, among the three algorithms, Algorithm 3.3 consistently performed the best. In

Table 3.7 Algorithm 3.3 dominates in every summary statistic for all classes of instances. Figure

3.10b demonstrates that Algorithm 3.1 is faster than Algorithm 3.3 in only a few instances, and in

those cases the difference is negligible.

The weakness of Algorithm 3.2 discussed in Example 3.4 is seen by examining the comparative

performance of Algorithms 3.1 and 3.2 along with the graph structures. As expected, Algorithm 3.1

is faster than Algorithm 3.2 when nodes s and t are relatively close in the graph, there are just a few

54

(a) Batch 1 running times by |ZN |. (b) Batch 1 running times by p.

(c) Batch 2 running times by |N |. (d) Batch 3 running times by |A|.

(e) Batch 3 running times by arc density.

Figure 3.8: Running times for Algorithm 3.1 on general graphs.

55

(a) Batch 3 MOGA iterations by |A|. (b) Batch 3 |ZN | by |A|.

Figure 3.9: Batch 3 results by |A|.

(a) Comparison of Algorithms 3.1 and 3.2. (b) Comparison of Algorithms 3.1 and 3.3.

Figure 3.10: Log-log plot of running times for Algorithms 3.1, 3.2, and 3.3 on 100 SPIP-I instances
with SPGs.

56

(a) Instance #9 (|N | = 100). (b) Instance #20 (|N | = 100). (c) Instance #24 (|N | = 100).

Figure 3.11: Three instances from the computational study where Algorithm 3.1 is faster than
Algorithm 3.2. Nodes s and t (large gray dots) tend to be close in the graph.

short paths between them, and the rest of the arcs form long paths that are not desirable for the

follower (see Figure 3.11). The comparatively poor performance of Algorithm 3.2 on these graphs is

exacerbated by the efficiences of the row-generating techniques [36, 50] that we use in our Algorithm

3.1 implementation (see Appendix A.2.2). These techniques allow Algorithm 3.1 to ignore paths that

are not preferred, directing computational effort to the fewer short paths.

In contrast, Algorithm 3.2 is faster when the nodes s and t are more separated in the graph,

the preferred path is not as evident, and the undesirable paths have fewer arcs (see Figure 3.12).

In such graphs, |ZN | also tends to be larger, and Table 3.7 shows that Algorithm 3.2 tended to

be faster when |ZN | > 5. This relative dominance by |ZN | is because Algorithm 3.1’s running

time is more sensitive to |ZN | than |A| (see Figures 3.8a and 3.8d); whereas, from Table 3.7 and

Figure 3.10a, Algorithm 3.2’s running time is insensitive to |ZN | and is primarily determined by |N |.

Theoretically, this dependence derives from the fact that |A| < |N |2 determines the maximum size of

the decomposition tree parsed by Algorithm 3.2. Moreover, given the common generation techniques

used to produce the SPGs, we find |A| varied little for a given |N |, which explains why Algorithm

3.2’s running time had low variance for a given |N |, as seen in Figure 3.10a.

These comparative strengths of Algorithms 3.1 and 3.2 both contribute to the dominant

performance of Algorithm 3.3. When |ZN | is small, Algorithm 3.3’s use of the UsedArcs paradigm,

similar to the row-generation techniques used in our Algorithm 3.1 implementation (see Appendix

A.2.2), restricts parsing effort to the few arcs contained in the follower’s optimal recourse paths. Thus,

Algorithm 3.3’s running time approximates that of Algorithm 3.1 when |ZN | is small. Alternatively,

57

(a) Instance #12 (|N | = 100) (b) Instance #19 (|N | = 100) (c) Instance #22 (|N | = 100)

Figure 3.12: Three instances from the computational study where Algorithm 3.2 is faster than
Algorithm 3.1. Nodes s and t (large gray dots) tend to be relatively distanced in the graph.

Table 3.8: Comparison of running times for Algorithms 3.1, 3.2, and 3.3 with p large (p = n/2).
Columns “n” and “m” column give the number of nodes and arcs in each instance, respectively.

Instance # n m |ZN |
Running Times (s)

Alg. 1 Alg. 2 Alg. 3

1 100 197 38 ≥ 1800 ≥ 1800 196.2
2 100 192 7 ≥ 1800 ≥ 1800 18.7
3 100 202 34 ≥ 1800 446.1 65.8
4 100 204 unk ≥ 1800 ≥ 1800 ≥ 1800
5 100 195 13 ≥ 1800 ≥ 1800 147.9
6 100 186 27 ≥ 1800 ≥ 1800 492.7
7 100 212 15 ≥ 1800 ≥ 1800 14.9
8 100 177 19 ≥ 1800 1364.7 183.8
9 100 198 42 ≥ 1800 540.8 32.2
10 100 211 80 ≥ 1800 ≥ 1800 25.9

when |ZN | is large, the number of arcs available (and useful) for recourse paths remains bounded. In

these instances Algorithm 3.3’s running time tends to depend on |A|, similarly to Algorithm 3.2, and

avoids a running time bound of O(|ZN |bp/2c), as in Algorithm 3.1.

Finally, we compared Algorithms 3.1, 3.2, and 3.3 on ten SPGs, using n = 100, bL = 10 and

p = 50 = n/2. Because of the random generation methods, the number of arcs, m, in each graph

varied (see Table 3.8). The intent of these instances to examine how the three algorithms scale. Each

algorithm was given up to 1800 seconds to solve each of the ten problems. The results are described

in Table 3.8. Notably, Algorithm 3.1 failed to solve any of the problems within 1800 seconds, and

Algorithm 3.2 only solved three. Algorithm 3.3 solved nine of the ten problems within 1800 seconds.

58

3.6 Conclusion

The SPIP-I presents an inaugural examination of NIPs where both the leader and the

follower take actions to affect arc costs. In the SPIP-I, we consider the problem faced by a leader

who has uncertainty regarding the follower’s capabilities. When the set of scenarios is relatively

limited, a multiobjective problem formulation enables generation of a complete set of efficient

interdiction strategies allowing trade-off comparisons between efficient strategies. While general-

purpose generating methods such as Algorithm 3.1 are necessary to produce a complete set of efficient

strategies on general graphs, the tailored approach given by Algorithm 3.3 performs better on the

special class of series-parallel graphs.

The SPIP-I affords many opportunities for additional research. Future research will examine

extensions of Algorithm 3.3 to other graph structures. These extensions would permit us to use

better-scaling algorithms to a broader range of applications, including supply chain, road, power, and

computer networks. Also, the SPIP-I may be extended to other problems in a variety of Stackelberg

games, including fortification-by-obfuscation problems. In such problems an actor broadcasts a

false set of arc costs that optimally persuades the interdictor to abandon an optimal interdiction

strategy. In contrast to classic defender-attacker-defender problems, where the actor’s first-stage

actions explicitly prevent interdictions, these games would implicitly defend the network by inducing

suboptimal interdiction decisions.

59

Chapter 4

The shortest Path Interdiction

Problem with Randomized

Strategies

4.1 Problem Statement and Background

The Shortest Path Interdiction Problem with Randomized Strategies (SPIP-RS) is similar

to the SPIP. It is a maximin Stackelberg game, where the leader and follower play over a directed

network, G = (N ,A). The leader performs exactly b ∈ Z+ interdiction actions on the arcs, possibly

interdicting some arcs multiple times. The cost for the follower to use arc a ∈ A, if that arc has been

interdicted τ times, is given by ca(τ). Defining H = {1, . . . , b}, we assume that ca : {0} ∪H → R+ is

non-decreasing.

Unlike the SPIP, however, the SPIP-RS allows the leader to adopt a randomized interdiction

strategy. We define Bernoulli random variables χha that equal 1 if interdiction h is deployed on arc

a and 0 otherwise, ∀h ∈ H and a ∈ A. Since each interdiction action is deployed on exactly one arc,

these random variables are not independent. The leader’s decision space is X = {X ∈ [0, 1]b×m :∑
a∈A xha = 1, ∀h ∈ H}, where the components of X are chosen so that P(χha = 1) = xha. The

follower observes X, knows the cost functions for each arc, and seeks a path from node s ∈ N to

node t ∈ N with the minimum expected cost.

60

s

a

b

t

Figure 4.1: Example 1 graph.

Table 4.1: Arc costs for Figure 4.1.

Arc (i,j) cij(0) cij(1) cij(2)
(s, a) 2.5 3.5 5
(s, b) 3.3 4.9 5.7
(s, t) 3.9 4.8 11.1
(a, t) 2 3.5 5.2
(b, t) 2.4 3.2 5.6

Denote the columns of decision matrix X by xa for a ∈ A. Throughout, we refer to

E (ca(τ)|xa) as the expected cost of arc a ∈ A, given vector xa, where τ =
∑
h∈H χha acts as a

random variable corresponding to the number of times arc a is interdicted given xa. The leader

selects a stochastic interdiction strategy, X ∈ X, that maximizes the follower’s minimum expected

cost. Modifying (1.2), we formulate the following mathematical optimization model for the SPIP-RS:

max
X∈X

ds (4.1a)

s.t. di − dj ≤ E(cij(τ)|xij) ∀(i, j) ∈ A, (4.1b)

dt = 0. (4.1c)

Note the change in the right-hand side of (4.1b), so that di represents the shortest expected distance

from node i to node t.

Example 4.1. Consider the network displayed in Figure 4.1 with cost functions given in Table 4.1.

Our example consists of two cases, both using a budget of b = 2 interdictions. In the first case we

adopt an optimal deterministic interdiction strategy. In the second case we randomize the interdiction

strategy, which yields a larger objective for the SPIP-RS than the Case 1 solution.

Case 1: Strategy X1 is an optimal deterministic interdiction strategy, with expected costs given

in Table 4.2. The follower opts to use arc s→ t at an expected cost of 4.8.

X1 =

(s,a) (s,b) (s,t) (a,t) (b,t)

0 0 1 0 0

1 0 0 0 0

Table 4.2: Expected path costs given X1.

Path Expected cost

s→ a→ t 3.5 + 2 = 5.5

s→ b→ t 3.3 + 2.4 = 5.7

s→ t 4.8

61

Case 2: The stochastic interdiction strategy X2 applies a positive probability of interdicting

each arc. The expected path costs given X2 are given in Table 4.3. The follower now chooses

path s→ a→ t with expected cost 5.4285.

X2 =

[(s,a) (s,b) (s,t) (a,t) (b,t)

0.3 0.05 0.5 0.1 0.05
0.35 0.05 0.5 0.05 0.05

]
Table 4.3: Expected path costs given X2.

Path Expected cost
s→ a→ t = 5.4285
s→ b→ t = 6.5228
s→ t = 6.15

In this chapter we examine the complexity of SPIP-RS under different assumptions regarding

the cost functions. In many classic SPIP formulations and in the more recent work of [2, 9, 15] the

cost functions are affine. If this property holds, then E(ca(τ)|xa) = ca(
∑
h∈H xha) for all a ∈ A, and

model (4.1) is a linear program. Thus, SPIP-RS is polynomially solvable in this case (as shown by

[2, 24]). For, the more general case in which the cost functions are non-linear, we use the following

definitions for convexity and concavity of discrete cost functions: ca is a discrete-convex (or -concave)

function if ca(t) − 2ca(t + 1) + ca(t + 2) ≥ 0 (or ≤ 0) for all t ∈ {0, . . . , b − 2}. Since we only use

discrete cost functions, for brevity we will simply refer to these properties as convexity or concavity.

To perform our complexity analysis, we will examine the decision problem associated with

the SPIP-RS:

DSPIP-RS

Input: Given the following inputs:

• Digraph, G = (N ,A) with source s ∈ N and destination t ∈ N
• Number of interdictions, b ∈ Z+

• Discrete, non-decreasing arc cost functions, ca, for each a ∈ A
• Threshold, z∗ ≥ 0

Question: Does there exist (X,d) ∈ X× Rn feasible to (4.1b)–(4.1c) with ds ≥ z∗?

We first show that DSPIP-RS is in NP, i.e., given an interdiction strategy X, show in polynomial

time that the follower’s shortest path is indeed of length at least z∗. Given the expected arc costs,

this is accomplished using Dijkstra’s algorithm; however, the randomized strategies of the SPIP-RS

make computing an arc’s expected cost non-trivial. Solving for E(ca(σa)|xa) with non-linear cost

62

functions by enumerating the scenarios requires an exponential number of computations. We instead

present an algorithm to generate this value in polynomial time using a recursive technique.

Let h ∈ {0} ∪ H and define Πh(xa, t) as the probability that arc a ∈ A has been interdicted

exactly t times among interdictions {1, . . . , h}, given xa. Define Π0(xa, 0) = 1. Thus,

Πh(xa, t) =

1, j = 0, t = 0

P(
∑j
h=1 χh = t|xa) 0 < h ≤ b,

0, otherwise.

Then we have the recursive formula for h ∈ H:

Πh(xa, t) = xhaΠh−1(xa, t− 1) + (1− xha)Πh−1(xa, t). (4.2)

Using (4.2) we can compute Πh(xa, 0), . . . ,Πh(xa, b), in increasing order of h = 0, . . . , b with O(b2)

operations. The final expected cost of arc a ∈ A is computed using O(b) additional operations via

the standard expectation formula:

E(ca(τ)|xa) =

b∑
τ=0

ca(τ)Πb(xa, τ). (4.3)

We demonstrate how the recursion given by (4.2) may be used to compute Π(xa, σ) in O(b2)

computations in Example 4.2 below.

Example 4.2. We reconsider Case 2 from Example 1, showing the steps to compute Π(x(s,t), σ) in

O(b2) time.

Π =

j=0 j=1 j=2

σ=0 Π0(x(s,t), 0) Π1(x(s,t), 0) Π2(x(s,t), 0)

σ=1 Π0(x(s,t), 1) Π1(x(s,t), 1) Π2(x(s,t), 1)

σ=2 Π0(x(s,t), 2) Π1(x(s,t), 2) Π2(x(s,t), 2)

=

1 x1,(s,t)Π

0(x(s,t), 0) + (1− x1,(s,t))Π
0(x(s,t),−1) Π2(x(s,t), 0)

0 x1,(s,t)Π
0(x(s,t), 1) + (1− x1,(s,t))Π

0(x(s,t), 0) Π2(x(s,t), 1)

0 x1,(s,t)Π
0(x(s,t), 2) + (1− x1,(s,t))Π

0(x(s,t), 1) Π2(x(s,t), 2)

63

=

1 (50%)(1) + (50%)(0) x2,(s,t)Π

1(x(s,t), 0) + (1− x2,(s,t))Π
1(x(s,t),−1)

0 (50%)(0) + (50%)(1) x2,(s,t)Π
1(x(s,t), 1) + (1− x2,(s,t))Π

1(x(s,t), 0)

0 (50%)(0) + (50%)(0) x2,(s,t)Π
1(x(s,t), 2) + (1− x2,(s,t))Π

1(x(s,t), 1)

=

1 50% (50%)(50%) + (50%)(0)

0 50% (50%)(50%) + (50%)(50%)

0 0 (50%)(0) + (50%)(50%)

 =

1 50% 25%

0 50% 50%

0 0 25%

 .

The final column gives the probabilities of the levels of interdiction on arc (s, t), and using (4.3), the

expected cost is given as

E(ca(σa)|P) =

b∑
σ=0

ca(σ)Π(pa, σ) =

b∑
σ=0

ca(σ)Π2(pa, σ) = 3.9(25%) + 4.8(50%) + 11.1(25%) = 6.15.

Lemma 4.1. DSPIP-RS belongs to NP.

Proof. Given a certificate (X,d) we can compute the expected costs, E(ca(τ)|xa), ∀a ∈ A, in

polynomial time. Then, a polynomial-time verification step can verify the objective and feasibility of

(X,d).

The remainder of this chapter is organized as follows. In Section 4.2 we show that DSPIP-RS

is NP-complete when all costs functions are convex, and provide a spatial branch-and-bound approach

to solving the SPIP-RS. In Section 4.3 we examine the case in which all cost functions are concave.

We prove that DSPIP-RS is NP-hard in this case as well, and we present an efficient approximation

algorithm. We then provide a sample average approximation approach for the SPIP-RS under general

cost functions in Section 4.4. Section 4.5 describes the methods and results of our computational

study to examine the performance of our algorithms. Finally, we conclude with future research

directions in Section 4.6.

4.2 The Convex Case

In this section we focus on the convex SPIP-RS, i.e., the SPIP-RS in which ca is convex for

all a ∈ A. We show that the convex SPIP-RS is NP-hard in Section 4.2.1, and provide a tailored

algorithm to solve this problem in Section 4.2.2.

64

4.2.1 Complexity

We begin this section by establishing a property of optimal solutions to the convex SPIP-RS.

Lemma 4.2. Let ca be convex for each a ∈ A. There exists a vector t ∈ Rm: t ≥ 0 and
∑m
a=1 ta = b

such that

X∗(t) =

t1/b t2/b · · · tm/b

...
...

. . .
...

t1/b t2/b · · · tm/b

 (4.4)

and a corresponding vector d, such that (X∗(t),d) is an optimal solution to (4.1).

Proof. Consider an optimal solution (X,d) and define ta =
∑
h∈H xha, ∀a ∈ A. We show that

(X∗(t),d∗) is an alternative optimal solution to (4.1). To accomplish this, it is sufficient to show

that E(ca(τ)|x∗a(t)) ≥ E(ca(τ)|xa) for each a ∈ A, since that implies d∗a ≥ da by (4.1b).

Let a ∈ A. If xa = x∗a(t) (= [ta/b, . . . , ta/b]), then the result holds by equality. Otherwise,

suppose that xa 6= x∗a(t), which also implies that 0 < ta < b. Assume (without loss of generality)

that xba > x(b−1)a. Let δ = [0, . . . , 0, ε,−ε] for some 0 < ε < xba − x(b−1)a. Then we can expand

E(ca(τ)|xa + δ) using two recursion steps from (4.2), to obtain the following expression where

Πh(xa,−1) = Πh(xa,−2) = 0 for all h:

E(ca(τ)|xa + δ) =

b∑
τ=0

ca(τ)
(

(xba − ε)(x(b−1)a + ε)Πb−2(xa, τ − 2)

+ (1− (xba − ε))(x(b−1)a + ε)Πb−2(xa, τ − 1)

+ (xba − ε)(1− (x(b−1)a + ε))Πb−2(xa, τ − 1)

+ (1− (xba − ε))(1− (x(b−1)a + ε))Πb−2(xa, τ)
)
. (4.5)

Applying the same recursion to E(ca(τ)|xa) yields the same expression as (4.5), but with ε = 0.

With these, we have the following:

E(ca(τ)|xa + δ)− E(ca(τ)|xa)

=

b∑
τ=0

ca(τ)

((
εxba − εx(b−1)a − ε2

)
Πb−2(xa, τ − 2)

+
(
εx(b−1)a − εxba + ε2 + ε

)
Πb−2(xa, τ − 1)

65

+
(
εx(b−1)a − εxba + ε2 − ε

)
Πb−2(xa, τ − 1)

+
(
εxba − εx(b−1)a − ε2

)
Πb−2(xa, τ)

)

=
(
ε(xba − x(b−1)a)− ε2

) b∑
τ=0

ca(τ)
(

Πb−2(xa, τ − 2)− 2Πb−2(xa, τ − 1) + Πb−2(xa, τ)
)

=
(
ε(xba − x(b−1)a)− ε2

) b−2∑
τ=0

Πb−2(xa, τ)
(
ca(τ)− 2ca(τ + 1) + ca(τ + 2)

)
≥ 0.

The inequality holds because 0 < ε < xba − x(b−1)a ≤ 1, implying that ε(xba − x(b−1)a) − ε2 > 0,

and because ca is convex, implying that ca(τ)− 2ca(τ + 1) + ca(τ + 2) ≥ 0 for all τ = 0, . . . , b− 2.

Repeating this process, we modify X until the interdiction matrix coincides with X∗(t), which must

also be an alternative optimal solution. This completes the proof.

Lemma 4.2 implies that if an optimal expected number of interdictions, ta, is known for each

arc a ∈ A, then X∗(t) gives an optimal variable assignment for the SPIP-RS, with the expected cost

of arc a being
∑b
τ=0 ca(τ)

(
b
τ

)
(ta/b)

τ
(1− ta/b)

b−τ
. Thus, model (4.1) simplifies to

max ds (4.6a)

s.t. di − dj ≤
b∑

τ=0

cij(τ)

(
b

τ

)
(tij/b)

τ
(1− tij/b)

b−τ ∀(i, j) ∈ A, (4.6b)

dt = 0 (4.6c)∑
(i,j)∈A

tij = b (4.6d)

t ≥ 0. (4.6e)

We can now prove the hardness of DSPIP-RS for the convex case.

Theorem 4.3. DSPIP-RS is NP-complete, even when ca is convex for all a ∈ A.

Proof. We employ a reduction from VERTEX COVER to DSPIP-RS modified for (4.6), i.e., the

question becomes “∃(t,d) ∈ Rm × Rn feasible to (4.6b)–(4.6e) such that ds ≥ z∗?” The VERTEX

COVER problem is strongly NP-complete [25] and is stated as:

66

vi
xi yi

vi+1 · · · vj
xj yj

vj+1

Figure 4.2: Gadgets used in proof of Theorem
4.3.

Table 4.4: Costs for arcs in Figure 4.2.

Arc (a)
ca(τ),

ca(b)
τ ∈ {0, . . . , b− 1}

(vi, vi+1) 1 1
(vi, xi) 1 1
(xi, yi) 0 2rb

(yi, vi+1) 0 0
(yi, xj) j − i− 1 j − i− 1

VERTEX COVER

Input: Given the following inputs:

• An undirected graph, G = (V,E)

• Threshold, r ∈ {1, . . . , |V |}

Question: Does there exist a vertex cover for G of size at most r, i.e., ∃U ⊆ V s.t.
|U | ≤ r and U ∩ {i, j} 6= ∅ for all (i, j) ∈ E?

Given a VERTEX COVER instance, let |V | = n. Our graph for the DSPIP-RS instance,

G′ = (N ′,A′), is composed of n “gadgets.” These gadgets are similar to those used by [4] for

their complexity analysis of the most vital arcs problem. Gadget i consists of nodes {vi, xi, yi, vi+1}

and arcs {(vi, xi), (xi, yi), (yi, vi+1), (vi, vi+1)}. Also there are “shortcut” arcs between gadgets:

{(yi, xj) : (i, j) ∈ E; i < j}. Figure 4.2 illustrates gadgets for two nodes, i and j. The follower’s

source node is s = v1 and the destination is t = vn+1. We set the number of interdictions

b =

⌊
logr/r+0.5

(
1

4

)⌋
=

⌊
ln (1/4)

ln (r/(r+0.5))

⌋
,

and assign cost functions for i ∈ V and (i, j) ∈ E with i < j according to Table 4.4. Observe that

for any a ∈ A′, ca is non-decreasing and convex. Finally, our cost threshold for the DSPIP-RS is

z∗ = n. It is evident that G′ can be constructed in polynomial time. Also, all parameters other than

c(xi,yi)(b) = 2rb are clearly polynomial in size; moreover, since b ≤ 3r+ 1 for r ≥ 0, the encoding size

for these costs are also polynomial as well. We now show that the VERTEX COVER instance has a

solution if and only if there exists a feasible solution (t,d) to (4.6) having ds ≥ n.

Assume that U ⊆ V is a vertex cover for G of size |U | = r (we assume equality without loss

of generality). For each i ∈ U , we set t(xi,yi) = b/r, and we set ta = 0 for all other a ∈ A′ (so that t

satisfies (4.6d) and (4.6e)). Lastly, we set the components of d as follows:

• dvi = n− i+ 1 for i ∈ {1, . . . , n+ 1},

67

• dxi = n− i+ 1 for i ∈ {1, . . . , n} ∩ U and dxi = n− i for i ∈ {1, . . . , n} \ U ,

• dyi = n− i− 1 for i ∈ {1, . . . , n} ∩ U , and dyi = n− i for i ∈ {1, . . . , n} \ U .

We note that (4.6c) is satisfied since dt = dvn+1
= n − (n + 1) + 1 = 0. Next, we show that the

solution (t,d) satisfies (4.6b) by examining the left-hand side (LHS) and right-hand side (RHS) of

(4.6b) for every arc in A′.

Arc (vi, vi+1) for i ∈ {1, . . . , n}. The LHS of (4.6b) for this arc is dvi−dvi+1
= (n−i+1)−(n−i) = 1,

while the RHS is 1 regardless of t. Thus, constraint (4.6b) is satisfied.

Arc (vi, xi) for i ∈ {1, . . . , n}. Again, dvi = n − i + 1. If i ∈ U then dxi = n − i + 1; otherwise,

dxi = n− i. The LHS of (4.6b) is therefore either 0 or 1. The RHS is 1 regardless of t, thus

satisfying (4.6b).

Arc (xi, yi) for i ∈ {1, . . . , n}. There are two cases to consider.

Case 1: i ∈ U , implying that t(xi,yi) = b/r. The LHS of (4.6b) is dxi − dyi = (n − i + 1) −

(n− i− 1) = 2, while the RHS evaluates to 2rb(b/r)b ≥ 2.

Case 2: i /∈ U , implying that t(xi,yi) = 0. The LHS of (4.6b) is dxi−dyi = (n− i)−(n− i) = 0,

while the LHS is 0 because t(xi,yi) = 0.

In either case, constraint (4.6b) is satisfied.

Arc (yi, vi+1) for i ∈ {1, . . . , n}. We set dyi to either n− i− 1 or n− i, and dvi+1 = n− i. The LHS

of (4.6b) is either 0 or −1, while the RHS is 0 regardless of t, thus satisfying (4.6b).

Arc (yi, xj) for (i, j) ∈ E. Because (i, j) ∈ E and U is a cover, then either i or j (or both) belong to U .

If both i and j belong to U , then the LHS of (4.6b) is dyi−dxj = (n−i−1)−(n−j+1) = j−i−2.

If only i belongs to U , then the LHS is (n− i− 1)− (n− j) = j − i− 1, and if only j belongs

to U , then the LHS is (n− i)− (n− j + 1) = j − i− 1. The maximum value that the LHS can

take is j − i− 1; furthermore, regardless of t, the RHS of (4.6b) for this arc is j − i− 1, so the

constraint is satisfied.

Having demonstrated that (t,d) satisfies (4.6b)–(4.6e), the first direction of our proof is

completed by showing ds = dv1 = n− 1 + 1 = n, implying that the transformed DSPIP-RS instance

also has a solution.

68

Conversely, assume there exists a solution (t,d) feasible to (4.6) with ds ≥ n. We construct

U = {i ∈ V : t(xi,yi) ≥
(
b b
√

1/4
)
/r}. To show that U is a cover, assume by contradiction that (i, j) ∈ E

is not covered by U ; i.e., t(xi,yi), t(xj ,yj) <
(
b b
√

1/4
)
/r. We show that there exists a path from s to

t that constrains dvs < n, which leads to the desired contradiction. From repeated application of

(4.6b) we have

dvj+1
≤ dvj+2

+ 1 ≤ dvj+3
+ 2 ≤ · · · ≤ dvn+1

+ n− j = n− j

⇒ dyj ≤ dvj+1 +

b∑
τ=0

c(yj ,vj+1)(τ)

(
b

τ

)
(t(yj,vj+1)/b)

τ
= (n− j) + 0 = n− j

⇒ dxj ≤ dyj +

b∑
τ=0

c(xj ,yj)(τ)

(
b

τ

)
(t(xj,yj)/b)

τ = dyj + c(xj ,yj)(b)(t(xj,yj)/b)
b

< (n− j) +
(
2rb
)(b b√1/4

br

)b
= n− j + 1/2

⇒ dyi ≤ dxj +

b∑
τ=0

c(xj ,yj)(τ)

(
b

τ

)
(t(yi,xj)/b)

τ = dxj + c(yi,xj)(0)

(
b

0

)
(0/b)0

< (n− j + 1/2) + (j − i− 1) = n− i− 1/2

⇒ dxi ≤ dyi +

b∑
τ=0

c(xi,yi)(τ)

(
b

τ

)
(t(xi,yi)/b)

τ = dyi + c(xi,yi)(b)

(
b

b

)
(t(xi,yi)/b)

b

< (n− i− 1/2) +
(
2rb
)(b b√1/4

br

)b
= n− i

⇒ dvi ≤ dxi +

b∑
τ=0

c(vi,xi)(τ)

(
b

τ

)
(t(vi,xi)/b)

τ = dxi + c(vi,xi)(0)

(
b

0

)
(0/b)0

< (n− i) + 1 = n− i+ 1

⇒ ds = dv1 ≤ dv2 + 1 ≤ · · · ≤ dvi + (i− 1)

< (n− i+ 1) + (i− 1) = n,

which contradicts our assumption that ds ≥ n. Thus, we conclude that U is a cover. It remains to

show that |U | ≤ r. Note from (4.6d) that |U | is no more than b divided by the threshold interdiction

level required to place a node in U , i.e.,

|U | ≤ b(
b b
√

1/4
)
/r
. (4.7)

69

Moreover, since |U | is integer, we can take the floor of the RHS of (4.7), yielding with a slight

rearrangement |U | ≤ br/(b√1/4)c. Recalling b = blogr/r+0.5 (1/4)c ⇒ r/(r+0.5) ≤ b
√

1/4, we then obtain

|U | ≤

⌊
r

b
√

1/4

⌋
≤ b(r + 0.5)c = r.

Because DSPIP-RS belongs to NP as shown in Lemma 4.1, this completes the proof.

4.2.2 Spatial Branch-and-Bound Algorithm for the Convex Case

Our proposed algorithm for the convex SPIP-RS leverages the following result regarding the

RHS of (4.6b).

Proposition 4.1. If ca is convex, then the function f(ta) =
∑b
τ=0 cij(τ)

(
b
τ

)
(ta/b)

τ
(1− ta/b)

b−τ
from

(4.6b) is convex.

Proof. Let ta ∈ [0, b], and for notational ease, let t̂a = ta/b. Define xa = [t̂a, . . . , t̂a]. Note that the

first two derivatives of f(t̂a) are:

f ′
(
t̂a
)

=

b∑
τ=0

ca(τ)

(
b

τ

)(
(τ)
(
t̂a
)τ−1 (

1− t̂a
)b−τ − (b− τ)

(
t̂a
)τ (

1− t̂a
)b−τ−1

)
⇒ f ′′

(
t̂a
)

=

b∑
τ=0

ca(τ)

(
b

τ

)(
(τ)(τ − 1)

(
t̂a
)τ−2 (

1− t̂a
)b−τ

− 2(τ)(b− τ)
(
t̂a
)τ−1 (

1− t̂a
)b−τ−1

+(b− τ)(b− τ − 1)
(
t̂a
)τ (

1− t̂a
)b−τ−2

)
.

Now regrouping the summed form for f ′′(t̂a), we have

f ′′(t̂a) =

b−2∑
τ=0

(
t̂a
)τ (

1− t̂a
)b−τ−2

(
ca(τ + 2)

[
(τ + 2)(τ + 1)

(
b

τ + 2

)]
− 2ca(τ + 1)

[
(τ + 1)(b− τ − 1)

(
b

τ + 1

)]
+ca(τ)

[
(b− τ)(b− τ − 1)

(
b

τ

)])
.

70

Observing that

(τ + 1)(τ + 2)

(
b

τ + 2

)
= (τ + 1)(b− τ − 1)

(
b

τ + 1

)
= (b− τ)(b− τ − 1)

(
b

τ

)
,

we can simplify f ′′(t̂a) as:

f ′′(t̂a) =

b−2∑
τ=0

(ca(τ + 2)− 2ca(τ + 1) + ca(τ))

(
b!

τ !(b− τ − 2)!

)(
t̂a
)τ (

1− t̂a
)b−τ−2 ≥ 0,

where the inequality holds by convexity of ca and the fact that 0 ≤ t̂a ≤ 1.

By Proposition 4.1, formulation (4.6) is a non-convex problem. Appendix A.3.1 provides

a spatial branch-and-bound [23] algorithm to solve the SPIP-RS. It solves over the convex hull

of (4.6b)–(4.6e), and then repeatedly branches and tightens each subproblem relaxation to find a

solution whose objective value is arbitrarily close to the true optimal objective.

4.3 The Concave Case

In the previous section, we optimized over aggregate variables t1, . . . , tm, where ta =∑b
h=1 xha represents the expected number of interdiction actions taken on arc a. For the case

in which all ca are convex, finding this optimal set of t-values is NP-hard; however, once this is

done, an optimal solution, X∗(t) ∈ X, is easily generated by dividing ta equally among the b rows.

By contrast, when the ca functions are all concave, the problem of finding a preferred vector t is

polynomially solvable, whereas the problem of mapping a solution t to an optimal matrix X ∈ X

becomes NP-hard. We prove this result in Section 4.3.1, and then in Section 4.3.2, we provide a

polynomial-time (1− 1/e)-approximation algorithm.

4.3.1 Complexity Proof

Similar to Section 4.2.1 we begin by proving a column property of the ideal solution to the

concave SPIP-RS.

Lemma 4.4. Consider a concave function ca for some a ∈ A, and consider an interdiction solution

vector xa for arc a that contains two fractional components h′ and h′′ such that 0 < xh′a ≤ xh′′a < 1.

71

Define δ ∈ Rb to be a vector of all zeros except for δh′ = −ε and δh′′ = ε, where ε = min{xh′a, 1−xh′′a}.

Then E
(
ca (τ) |xa + δ

)
≥ E (ca (τ) |xa).

Proof. As in the proof of Lemma 4.2, assume (by reindexing rows if necessary) that h′ = b− 1 and

h′′ = b. Then δ = −δ as defined in the proof of Lemma 4.2, and therefore:

E(ca(τ)|xa + δ)− E(ca(τ)|xa)

=
(
ε(x(b−1)a − xba)− ε2

) b−2∑
τ=0

Πb−2(xa, τ)
(
ca(τ)− 2ca(τ + 1) + ca(τ + 2)

)
≥ 0,

where the derivation of this term mirrors that in Lemma 4.2 by negating the direction vector δ. The

inequality now stems from the fact that x(b−1)a− xba < 0 < ε; hence, ε(x(b−1)a− xba)− ε2 < 0. Also,

each term in the summation is non-positive since all Πb−2(x̂a, τ) ≥ 0 and ca(τ)−2ca(τ+1)+ca(τ+2) ≤

0 by the concavity of ca. This completes the proof.

Lemma 4.4 implies that given a vector of preferred column sums, t∗, we would ideally select

some X(t∗) ∈ X such that each column contains at most one fractional component. The challenge

would be to allocate fractional components of the columns to rows in a way such that the sum of

components in every row equals one (recalling the condition of X that requires
∑
a∈A xha = 1, ∀h ∈ H).

However, this allocation is not always feasible, and there may exist a uniquely optimal solution in

which some columns have multiple fractional values. This observation motivates our proof of the

following theorem.

Theorem 4.5. DSPIP-RS is NP-complete, even when ca is concave for all a ∈ A.

Proof. We prove the result with a reduction from 3 PARTITION (3PART), which is NP-complete in

the strong sense [25], and is stated as follows.

3PART

Input: Given a set of positive integers, S = {s1, . . . , sm} where

• m = 3q for some q ∈ Z+

•
∑m
a=1 sa = qB for some B ∈ Z+

• B/4 < sa < B/2 for each sa ∈ S

Question: Does there exist a partitioning of S into three-element sets, S1, . . . , Sq, such
that the sum of elements in each set is B?

72

Given an 3PART instance we construct a reduction to DSPIP-RS as follows. Our directed

graph G = (N ,A) has two vertices, N = {s, t}, and m parallel arcs, A = {a1, . . . , am}. A similar

transformation to a network having no parallel arcs is easy to obtain by splitting arcs; we use a

multigraph here for ease of presentation. The leader’s interdiction budget is q. Each arc a has the

concave cost function,

ca(t) =

0 t = 0

B/sa t = 1, . . . , b.

Finally, the threshold is z∗ = 1. Observing that this reduction is polynomial time, we proceed to

show that our 3PART instance has a solution if and only if the transformed DSPIP-RS instance has

a solution.

Let S1, . . . , Sq be a true certificate for 3PART. For each h = 1, . . . , q, examine each sa ∈ S

and set xha = sa/B if sa ∈ Sh and xha = 0 otherwise. Then for each h = H, we have
∑
a∈A xha =∑

sa∈Sh sa/B = B/B = 1, so that X ∈ X. Further, since S1, . . . , Sq is a partition, there is a

unique Sh 3 sa; hence, each column of X has a unique non-zero component xha = sa/B. Thus

E(ca(σ)|xa) = (1− sa/B)ca(0) + (sa/B)ca(1) = 1 for each a ∈ A, and (X, [1, 0]) is a true certificate for

DSPIP-RS.

Conversely, assume that the DSPIP-RS instance has a true certificate, (X, [1, 0]). We first

prove that
∑
h∈H xha = sa/B for each a ∈ A.

The ≥ direction: Assume by contradiction that
∑
h∈H xha < sa/B for some arc a ∈ A. If xa has

a single positive component, xh∗a > 0, then from (4.3):

E(ca(τ)|xa) = ca(0)(1− xh∗a) + ca(1)xh∗a < 0(1− sa/B) + B/sa(sa/B) = 1. (4.8)

Alternatively, if xa has at least two fractional components, then Lemma 4.4 bounds E(ca(τa)|xa)

by the result in (4.8), which is less than 1. In either case E(ca(τa)|xa) < 1, contradicting our

certificate.

The ≤ direction: This follows directly from the three linear inequalities:

∑
h∈H

∑
a∈A

xha ≤
m∑
a=1

sa/B;
∑
h∈H

xha ≥ sa/B; and xha ≥ 0.

73

Next, noting that
∑
h∈H xha = sa/B for all arcs a ∈ A, we have that E(ca(τa)|xa) = 1 only if each

column xa has exactly one positive component. Thus, setting Sh = {a ∈ A : xha > 0} for each h ∈ H

yields a partition of S. Moreover, for each h ∈ H,

X ∈ X =⇒
∑

a∈A:xha>0

sa/B = 1 =⇒
∑
sa∈Sh

sa = B.

Finally, |Sh| = 3 for each h = 1, . . . , b because B/4 < sa < B/2. Thus, S1, . . . , Sb is indeed a true

certificate for 3PART. Thus, the concave DSPIP-RS is NP-hard, and by Lemma 4.1 the DSPIP-RS

is NP-complete.

4.3.2 Polynomial-time approximation algorithm for concave SPIP-RS

We present a polynomial-time approximation algorithm for the concave SPIP-RS. This

algorithm first identifies preferred column sums t∗ ≥ 0 :
∑m
i=1 t

∗
i = b, and then uses that vector to

construct a heuristic solution XH(t) ∈ X. We will show that our heuristic objective is within a factor

of at least 1− 1/e ≈ 63.2% of the optimal objective.

We begin our heuristic by finding a set of preferred column sums, t∗, by solving the linear

program:

max ds (4.9a)

s.t. di − dj ≤ (tij − τ)(cij(τ + 1)− cij(τ)) + cij(τ) ∀(i, j) ∈ A, τ ∈ {0, . . . , b− 1} (4.9b)

dt = 0 (4.9c)∑
a∈A

ta = b (4.9d)

ta ≥ 0 ∀a ∈ A. (4.9e)

Observe that (4.9a) and (4.9c) are equivalent to (4.1a) and (4.1c), respectively, and the RHS

of constraint (4.1b) is replaced in (4.9b) by the linear functions defining facets of the piecewise-

linear function cij . From the definition of (discrete) concavity, it is straightforward to show that

these functions correspond to upper bound values for E(cij(τ)|xa). Furthermore, the column-wise

interdiction policy defined by t subject to constraints (4.9d)–(4.9e) relaxes the row-sum constraints

of X ∈ X by aggregating them. Thus (4.9) is a relaxation of (4.1).

74

Given t∗ optimal to (4.9), we construct a heuristic solution that allocates integer portions

of each t∗a to individual rows and then spreads the remaining fractional portions evenly across the

remaining rows. Let b′ =
∑m
a=1bt∗ac and b′′ = b− b′. The integer portion of the heuristic solution

generated from t∗ is given by the b′ ×m submatrix:

XInt(t∗) =

Arc 1 Arc 2 ··· Arc m

Interdiction 1 1 0 · · · 0

...
...

...
. . .

...

Interdiction bt1c 1 0 · · · 0

Interdiction bt1c+1 0 1 · · · 0

...
...

...
. . .

...

Interdiction bt1c+bt2c 0 1 · · · 0

...
...

...
. . .

...

Interdiction b′ 0 0 · · · 1

.

Letting t̂a = ta − btac for each a ∈ A, the full heuristic solution is given by:

XH(t∗) =

1

... XInt(t∗)

b′

b′+1 t̂∗1/b′′ · · · t̂∗m/b′′

...
...

. . .
...

b t̂∗1/b′′ · · · t̂∗m/b′′

.

The complexity of computing XH(t∗) is proportional to the complexity of solving the linear program

(4.9), which is polynomial in the size of the SPIP-RS instance.

75

To establish the desired approximation result, we now define two more solutions:

XLB(t∗) =

1

... XInt(t∗)

b′

b′+1

... 0

b

, and XUB(t∗) =

1

... XInt(t∗)

b′

b′+1 t̂∗
T

b′+2

... 0

b

.

Although neither XLB(t) nor XUB(t) necessarily belong to X, since they need not satisfy the

row sum constraints, we use their corresponding objectives to bound the optimal objective. Defining

z(X) to be the objective function value of (4.1) given a fixed interdiction matrix X, we get the

following objective bounds.

Proposition 4.2. Let X∗ be an optimal solution to (4.1) for some graph G with concave cost

functions, ca ∀a ∈ A, and let t∗ be an optimal solution to (4.9). Then z(XLB(t∗)) ≤ z(XH(t∗)) ≤

z(X∗) ≤ z(XUB(t∗)).

Proof. We have z(XLB(t∗)) ≤ z(XH(t∗)) since XLB(t∗) ≤ XH(t∗) and all cost functions are non-

decreasing. The next inequality z(XH(t∗)) ≤ z(X∗) holds since XH(t∗) ∈ X and X∗ is optimal. The

final inequality is a result from Lemma 4.4 and the optimality of t∗ for (4.9), which is a relaxation of

(4.1).

We now state an approximation result that guarantees how well the heuristic solution

performs relative to optimality. We measure the performance of z(XH(t∗))− z(XLB(t∗)) relative

to z(X∗) − z(XLB(t∗)). Note that if t∗ ∈ [0, 1)m, then XLB(t∗) = [0]b×m (the zero matrix), and

otherwise XLB(t∗) has at least one positive element. Thus, using z(XLB(t∗)) as a baseline gives a

result that is at least as strong as comparing z(XH(t∗))− z([0]) to z(X∗)− z([0]) (i.e., a baseline of

the shortest-path objective with no interdiction action), which, in turn, is stronger than comparing

z(XH(t∗)) to z(X∗) (i.e., a baseline of zero).

Theorem 4.6. z(XH(t∗))− z(XLB(t∗)) > (1− 1/e)(z(X∗)− z(XLB(t∗))), and this bound is tight.

76

Proof. If t∗ ∈ Zm, then XLB(t∗) = XUB(t∗), XH(t∗) is optimal from Proposition 4.2, and the

result follows. Assume then t∗ /∈ Zm, and by implication, b′′ = b− b′ ≥ 1. It suffices to prove that

E(ca(τ)|xH
a)− E(ca(τ)|xLB

a) > (1− 1/e)(E(ca(τ)|xUB
a)− E(ca(τ)|xLB

a)), ∀a ∈ A, where xH
a , xLB

a , and

xUB
a denote the ath column of XH(t∗), XLB(t∗), and XUB(t∗), respectively. This result guarantees

that z(XH(t∗)) − z(XLB(t∗)) > (1 − 1/e)(z(XUB(t∗)) − z(XLB(t∗))), and the theorem follows by

Proposition 4.2. Let a ∈ A. We note that

E(ca(τ)|xLB
a) = ca(bt∗ac),

E(ca(τ)|xUB
a) = ca(bt∗ac) + t̂a(ca(bt∗ac+ 1)− ca(bt∗ac)), and

E(ca(τ)|xH
a) = ca(bt∗ac) +

b′′∑
τ=1

(c(τ + bt∗ac)− ca(bt∗ac))
(
b′′

τ

)(
t̂a/b′′

)τ (
1− t̂a/b′′

)b′′−τ
.

Using these values, we proceed with our algebraic reduction:

E(ca(τ)|xH
a)− E(ca(τ)|xLB

a) =

 b′′∑
τ=1

(c(τ + bt∗ac)− ca(bt∗ac))
(
b′′

τ

)(
t̂a/b′′

)τ (
1− t̂a/b′′

)b′′−τ
+ ca(bt∗ac)

)
− (ca(bt∗ac))

≥ (ca(1 + bt∗ac)− ca(bt∗ac))
b′′∑
τ=1

(
b′′

τ

)(
t̂a
b′′

)τ (
1− t̂a

b′′

)b′′−τ
(4.10a)

= (ca(1 + bt∗ac)− ca(bt∗ac))

1−

(
1− t̂a

b′′

)b′′
> (ca(1 + bt∗ac)− ca(bt∗ac))

1− lim
b′′→∞

(
1− t̂a

b′′

)b′′ (4.10b)

= (ca(1 + bt∗ac)− ca(bt∗ac))
(

1− 1

et̂a

)
≥ (ca(1 + bt∗ac)− ca(bt∗ac))

(
1− 1

e

)(
t̂a
)

(4.10c)

= (1− 1/e)
(
t̂a
(
ca(bt∗ac+ 1)− ca(bt∗ac)

)
+ ca(bt∗ac)− ca(bt∗ac)

)
= (1− 1/e)

(
E
(
ca(τ)|xUB

a

)
− E

(
ca(τ)|xLB

a

))
.

The inequality in (4.10a) holds by noting that in the summation, ca(τ + bt∗ac) ≥ ca(1 + bt∗ac) since ca

is non-decreasing. The inequality in (4.10b) holds because (1− t̂a/b′′)b
′′

is increasing in b′′. (This

77

fact and the inequality in (4.10c) are both proven using calculus arguments that we omit for brevity.)

The inequality in (4.10a) becomes tight when ca(1 + bt∗ac) = ca(τ + bt∗ac) for τ > 1; inequality (4.10b)

holds in the limit as b′′ becomes arbitrarily large; and inequality (4.10c) becomes tight either when

t̂a = 0, or in the limit as t̂a tends towards 1. Therefore, the ratio 1− 1/e is tight.

4.4 Sample Average Approximation for General SPIP-RS

In this section we briefly describe a sample average approximation (SAA) based formulation

to find near-optimal solutions to the SPIP-RS. The method solves stochastic programs of the form

min EΩg(x, ω), where the random variable ω ∈ Ω is independent of x. SAA uses Monte Carlo

simulation to draw an independent and identically distributed set of scenarios, Ω̂ ⊂ Ω. The sampling

must be independent of the decision variables. The method then approximates an optimal solution

by minimizing the sample average:
∑
ω∈Ω̂ g(x, ω)/|Ω̂|. Shapiro et al. [75] show that the standard

error for the SAA solution is given by O(|Ω̂|−1/2).

The SPIP-RS exhibits decision-dependent uncertainty (see [26, 89]), since the random

variables represent interdiction locations, which depend on the decision variables X. To provide

an independent scenario generation, therefore, we will generate scenario vectors using a uniform

0–1 distribution, ωs ∈ (0, 1)b for s ∈ S, where S is an indexing set of scenarios. Then for each

interdiction h ∈ H in each scenario s ∈ S, we will assign interdiction h to arc a if and only if∑a−1
a′=1 xha′ ≤ ωhs <

∑a
a′=1 xha′ . To accommodate the desired strict inequality in our optimization

problems, we define Ψh = ∪s∈S{ωhs} ∪ {0, 1} for all h ∈ H, and we set 2εh to be the smallest

difference between any pair of values in Ψh, for each h ∈ H. We ensure in our random vector

generation process that each value in Ψh is distinct (by resampling if necessary).

To formulate our SAA-based formulation as a mixed-integer linear program, we introduce

(with a slight abuse of notation) auxiliary binary variables χhas that equal 1 if and only if interdiction

h ∈ H is applied to arc a ∈ A in scenario s ∈ S, and binary auxiliary variables Iτas that equal 1

if and only if exactly τ ∈ H ∪ {0} interdictions occur on arc a ∈ A in scenario s ∈ S. Our SAA

mixed-integer linear program is:

max
X∈X

ds (4.11a)

78

s.t. χhas ≤ 1 +

a∑
a′=1

xha′ − ωhs − εh ∀(h, a, s) ∈ H ×A× S (4.11b)

χhas ≤ ωhs +

m∑
a′=a

xha′ ∀(h, a, s) ∈ H ×A× S (4.11c)

∑
τ∈{0}∪H

Iτas = 1 ∀(a, s) ∈ A× S (4.11d)

∑
h∈H

χhas =
∑

τ∈{0}∪H

τIτas ∀(a, s) ∈ A× S (4.11e)

di − dj ≤
1

|S|

∑
s∈S

∑
τ∈{0}∪H

ca(τ)Iτas

 ∀a = (i, j) ∈ A (4.11f)

dt = 0 (4.11g)

χhas ∈ {0, 1} ∀(h, a, s) ∈ H ×A× S (4.11h)

Iτas ∈ {0, 1} ∀(τ, a, s) ∈ {0} ∪ H ×A× S. (4.11i)

Objective (4.11a) is the same as (4.1a). Constraints (4.11b) and (4.11c) define the χ-variables so

that χhas = 1 only if
∑a−1
a′=1 xha′ ≤ ωhs <

∑a
a′=1 xha′ . Note that the maximization objective induces

χhas = 1 whenever
∑a−1
a′=1 xha′ ≤ ωhs <

∑a
a′=1 xha′ . Constraints (4.11d) and (4.11e) force Iτas to

their desired values. Constraints (4.11f) correspond to (4.1b), replacing the true expected arc cost

with the sample average arc cost on the RHS, and constraint (4.11g) is equivalent to (4.1c). Finally,

constraints (4.11h)–(4.11i) state integrality constraints on the χ- and I-variables. However, with the

following lemma we can relax the integrality constraints on the I-variables corresponding to any

discrete-concave function ca.

Lemma 4.7. If ca is discrete-concave, then integrality constraints (4.11i) can equivalently be relaxed

to Iτas ≥ 0, ∀τ ∈ H ∪ {0}, s ∈ S.

Proof. Let a = (i, j) ∈ A with ca discrete-concave. Examine a variant of formulation (4.11) in which

constraints (4.11i) are relaxed to Iτas ≥ 0, ∀τ ∈ H ∪ {0}, s ∈ S. We show that there exists an

optimal solution whose I-variables, I ′, are integer.

To begin, suppose an optimal solution to this relaxed formulation has I-variable values given

by I∗. If I∗ is integer, then we are done. Otherwise, there exists some s ∈ S so that the vector

79

[I∗0as, I
∗
1as, . . . , I

∗
bas] /∈ Zb+1. Observe from (4.11e) that

∑b
τ=0 τI

∗
τas ∈ {0, . . . , b} ⊂ Z. So setting

I ′τas =

1 if τ =

∑b
τ ′=0 τ

′I∗τ ′as

0 otherwise,

∀τ ∈ H ∪ {0},

we have [I ′0as, I
′
1as, . . . , I

′
bas] ∈ Zb+1. Repeating this for each s ∈ S we obtain I ′ integer-valued. To

prove this solution is optimal, note that (4.11d) and (4.11f) bound di − dj above by summing convex

combinations of {ca(0), . . . , ca(b)} with respective multipliers I0as, . . . , Ibas. The result then follows

by the discrete-concavity of ca:
∑b
τ=0 ca(τ)I ′τas = ca(

∑b
τ=0 τI

′
τas) ≥

∑b
τ=0 ca(τ)I∗τas.

4.5 Computational Study

Our computational study focuses on the following questions. Each question is addressed in a

separate subsection.

Question 1: What strategy is most efficient in solving general SPIP-RS instances of varying sizes?

Question 2: How well does the branch-and-bound algorithm described in Section 4.2.2 perform on

convex instances?

Question 3: How well does the approximation heuristic of Section 4.3.2 perform on concave in-

stances?

For this study, we coded each algorithm in Python v. 2.7. All runs were performed on Clemson

University’s Palmetto Cluster; each instance was run on a separate Intel Xeon E5-2670 (2.50GHz)

core. Collectively, the cores shared 60Gb of memory. For each run, we recorded computational

time, termination status, and solution quality information. The running time for each algorithm was

capped at two hours (wall-time), at which point the algorithm was terminated and partial results

were collected.

Our test bed consisted of 75 randomly generated instances: 15 each having 10, 20, 30, 50,

and 80 nodes. For all instances, we used an interdiction budget of b = 4. For each instance, we

used igraph’s [16] Erdős-Renýı module [22] to randomly generate arcs with 30% arc density (i.e.,

27, 114, 261, 735, and 1896 arcs, respectively). The 15 instances for each graph size were divided

into five convex instances (Cvx), five concave instances (Ccv), and five instances having general (i.e.,

80

unspecified) cost functions (Gen). We randomly generated convex and concave arc cost functions

using b + 1 random integers in {0, . . . , 10b}, sorted in increasing (for convex) or decreasing (for

concave) order. Denoting the sorted integers for arc a by {δ0, δ1, . . . , δb}, we assigned

ca(τ) =

δ0, τ = 0

ca(τ − 1) + δτ , τ ∈ H.

For the instances with general cost functions, we simply sorted the random numbers in increasing

order and assigned the function values ca(τ) = δτ , ∀τ ∈ H ∪ {0}.

For baseline comparison, we used Artelys Knitro v. 11.1 [13] as a general-purpose non-linear

solver (using the software’s Python API). Knitro primarily uses ascent-based methods, hence its

results are not guaranteed to be optimal. We allowed Knitro to automatically determine both gradient

and Hessian information.

4.5.1 SAA and Knitro comparison

First we examine the performance of the SAA algorithm of Section 4.4. We compared Gurobi

v. 7.5 solving (4.11) and Knitro solving (4.1). We used |S| = 50 scenarios.

Initially, we compared these algorithms on the 10-node instances. Despite the small instance

sizes, the SAA formulation could only be solved to optimality in three of the 15 instances within the

time limit (see Table 4.5). The presence of O(bm|S|) binary variables appears to make formulation

(4.11) exceedingly difficult to solve. In contrast, Knitro was able to meet convergence criteria on all

10-node instances within 20 seconds. However, without solution quality information from the SAA

model we could not assess the quality of solutions provided by Knitro.

To obtain better results, therefore, we implemented a lazy approach to constructing our

formulations, motivated by similar strategies for the SPIP [36, 50]. This approach optimizes SPIP-RS

instances over a subgraph of the original graph, expanding the subgraph only as needed (see Appendix

A.3.2 for details). We repeated the previous computational experiment and report the results in Table

4.5. The first column lists the instance name. The next two columns report the objective of the best

solution obtained by the end of each original algorithm at the time it terminated, while the fourth

and fifth columns provide the computational times required by those two algorithms. The sixth,

seventh, ninth, and tenth columns provide analogous results for the lazy approach. The eighth column

81

Table 4.5: Comparison of SAA (with |Ω̂| = 50 scenarios) and Knitro on SPIP-RS instances with 10
nodes and 27 arcs.

Instance
Original Algorithms “Lazy” Approach

Objective Time (sec) Objective
zUB

Time (sec)
SAA Knitro SAA Knitro SAA Knitro SAA Knitro

Cvx n10 i1 87.74 94.00 > 7200 8.26 6.00 94.00 140.14 > 7200 0.24
Cvx n10 i2 35.69 40.72 > 7200 9.91 13.00 40.72 57.38 > 7200 0.82
Cvx n10 i3 74.77 76.00 3501 13.29 74.04 76.00 76.56 0.56 0.60
Cvx n10 i4 38.59 45.81 > 7200 11.64 8.00 45.81 126.86 > 7200 1.11
Cvx n10 i5 138.14 143.00 > 7200 7.92 142.49 143.00 144.68 63.92 0.18
Ccv n10 i1 75.00 75.00 0.51 13.58 75.00 75.00 75.00 0.03 0.18
Ccv n10 i2 77.92 79.00 0.35 11.03 79.00 79.00 79.00 0.03 0.15
Ccv n10 i3 90.22 97.00 > 7200 15.39 69.00 97.00 129.62 > 7200 2.31
Ccv n10 i4 122.51 130.75 > 7200 19.69 103.00 130.74 143.76 > 7200 0.47
Ccv n10 i5 128.77 134.04 > 7200 12.77 113.19 134.04 151.11 > 7200 2.32
Gen n10 i1 27.96 28.91 > 7200 11.85 10.00 28.42 33.00 > 7200 2.56
Gen n10 i2 15.12 16.66 > 7200 6.11 4.00 16.66 27.24 > 7200 0.76
Gen n10 i3 21.16 23.60 > 7200 6.20 17.00 23.60 25.02 > 7200 0.34
Gen n10 i4 31.49 37.87 > 7200 10.12 14.00 37.89 76.94 > 7200 6.18
Gen n10 i5 30.57 33.23 > 7200 8.00 23.00 32.24 38.76 > 7200 0.42

reports values for zUB, which is the best (i.e., minimal) upper bound on the objective, as reported by

Gurobi, among all of the lazy iterations. In two instances, Cvx n10 i1 and Gen n10 i4, Gurobi failed

to converge on even the first lazy iteration, which implies that the zUB values corresponding to those

instances may be excessively large. With the lazy approach, SAA was able to solve one additional

instance within two hours, but still failed to meet the convergence criteria for the remaining 11

instances. In contrast, Knitro returned a result in less than two seconds in most cases when using the

lazy approach. Furthermore, since Gurobi was able to converge in the first few iterations of the lazy

approach on most instances, that allowed us to obtain valid upper bounds and provides additional

confidence that Knitro’s solutions are near-optimal.

Based on the results from our smallest instances, we only used the Knitro solver for the

remaining 60 instances, and we examined its performance with and without the lazy approach on

all 75 instances. Our study confirms that with respect to objective quality, the lazy approach and

non-lazy approaches both yielded approximately equal objectives (see Figure 4.3). The notable

exception was that the lazy approach appeared to become trapped in locally optimal solutions for our

80-node instances with general cost functions, since it met convergence criteria with an objective that

was significantly worse than the non-lazy variant’s objective. These are the points above the diagonal

in Figure 4.3. With regard to computational time (see Figure 4.4), the lazy approach consistently

82

Figure 4.3: Effect of the lazy approach on the objective. “X” markers indicate non-lazy approach
timed-out before converging.

Table 4.6: Summary statistics for Knitro with the lazy approach.

of Running time
nodes Min Mean Max

10 0.01 1.05 5.06
20 0.62 21.81 64.70
30 2.79 143.71 473.60
50 8.48 1061.18 2587.63
80 54.14 3237.02 > 7200

terminated in a similar timeframe or faster than the non-lazy approach. For the larger instances

with 50 and 80 nodes the non-lazy variant timed out on all 30 instances, whereas the lazy approach

successfully converged for all 50-node instances within two hours, and 12 of 15 instances having 80

nodes (for ease of display, the results from the 80-node instances are not depicted in Figure 4.4).

Finally, in Figure 4.5 and Table 4.6, we display the lazy variant’s running time on all 75 instances

and provide summary statistics, respectively. The algorithm exhibits exponential growth in solver

times, as expected, with a slight tapering effect due to the fact that the lazy approach ignores a

significant number of arcs in the network.

83

Figure 4.4: Effect of the lazy approach on running time. Instances with n = 80 nodes are excluded.

Figure 4.5: Running time (in seconds) for Knitro (using the lazy approach) by number of graph
nodes (n).

84

4.5.2 Branch-and-Bound Performance on Convex Problems

We examined the performance of the branch-and-bound algorithm from Section 4.2.2 on our

convex test bed instances, comparing the computational time and solution quality to that provided

by Knitro. We examined the performance of the branch-and-bound algorithm both with and without

the lazy approach described in Section 4.5.1. For our optimality tolerance we used ε = 0.01. The

results are shown in Table 4.7. In the columns showing the number of nodes in the branch-and-bound

tree, for the lazy approach we include both the total number of nodes over all iterations and the

number of nodes in the iteration having the largest tree.

Both the lazy and non-lazy variants were able to solve all of the 10- and 20-node instances

to the specified optimality tolerance within two hours. In most of these instances, the lazy approach

was faster: Usually it took on the order of half the time as the non-lazy approach. The notable

exception is the Convex n20 i4 instance, where the lazy approach took about 20% longer than the

non-lazy approach. This occurred because the subgraphs in the last seven lazy iterations each had

only one arc more than the previous iteration’s subgraph; thus, these iterations each took similar

(significant) effort to solve. Both the lazy and non-lazy approaches solved three of the five 30-node

instances in under two hours, and with one exception, both failed to finish in two hours on all 50-

and 80-node instances. The exception was instance Cvx n50 i4, where the lazy approach finished

but the non-lazy timed-out. In every case where both branch-and-bound variants timed out, the

non-lazy approach identified a better incumbent solution than the lazy variant.

In most instances, the quality of the solutions from Knitro and the branch-and-bound

algorithms are identical. This again validates the strength of Knitro’s ascent approach, since it

found an optimal solution much faster than the exact method. However, the strength of the branch-

and-bound algorithm is seen in the Convex n20 i3 instance, where the exact branch-and-bound

algorithm provides a significantly better solution. Thus, for small- and medium-sized instances, which

are complex enough such that Knitro occasionally returns a significantly suboptimal solution, the

branch-and-bound solver can tractably find a true optimal solution.

4.5.3 Quality of the Approximation Heuristic on Concave Problems

The polynomial-time heuristic algorithm described in Section 4.3.2 terminated on all instances

in our test set in less than one second. Recall from Section 4.3.2 that the heuristic must provide

85

Table 4.7: Branch-and-bound study results. “NL” indicates the non-lazy approach, in contrast to
the lazy one described in Section 4.5.1.

Running Time Objective Value Spatial B-&-B Tree Size
Instance Knitro B-&-B Knitro B-&-B

NL
Lazy

Lazy NL Lazy Lazy NL Lazy Total Largest
Cvx n10 i1 0.14 0.08 0.02 94.00 94.00 94.00 4 7 4
Cvx n10 i2 0.64 0.21 0.08 41.72 41.72 41.72 19 26 19
Cvx n10 i3 0.47 0.05 < 0.005 76.00 76.00 76.00 1 1 1
Cvx n10 i4 0.96 0.31 0.14 45.81 45.81 45.81 31 39 28
Cvx n10 i5 0.10 5.05 < 0.005 143.00 143.00 143.00 1 1 1
Cvx n20 i1 29.28 33.68 14.54 20.54 20.53 20.53 1039 2357 1004
Cvx n20 i2 35.41 33.05 8.24 25.76 25.76 25.76 948 1462 822
Cvx n20 i3 2.80 5.64 0.29 26.01 55.84 55.84 22 63 27
Cvx n20 i4 7.32 984.02 1173.18 11.39 13.37 13.37 38311 143019 37522
Cvx n20 i5 17.06 538.42 328.57 10.94 10.95 10.95 16824 41688 13960
Cvx n30 i1 155.55 > 7200 > 7200 12.90 12.58 8.99 75419 182820 145952
Cvx n30 i2 100.88 > 7200 > 7200 13.59 13.34 9.00 74352 264589 114923
Cvx n30 i3 122.81 505.48 209.49 17.89 17.89 17.89 7468 24418 8443
Cvx n30 i4 136.31 1341.32 1273.20 13.23 13.53 13.53 18136 108242 36341
Cvx n30 i5 11.44 100.05 61.94 14.86 14.86 14.86 1524 8945 3115
Cvx n50 i1 2758.40 > 7200 > 7200 6.22 5.77 2.00 31443 255469 81608
Cvx n50 i2 973.36 > 7200 > 7200 10.06 10.04 8.00 31178 189538 109524
Cvx n50 i3 3022.38 > 7200 > 7200 7.73 7.68 5.00 31535 210228 107418
Cvx n50 i4 1930.19 > 7200 > 7200 6.95 6.48 2.75 30998 210189 145877
Cvx n50 i5 301.10 > 7200 2117.56 10.69 10.68 10.69 31664 130567 43234
Cvx n80 i1 4093.03 > 7200 > 7200 7.21 7.18 4.00 11363 219805 82761
Cvx n80 i2 3411.52 > 7200 > 7200 6.40 6.11 2.00 11339 158842 103030
Cvx n80 i3 6529.53 > 7200 > 7200 5.04 5.70 3.00 11416 192366 89935
Cvx n80 i4 > 7200 > 7200 > 7200 2.00 4.79 2.00 11331 282376 72163
Cvx n80 i5 > 7200 > 7200 > 7200 6.00 6.41 3.00 11204 231004 89807

86

an objective within 1− 1/e ≈ 63.2% of the true optimum. We compare in Table 4.8 the quality of

the solutions from the approximation algorithm to those obtained by Knitro on each of the concave

instances in our test bed. For every instance, the approximation heuristic is within approximately

95% of the Knitro’s result, and in one instance (Ccv n20 i1) the approximation heuristic found a

better solution than Knitro.

Table 4.8: Comparing objectives from Knitro and the approximation algorithm of Section 4.3.2 on
convex instances. The percentage column is given by dividing the approximation objective by the
Knitro objective.

Instance
Objective

Percentage
Knitro Approx

Ccv n10 i1 75.00 75.00 100.0%
Ccv n10 i2 79.00 79.00 100.0%
Ccv n10 i3 97.00 92.04 94.9%
Ccv n10 i4 130.74 130.74 100.0%
Ccv n10 i5 134.04 134.04 100.0%
Ccv n20 i1 80.79 80.96 100.2%
Ccv n20 i2 139.00 136.52 98.2%
Ccv n20 i3 99.44 96.82 97.5%
Ccv n20 i4 95.27 92.82 97.4%
Ccv n20 i5 66.10 66.10 100.0%
Ccv n30 i1 116.32 115.04 98.9%
Ccv n30 i2 92.44 90.17 97.5%
Ccv n30 i3 104.71 104.32 99.6%
Ccv n30 i4 71.66 71.66 100.0%
Ccv n30 i5 94.27 90.85 96.4%
Ccv n50 i1 94.12 89.78 95.4%
Ccv n50 i2 86.25 85.83 99.5%
Ccv n50 i3 81.24 79.89 98.3%
Ccv n50 i4 87.55 84.19 96.2%
Ccv n50 i5 91.97 90.18 98.1%
Ccv n80 i1 79.61 76.43 96.0%
Ccv n80 i1 80.23 76.34 95.1%
Ccv n80 i1 79.62 77.78 97.7%
Ccv n80 i1 74.44 73.72 99.0%
Ccv n80 i1 79.61 78.11 98.1%

Given the quality of these solutions, we also examined whether warm-starting Knitro with an

initial solution from the approximation algorithm improves the computational performance of Knitro.

However, preliminary computational experiments showed no benefit to providing this warm start.

87

4.6 Conclusion and Future Work

In this chapter we examine the SPIP-RS in which multiple interdiction actions impact arc

cost functions in a potentially non-linear fashion. When these cost functions are all linear, classical

analysis reduces this problem to a linear program. When these cost functions are non-linear, the

problem can be formulated as a continuous non-convex optimization problem. However, the SPIP-RS

becomes NP-hard in the strong sense in this case, even if the cost functions are all concave, or

if they are all convex. We then provide algorithms to solve special cases of the SPIP-RS. For

the convex SPIP-RS, we prescribe a spatial branch-and-bound algorithm that returns a solution

that is within a specified absolute optimality tolerance. For the concave SPIP-RS, we provide a

polynomial-time (1 − 1/e)-approximation algorithm, whose empirical performance indicates that

the optimality gap is far tighter than the worst-case gap. Finally, we present an SAA-based linear

mixed-integer programming model that can be solved to provide an approximate solution to the

SPIP-RS. However, computational results show that simply employing a non-linear optimization

solver on the original non-linear model for the SPIP-RS tends to provide better results with far less

computational effort than solving the SAA-based formulation using a mixed-integer programming

solver.

Further research on the SPIP-RS might characterize problem complexity and approximability

results under special cases of the problem. These cases may regard assumptions on the number of

non-linear arc cost functions, conditions regarding the shape of these functions, or restrictions on

the topology of the network itself. Additionally, future research questions may consider variants

of the SPIP-RS itself. For instance, one may examine the case in which the follower uses a robust

approach to selecting a preferred path, possibly using value-at-risk computations, instead of the

shortest expected-cost. Yet another variation of this problem can extend this two-stage game into a

three-stage game, where the agent selecting a path can fortify arcs before the interdicting agent can

begin the two-stage SPIP-RS problem studied here.

88

Appendices

89

Appendix A Algorithms

A.1 MAWT Algorithms

In this appendix we present pseudo-code for the BOX and KS implementations used in our

computational study described in Section 2.5. For our implementation, the functionality for each

algorithm is separated among three modules, using an object-oriented framework common to both

algorithms. Such a separation was not apparent for OBM, since that algorithm uses a recursive

structure, as opposed to the looping structure of BOX and KS. Figure A.1 provides a graphical

summary of Algorithm 1’s search process and the data flows among the modules (initialization

processes are not depicted). Module A.1 is the controller, which directs the iterative search in Z and

stores non-dominated solutions as they are discovered. The list of search regions is maintained by

Module A.2, and the searches are performed by Module A.3. Algorithm 2 uses a similar division of

functions.

Figure A.1: Algorithm 2.1 search functions separated into three modules.

The modular design depicted in Figure A.1 provides several benefits. First, it allows the

algorithm to be easily reconfigured by varying the combination of search and list management routines.

For example, we used the modular design to implement Dächert et al.’s neighbor routine as our

90

list manager for the tests in Section 2.5.3. Depending on search and list management routines, the

resulting algorithm could also implement other ε-constraint methods, Tchebychev search methods,

and dominated region exclusion methods. Secondly, the modular design allows us to easily examine

the effects of the search algorithm separate from the management of L, and control the influence of

exogenous variables, such as timing commands by using the common controller. In our study, the

timers were managed by the control module. The controller started a timer, then called a command

from either the list manager or search routine, and stopped the timer when the result was returned.

By using a common controller module, we limit the variance due to the controller’s coding and we

can easily examine how the algorithms perform updating and searching routines separately.

In Algorithm 1 we give pseudocode in an object-oriented framework that is equivalent to

Algorithm 2.1. The objects are initialized by calling the Controller module’s init procedure. Inputs

to the init function are the same as the inputs to Algorithm 2.1. In turn, the Controller defines

the list manager and search objects by calling their respective init procedures. In this pseudocode

we assume the initialize procedures are class methods which return the created object. The main

algorithm is then run by calling the Controller’s FindNonDom procedure.

Algorithm 2 presents pseudocode forKS, our object-oriented implementation of Kirlik and

Sayin’s ε-constraint algorithm [41]. It uses essentially the same controller module as Algorithm 1.

Modules A.5 and A.6 function as the search and list manager modules, respectively.

91

Module A.1: Controller

1 Procedure init(I, s, zub):
2 for k ∈ P do
3 zlb

k ← min{zk(x) : x ∈ X}
4 ListMgr ←

BasicListMgr.init(zub, zlb)
5 Search ←

MAWTSrch.init(zub, zlb, s)

6 X̂E ← ∅; ẐN ← ∅; j ← 0

7 Procedure FindNonDom():
8 while ListMgr.listLen() > 0 do
9 j ← j + 1

10 z(j) ←ListMgr.getSearchRegion()

11 x(j) ←Search.search(z(j))

12 if x(j) = Null then
13 ListMgr.remove(z(j))
14 else

15 X̂E ← X̂E ∪ {x(j)}
16 ẐN ← ẐN ∪ {f(x(j))}
17 ListMgr.update(z(j), f(x(j)))

18 return X̂E, ẐN

Module A.2: BasicListMgr

1 Procedure init(zub, zlb):
2 L← {zub}
3 Procedure getSearchRegion():
4 return z(j) ∈ L
5 Procedure listLen():
6 return |L|
7 Procedure remove(z(j)):
8 L← L \ {z(j)}
9 Procedure update(z(j), f(x(j))):

10 remove(z(j))

11 L← L ∪ {z(j),−k : k ∈ P, z(j)
k <

zlb
k }

Module A.3: MAWTSrch

1 Procedure init(zub, zlb, s):
2 r ← maxk∈P {zub

k − zlb
k }

3 ε← (0, s/(2p(r − s)))
4 Procedure search(z(j)):

5 for k ∈ P do wk ← 1/(z
(j)
k − zlb

k)
6 (x∗, g(f(x∗))←

minx∈X{‖z(x)− zlb‖w,ε}
7 if g(z(x∗)) < 1 then
8 return x∗

9 else
10 return Null

Algorithm 1: BOX: An object-oriented version of Algorithm 2.1.

92

Module A.4: KSController

1 Procedure init(P, s, zub):
2 for k ∈ P do
3 zlb

k ← min{fk(x) : x ∈ X}
4 ListMgr ←

KSListMgr.init(zub, zlb)

5 Search ← KSSrch.init(zub, zlb, s)

6 X̂E ← ∅; ẐN ← ∅; j ← 0

7 Procedure FindNonDom():
8 See Module A.1

Module A.5: KSSearch

1 Procedure init(zub, zlb, s):
2 return

3 Procedure run((zi, zn)):
4 for k ∈ {1, . . . , p− 1} do
5 Add constraint fk(x) ≤ znk
6 (x∗, g(f(x∗)))← minx∈X{fp(x)}
7 if Problem infeasible then
8 Remove added constraints
9 return Null

10 else
11 Add constraint fp(x) = fp(x

∗)
12 (x∗, g(f(x∗)))←

minx∈X{
∑p
k=1 fk(x)}

13 Remove added constraints
14 return x∗

Module A.6: KSListMgr

1 Procedure init(zub, zlb):
2 L← {([zlb

1 , . . . , z
lb
p−1], [zub

1 , . . . , zub
p−1])}

3 Procedure getSearchRegion():

4 return (zi, zn)← argmax(zi,zn)∈L{Π
p−1
k=1(zub

k − zlb
k)}

5 Procedure remove([f1(x(j)), . . . , fp−1(x(j))]):
6 for (i,n) ∈ L do
7 if i = [f1(x(j)), . . . , fp−1(x(j))] AND n 5 zn then // zn is from line 4

8 L← L \ {(i,n)}

9 Procedure listLen():
10 return |L|
11 Procedure update((zi, zn), f(x(j))):
12 for (i,n) ∈ L do // (i,n) is a candidate parent

13 L← L \ {(i,n)}
14 T ← {(i,n)} // T is the container for children of (i,n)
15 for k ∈ {1, . . . , p− 1} do // Iterate through objectives

16 if ik < fk(x(j)) < nk then // Check if we need k-children
17 for (i,n) ∈ T do // Loop divides (i,n) ∈ T into 2 k-children
18 T ← T \ {(i,n)}
19 newN← [n1, . . . , nk−1, fk(x(j)), nk+1, . . . , np]

20 newI← [i1, . . . , ik−1, fk(x(j)), ik+1, . . . , ip]
21 T ← T ∪ {(i,newN), (newI,n)}

22 Set L = L ∪ T
23 remove([f1(x), . . . , fp−1(x)])

Algorithm 2: KS: an object-oriented implementation of Kirlik and Sayin’s ε-constraint method.

93

A.2 SPIP-I Algorithms

In Chapter 3 we use the MAWT norm of Chapter 2 to generate a complete set of non-

dominated solutions to the SPIP-I. In this section we give two algorithms that tailor Algorithm 2.1

to the SPIP-I.

A.2.1 GetIdeal

Algorithm 2.1 finds an ideal point zlb = [z0(x∗0), . . . , zp(x
∗
p)] in lines 1–2, where each x∗kF is

an optimal solution to the problem of minimizing zkF (x). A simple implementation for this routine

would be to solve (3.1) for each kF ∈ {0, . . . , p}. Algorithm A.3 accelerates this simple routine by

leveraging the property that zkF (x∗kF) is non-increasing over kF .

Algorithm A.3: GetIdeal(Ḡ)

Input : Ḡ: A layerized graph
{cij}(i,j)∈A: The collection of costs for arcs in A

Output : zI = [z0(x∗0), . . . , zp(x
∗
p)], where each x∗kF is optimal for (3.1)

Dependencies : SolveSPIP(G, {cij}(i,j)∈A, f): Solves minx∈X{f(z(x)) : (3.3b)–(3.3f)}
returning an optimal solution x∗ and the corresponding objective
vector z(x∗)

1 kF ← 0

2 while kF ≤ p do
3 f(z)← (−zkF) // f : Rp+1 → R
4 (x∗, z(x∗))← SolveSPIP∗(Ḡ, {cij}(i,j)∈A, f)
5 z∗ ← zkF (x∗)

6 while kF ≤ p do
7 if z∗ = zkF (x∗) then
8 zIkF ← zkF (x∗)

9 kF ← kF + 1

10 else
11 break

12 return zI

Algorithm A.3 begins by setting f(z) = −z0, and using SolveSPIP (see Algorithm A.4 from

Appendix A.2.2) to find a strategy x∗ that minimizes f(z) (i.e., maximizes z0). Lines 5–11 are the

accelerating portion. First, line 5 selects the kF component of z(x∗) and assigns that value to z∗.

For each incremental kF , if z∗ = zkF (x∗), then x∗ optimizes zkF . Lines 6–9 continue to increment

kF and assign zIkF component values as long as x∗ is optimal for each zkF . Once a value for kF is

found for which x∗ is not provably optimal using the acceleration technique, the algorithm breaks

94

out of the inner loop in line 11 and returns to line 2 to solve for a new strategy. When all component

values of zI are set, the routine terminates, returning zI .

A.2.2 SolveSPIP

The auxiliary routine SolveSPIP generalizes row-generating algorithms for single-objective

SPIPs [36, 50], allowing them to solve multi-objective SPIPs with scalarized objectives. These

row-generating methods iteratively generate a set of short paths (i.e., columns in the follower’s inner

problem). In each iteration they solve the relaxed master problem of selecting an optimal interdiction

strategy, where the follower is restricted to paths in the set of short paths. The optimal strategy is

used to establish a new set of arc costs, which are passed again to the subproblem for finding new

short paths. The routine terminates when the master (interdiction) and subproblem (shortest-path)

solutions’ objectives are equal.

Our implementation of SolveSPIP, given in Algorithm A.4, extends these methods to solve

problems of the form min{g(z(xL)) : (3.3b)–(3.3f)}, where g : Rp+1 → R. Though SPIPs are

generally maximization problems, we use the minimization operator, because g(z(x) = ‖zub − z‖

where zub = z(x), ∀x ∈ X, and ‖·‖ is the MAWT norm (see line 10 of Algorithm 2.1). Since the

SPIP-I is a maximization problem, the roles of zlb and zub are exchanged from the minimization

formulation in Chapter 2, i.e., the leader seeks to minimize the distance between z(x) and zub. Thus,

while the multiobjective variant of (3.3) seeks to maximize z(x∗), Algorithm A.4 achieves this by

solving the minimization problem: minx∈X{g(z(x))}.

Algorithm A.4 starts by establishing an empty set of s0 → th paths, Πh, for each h ∈

{0, . . . , p}. Lines 2–3 set a trivial interdiction strategy and upper and lower bounds on the optimal

objective. The routine loops until these upper and lower bounds are equal. Each iteration, the routine

begins in lines 5–8 by solving the subproblem: setting the arc costs in Ḡ according to the latest

strategy, finding a set of short paths (we used iGraph’s [16] implementation of Dijkstra’s algorithm),

and establishing the upper bound value, fUB , from the vector of path costs. Then line 9 updates the

master problem, adding the paths from the subproblem results as new constraints. Line 10 solves the

master problem to get a new strategy, x∗, and line 11 stores the objective corresponding to x∗ where

the follower is restricted to using paths from the sets Π0, . . . ,Πp. Line 12 finishes each iteration by

updating the lower bound on the objective, fLB . Once fUB = fLB , the routine terminates, returning

x∗ and z(x∗).

95

Algorithm A.4: SolveSPIP(Ḡ, {cij}(i,j)∈A, f)

Input : Ḡ = (N̄ , Ā): A layered graph
{cij}(i,j)∈A : Z2 → R: A collection of cost functions over the base arc
set, A
f : A function mapping Rp+1 → R

Output : x∗: An interdiction strategy minimizing f(z(x))
z(x∗): The objective vector for x∗

Dependencies : Dijkstra(G, s, T, c)→ {πt}t∈T
Arcs(π): Returns the set of arcs along path π

1 Πh ← ∅ for h ∈ {0, . . . , p}
2 x∗ ← 0

3 fUB =∞, fLB = 0

4 while fUB 6= fLB do
5 for ā = (ih, jh+`) ∈ Ā do

6 c̄ā ← cij(x
∗
ij , `) // At the end c̄ ∈ R|Ā|

7 [π0, . . . , πp]← Dijkstra(Ḡ, s, T, c̄)

8 fUB ← f
([∑

ā∈Arcs(π0) c̄ā, . . . ,
∑
a∈Arcs(πp) c̄ā

])
9 Πh ← Πh ∪ {πh} for h ∈ {0, . . . , p}

10 x∗ ∈
argminx∈X

{
f(z) : zkF ≤

∑
(ih,jh+`)∈Arcs(π) cij(xij , `), ∀kF ∈ {0, . . . , p}, ∀π ∈ ΠkF

}
11 z←

[
minπ∈Π0

{∑
(ih,jh+`)∈Arcs(π) cij(x

∗
ij , `)

}
, . . . ,

minπ∈Πp

{∑
(ih,jh+`)∈Arcs(π) cij(x

∗
ij , `)

}]
12 fLB ← f(z)

13 return x∗, z

96

A.2.3 DecompTree

Our DecompTree routine is based on the work of Valdes [86]. We use Python dictionaries

to implicitly store the tree. Dictionaries are initialized in Python using brace notation: MyDict ←

{key1:value1, key2:value2}. After initialization, specific key/value pairs may be added to the

dictionary using brackets: MyDict[key3] ← value3. Dictionary look-ups also use bracket notation:

MyDict[key1] returns value1.

Algorithm A.5: DecompTree(G)

Input :G = (N,A): An SPG
Output : r: The root of the decomposition tree, T
Dependencies :

1 Parent← {a : na for a ∈ A}
2 Children← {na : a for a ∈ A}
3 Type← {na : L for a ∈ A}
4 UnSat← N
5 while UnSat 6= ∅ do
6 Choose n ∈ UnSat; UnSat← UnSat \ {n}
7 while ∃a1, a2 ∈ A : a1 = a2 = (v, n) do
8 na1 ← Parent[a1]; na2 ← Parent[a2]
9 anew ← (v, n)

10 Parent[anew]← nanew

11 A← (A \ {a1, a2}) ∪ {anew}
12 Parent[na1]← nanew

; Parent[na2]← nanew
13 Children[nanew

]← {na1 , na2}
14 Type[nanew

]← P

15 while ∃a1, a2 ∈ A : a1 = a2 = (n,w) do
16 na1 ← Parent[a1]; na2 ← Parent[a2]
17 anew ← (v, n)
18 Parent[anew]← nanew

19 A← (A \ {a1, a2}) ∪ {anew}
20 Parent[na1]← nanew ; Parent[na2]← nanew
21 Children[nanew]← {na1 , na2}
22 Type[nanew

]← P

23 if ∃!a1 ∈ A : a1 = (v, n) AND ∃!a2 ∈ A : a2 = (n,w) then
24 na1 ← Parent[a1]; na2 ← Parent[a2]
25 anew ← (v, w)
26 Parent[anew]← nanew

27 A← (A \ {a1, a2}) ∪ {anew}
28 N ← N \ {n}
29 Parent[na1]← nanew

; Parent[na2]← nanew
30 Children[nanew

]← {na1 , na2}
31 Type[nanew]← S
32 UnSat← UnSat ∪ {v, w}

33 return Parent[(s, t)] // At termination, A = {(s, t)}

97

The algorithm begins by initializing dictionaries Parent, Children, and Type with leaf nodes

mapped to the arcs in G. These dictionaries serve dual purposes: they maintain the tree structure

in lieu of a graph library, and they serve as their namesake functions in Algorithms 3.2 and 3.3.

Line 3 initializes a set of unsatisfied nodes to include all nodes from G. The main loop continues

until all nodes are satisfied. Each iteration selects one unsatisfied node, n, and removes it from the

unsatisfied set. Lines 6–10 merge parallel inbound arcs at node n, establishing a new node, nanew ∈ T

of type P , and forming appropriate hierarchical relationships in T . Lines 11–15 similarly merge

parallel outbound arcs at node n. After merging all parallel inbound and outbound arcs, if n is now

a intermediary node, having a single predecessor and a single successor, then the routine performs a

series merge on the inbound and outbound arcs, establishing a new tree node, nanew ∈ T of type S.

A series reduction requires that the predecessor and successor of the reduced node are categorized

as “unsatisfied.” When the set of unsatisfied nodes is empty, A contains a single arc, (s, t). The

corresponding node is returned as the root node, terminating the routine.

A.3 SPIP-RS Algorithms

A.3.1 Spatial Branch and Bound

Algorithm A.6 states a spatial branch-and-bound algorithm to solve the convex SPIP-RS

within an absolute optimality tolerance gap of some given parameter ε > 0. In each iteration, the

algorithm solves the LP relaxation over the convex hull of (4.6). It then iteratively branches on ta

variables until a solution is available that is provably within ε of the true optimal objective.

Lines 1 and 2 initialize a node list for the branch-and-bound tree with a single root node.

Each node, v, in the tree is associated with upper and lower bounds on the decision variables t,

denoted tv and tv, respectively. For the root node, r, line 2 sets tr = {b}m and tr = {0}m. For

each node, immediately after setting tv and tv, we solve the LP relaxation of (4.1) over the region

bounded by tv and tv:

P (tv, tv) : max dvs (12a)

s.t. dvi − dvj ≤ cij
(
tvij

)
+

(
tvij − tvij
tvij − tvij

)(
cij
(
tvij
)
− cij

(
tvij

))
∀(i, j) ∈ A (12b)

dvt = 0 (12c)

98

tva ≤ tva ≤ tva ∀a ∈ A. (12d)

Since (12) is a relaxation of the SPIP-RS (from the interdictor’s perspective), the optimal objective,

dvs , is an upper bound on the optimal objective for (4.1) within the same bounds. The initialization

portion concludes in line 3 by defining a global lower bound value, LB, and setting it to −∞.

After initialization is completed, the algorithm begins the branching and pruning process.

Each iteration begins in lines 5–6 by choosing a node having the highest upper bound on the objective,

dvs , and removing that node from the list of nodes to search. Line 7 checks whether the incumbent

solution is within ε of dvs ; if so, then all remaining nodes are fathomed and the algorithm returns

the incumbent solution. Otherwise, line 8 checks if this node achieves an objective better than

the current best lower bound, using X∗(tv) defined as in (4.4) and z(X∗(tv)) computed using the

method of [33] described in Section 4.1. If z(X∗(tv)) > LB, then this node’s objective is better than

the incumbent, and lines 9–10 establish this node as the new incumbent. Next, line 11 effectively

fathoms this node if dvs ≤ LB + ε. Otherwise, line 12 adds two child nodes. Branching occurs on an

arc having the greatest gap between the interpolated cost and true expected cost, chosen in line 13.

Lines 14–15 establish two children: One child is restricted by ta ≤ t∗a, and the other is restricted

by ta ≥ t∗a. Finally, problem (12) is solved for each child, and the algorithm reiterates. When no

unpruned nodes remain in the tree, the algorithm terminates in line 16, returning the incumbent

solution.

99

Algorithm A.6: Spatial Branch and Bound Algorithm

Input: G = (N ,A): A directed graph
s, t ∈ N : Source and terminal nodes
b ∈ Z+: Interdiction budget
{ca : {0, . . . , b} → R+}a∈A: Convex cost functions for each a ∈ A
ε > 0: Optimality tolerance parameter.

Output: X ∈ [0, 1]b×m: An optimal interdiction strategy
1 NodeList← {r}
2 tr ← {0}m; tr ← {b}m; (tr,dr)← Solve

(
P (tr, tr)

)
3 LB← −∞
4 while NodeList 6= ∅ do
5 n← arg maxk∈NodeList{dks}
6 NodeList← NodeList \ {n}
7 if dvs > LB + ε then return X∗(tIncumbent)
8 if z(X∗(tv)) > LB then
9 Incumbent← n

10 LB← z(X∗(tv))

11 if dvs > LB + ε then
12 NodeList← NodeList ∪ {c1, c2}

13 a← arg maxα∈A

{
cα

(
tvα

)
+

(
tvα−t

v
α

tvα−tvα

)(
cα
(
tvα
)
− cα

(
tvα

))
− E (cα(τ)|x∗(tvα))

}
14 tc1 ← tv; tc1 ←

[
tv1, . . . , t

v
a−1, t

∗
a, t

v
a+1, . . . , t

v
m

]
; (tc1 ,dc1)← Solve

(
P (tc1 , tc1)

)
15 tc2 ←

[
tv1, . . . , t

v
a−1, t

∗
a, t

v
a+1, . . . , t

v
m

]
; tc2 ← tv; (tc2 ,dc2)← Solve

(
P (tc2 , tc2)

)
16 return X∗(tIncumbent)

100

A.3.2 Lazy Construction

Algorithm A.7 describes a “lazy” approach to implementing SPIP-RS algorithms in this

dissertation. In each iteration, the algorithm directs the solver to examine a subgraph of the input

graph. Using the returned interdiction strategy, the algorithm then identifies a shortest path on the

original graph. If the shortest path is contained in the subgraph examined in the current iteration,

then the algorithm terminates. Otherwise, the algorithm adds the arcs from the shortest path to

generate a new subgraph, and the algorithm reiterates.

Line 1 initializes an empty subgraph arc set, A0, and an initial solution, X0 = [0]. Lines

2–8 give the main loop. Each iteration, k ∈ {1, 2, . . .} begins in lines 3 and 4 by setting a vector, w,

of expected arc costs given by the previous iteration’s strategy, Xk−1. Line 5 finds the follower’s

shortest expected-cost path on the full graph, G. If the shortest path uses only arcs contained in

the previous iteration’s subgraph, Ak−1, then line 6 terminates the algorithm. Otherwise, line 7

generates a new arc set, Ak, and line 8 solves the SPIP-RS problem on the subgraph induced by

Ak to give an updated solution, X. In our implementation, we allowed the solvers to “warm start”

in each iteration with the previous solution, Xk−1. Finally, lines 9–10 convert X ∈ [0, 1]b×|A
k| to

Xk ∈ [0, 1]b×m by adding zero-columns for arcs not in Ak.

Algorithm A.7: Lazy Algorithm

Input: G = (N ,A): A directed graph
b ∈ Z+: Interdiction budget
{ca : {0, . . . , b} → R+}a∈A: Non-decreasing cost functions for each a ∈ A

Dependencies: Dijkstra(G, u, v,w): Returns set of arcs representing a shortest
u→ v path in G, given arc costs w ∈ Rm+
Solve(G, b): Returns an optimal (or near-optimal) solution to the
SPIP-RS represented by G and budget b

Output: X ∈ [0, 1]b×m: A (near-)optimal interdiction strategy
1 A0 ← {}; X0 ← [0]b×m

2 for k ∈ {1, 2, . . .} do
3 for a ∈ A do

4 wa ←
∑b
t=0 ca(t)Πb(xk−1

a , t)

5 P k ← Dijkstra(G, s, t,w)

6 if P k ⊆ Ak−1 then return Xk−1

7 Ak ← Ak−1 ∪ P k
8 X ← Solve(G(N ,Ak), b)
9 for a ∈ A do

10 if a ∈ Ak then xka ← xa else xka ← [0]b

101

Bibliography

[1] M. Alves and J. Cĺımaco. An interactive reference point approach for multiobjective mixed-
integer programming using branch-and-bound. European Journal of Operational Research,
124(3):478–494, 2000.

[2] B. Bahamondes, J. Correa, J. Matuschke, and G. Oriolo. Adaptivity in network interdiction. In
S. Rass, B. An, C. Kiekintveld, F. Fang, and S. Schauer, editors, Decision and Game Theory for
Security, Security and Cryptology (vol. 10575), pages 40–52, Vienna, Austria, 2017. Springer
Berlin / Heidelberg.

[3] M. O. Ball, B. L. Golden, and R. V. Vohra. Finding the most vital arcs in a network. Operations
Research Letters, 8(2):73–76, 1989.

[4] A. Bar-Noy, S. Khuller, and B. Schieber. The complexity of finding most vital arcs and nodes.
Technical Report UMIACS-TR-95-96, Univ. of Maryland Institute for Advanced Computer
Studies, College Park, MD, 1995.

[5] H. Bayrak and M. D. Bailey. Shortest path network interdiction with asymmetric information.
Networks, 52(3):133–140, 2008.

[6] P. Belotti, B. Soylu, and M. M. Wiecek. A branch-and-bound algorithm for biobjective mixed
integer programs. Optimization Online, 2013.

[7] A. Ben-Tal, L. El-Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University Press,
Princeton, NJ, 2009.

[8] J. R. Birge and F. V. Louveaux. Introduction to Stochastic Programming. Springer, New York,
1997.

[9] R. Borndörfer, J. Buwaya, G. Sagnol, and E. Swarat. Optimizing toll enforcement in trans-
portation networks: a game-theoretic approach. Electronic Notes in Discrete Mathematics,
41:253–260, 2013.

[10] J. S. Borrero, O. A. Prokopyev, and D. Sauré. Sequential shortest path interdiction with
incomplete information. Decision Analysis, 13(1):68–98, 2015.

[11] V. Bowman Jr. On the relationship of the Tchebycheff norm and the efficient frontier of
multiple-criteria objectives. In H. Thiriez and S. Zionts, editors, Multiple Criteria Decision
Making: Lecture Notes in Economics and Mathematical Systems, volume 130, pages 76–86.
Springer, Berlin, Heidelberg, 1976.

[12] K. Bringmann. Bringing order to special cases of Klee’s measure problem. In K. Chatterjee and
J. Sgall, editors, Mathematical Foundations of Computer Science, volume 8087, pages 207–218.
Springer, Berlin, Heidelberg, 2013.

102

[13] R. H. Byrd, J. Nocedal, and R. A. Waltz. KNITRO: An integrated package for nonlinear
optimization. In G. di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization, pages
35–59. Springer-Verlag, 2006.

[14] K. J. Cormican, D. P. Morton, and R. K. Wood. Stochastic network interdiction. Operations
Research, 46(2):184–197, 1998.

[15] J. Correa, T. Harks, V. J. C. Kreuzen, and J. Matuschke. Fare evasion in transit networks.
Operations Research, 65(1):165–183, 2017.

[16] G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal
of Complex Systems, 1695, 2006.

[17] K. Dächert, J. Gorski, and K. Klamroth. An augmented weighted Tchebycheff method with
adaptively chosen parameters for discrete bicriteria optimization problems. Computers and
Operations Research, 39(12):2929–2943, 2012.

[18] K. Dächert, K. Klamroth, R. Lacour, and D. Vanderpooten. Efficient computation of the search
region in multi-objective optimization. European Journal of Operational Research, 260(3):841–
855, 2017.

[19] E. P. Durbin. An Interdiction Model of Highway Transportation. Rand Corporation, 1966.

[20] M. Ehrgott. Multicriteria Optimization. Springer, Berlin, 2nd edition, 2005.

[21] M. Ehrgott and S. Ruzika. Improved ε-constraint method for multiobjective programming.
Journal of Optimization Theory and Applications, 138(3):375–396, 2008.

[22] P. Erdös and A. Rényi. On random graphs. Publicationes Mathematicae, 6:290–297, 1959.

[23] J. E. Falk and R. M. Soland. Algorithm for separable nonconvex programming problems.
Management Science, 15(9):550–569, 1969.

[24] D. R. Fulkerson and G. C. Harding. Maximizing minimum source-sink path subject to a budget
constraint. Mathematical Programming, 13(1):116–118, 1977.

[25] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman & Co., Princeton, NJ, 1979.

[26] V. Goel and I. E. Grossmann. A class of stochastic programs with decision dependent uncertainty.
Mathematical Programming, 106(2):355–394, 2006.

[27] Y. Haimes, L. Lasdon, and D. Wismer. On a bicriterion formulation of the problem of integrated
system identification and system optimizations. IEEE Transactions on Systems, Man, and
Cybernetics, 1:296–297, 1971.

[28] H. W. Hamacher, C. R. Pederson, and S. Ruzika. Finding representative systems for discrete
bicriterion optimization problems. Operations Research Letters, 35(3):336–344, 2007.

[29] H. Held, R. Hemmecke, and D. L. Woodruff. A decomposition algorithm applied to planning
the interdiction of stochastic networks. Naval Research Logistics, 52(4):321–328, 2005.

[30] H. Held and D. L. Woodruff. Heuristics for multi-stage interdiction of stochastic networks.
Journal of Heuristics, 11(6):483–500, 2005.

[31] R. Hemmecke, R. Schultz, and D. L. Woodruff. Interdicting stochastic networks. In D. L.
Woodruff, editor, Network Interdiction and Stochastic Integer Programming, pages 71–80. Kluwer
Academic Publishers, Boston, MA, 2003.

103

[32] R. Hites, Y. De Smet, N. Risse, M. Salazar-Neumann, and P. Vincke. About the applicability of
MCDA to some robustness problems. European Journal of Operational Research, 174(1):322–332,
2006.

[33] T. Holzmann and J. C. Smith. Optimizing randomized interdiction strategies in shortest path
interdiction problems. In H. Romeijn, A. Schaefer, and R. Thomas, editors, Proceedings of the
2019 IISE Annual Conference, 2019.

[34] C.-L. Hwang and A. Masud. Multiple objective decision making – methods and applications: A
state-of-the-art survey. In M. Beckman and H. Künzi, editors, Lecture Notes in Economics and
Mathematical Systems, volume 164. Springer-Verlag, New York, 1979.

[35] D. A. Iancu and N. Trichakis. Pareto efficiency in robust optimization. Management Science,
60(1):130–147, 2014.

[36] E. Israeli and R. K. Wood. Shortest-path network interdiction. Networks, 40(2):97–111, 2002.

[37] U. Janjarassuk and J. Linderoth. Reformulation and sampling to solve a stochastic network
interdiction problem. Networks, 52(3):120–132, 2008.

[38] I. Kaliszewski. A modified weighted Tchebycheff metric for multiple objective programming.
Computers and Operations Research, 14(4):315–323, 1987.

[39] I. Kaliszewski. Using trade-off information in decision-making algorithms. Computers and
Operations Research, 27(2):161–182, 2000.

[40] P. Kall and S. W. Wallace. Stochastic Programming. John Wiley and Sons, Chichester, UK,
1994.

[41] G. Kirlik and S. Sayin. A new algorithm for generating all nondominated solutions of multiobjec-
tive discrete optimization problems. European Journal of Operational Research, 232(3):479–488,
2014.

[42] K. Klamroth, E. Köbis, A. Schöbel, and C. Tammer. A unified approach for different concepts
of robustness and stochastic programming via non-linear scalarizing functionals. Optimization,
62(5):649–671, 2013.

[43] K. Klamroth, E. Köbis, A. Schöbel, and C. Tammer. A unified approach to uncertain optimization.
European Journal of Operational Research, 260(2):403–420, 2017.

[44] K. Klamroth, R. Lacour, and D. Vanderpooten. On the representation of the search region in
multi-objective optimization. European Journal of Operational Research, 245(3):767–778, 2015.

[45] K. Klamroth, J. rgen Tind, and M. M. Wiecek. Unbiased approximation in multicriteria
optimization. Mathematical Methods of Operations Research, 56(3):413–437, 2002.

[46] D. Klein and E. Hannan. An algorithm for the multiple objective linear programming problem.
European Journal of Operational Research, 9(4):378–385, 1982.

[47] R. A. Konrad, A. C. Trapp, T. M. Palmbach, and J. S. Blom. Overcoming human trafficking
via operations research and analytics: Opportunities for methods, models, and applications.
European Journal of Operational Research, 259(1):733–745, 2017.

[48] M. Laumanns, L. Thiele, and Z. Eckart. An efficient, adaptive parameter variation scheme
for metaheuristics based on the epsilon-constraint method. European Journal of Operational
Research, 169(3):932–942, 2006.

104

[49] B. Lokman and M. Köksalan. Finding all nondominated points of multi-objective integer
programs. Journal of Global Optimization, 57(2):347–365, 2013.

[50] L. Lozano and J. C. Smith. A backward sampling framework for interdiction problems with
fortification. INFORMS Journal on Computing, 29(1):123–139, 2017.

[51] B. J. Lunday and H. D. Sherali. A dynamic network interdiction problem. INFORMATICA,
21(4):553–574, 2010.

[52] B. J. Lunday and H. D. Sherali. Network interdiction to minimize the maximum probability of
evasion with synergy between applied resources. Annals of Operations Research, 196(1):411–442,
2012.

[53] G. Mavrotas. Effective implementation of the ε-constraint method in multi-objective mathemat-
ical programming problems. Applied Mathematics and Computation, 213(2):455–465, 2009.

[54] G. Mavrotas and D. Diakoulaki. A branch and bound algorithm for mixed zero-one multiple
objective linear programming. European Journal of Operational Research, 107(3):530–541, 1998.

[55] G. Mavrotas and D. Diakoulaki. Multi-criteria branch and bound: A vector maximization
algorithm for mixed 0-1 multiple objective linear programming. Applied Mathematics and
Computation, 171(1):53–71, 2005.

[56] G. Mavrotas and K. Florios. An improved version of the augmented ε-constraint method
(AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems.
Applied Mathematics and Computation, 219(18):9652–9669, 2013.

[57] C. L. Monma and J. B. Sidney. Sequencing with series-parallel precedence constraints. Mathe-
matics of Operations Research, 4(3):215–224, 1979.

[58] D. P. Morton, F. Pan, and K. J. Saeger. Models for nuclear smuggling interdiction. IIE
Transactions, 39(1):3–14, 2007.

[59] W. odzimierz Ogryczak. Multiple criteria optimization and decisions under risk. Control and
Cybernetics, 31(4):975–1003, 2002.

[60] M. Özlen and M. Azizoğlu. Multi-objective integer programming: A general approach for
generating all non-dominated solutions. European Journal of Operational Research, 199(1):25–35,
2009.

[61] M. Özlen, B. A. Burton, and C. A. G. MacRae. Multi-objective integer programming: An
improved recursive algorithm. Journal of Optimization Theory and Applications, 160(2):470–482,
2014.

[62] O. Özpeynirci and M. Köksalan. An exact algorithm for finding extreme supported nondominated
points of multiobjective mixed integer programs. Management Science, 56(12):2302–2315, 2010.

[63] F. Pan and D. P. Morton. Minimizing a stochastic maximum-reliability path. Networks,
52:111–119, 2008.

[64] P. Perny, O. Spanjaard, and L.-X. Storme. A decision-theoretic approach to robust optimization
in multivalued graphs. Annals of Operations Research, 147(1):317–341, 2006.

[65] A. Przybylski, X. Gandibleux, and M. Ehrgott. Two-phase algorithms for the bi-objective
assignment problem. European Journal of Operational Research, 185(2):509–533, 2008.

105

[66] A. Przybylski, X. Gandibleux, and M. Ehrgott. A two-phase method for multi-objective integer
programming and its application to the assignment problem with three objectives. Discrete
Optimization, 7(3):149–165, 2010.

[67] A. Raith and M. Ehrgott. A two-phase algorithm for the biobjective integer minimum cost flow
problem. Computers and Operations Research, 36(6):1945–1954, 2009.

[68] R. Ramos, S. Alonso, J. Sicilia, and C. Gonzáles. The problem of the optimal biobjective
spanning tree. European Journal of Operational Research, 111(3):617–628, 1998.

[69] C. M. Rocco and J. E. Ramirez-Marquez. A bi-objective approach for shortest-path network
interdiction. Computers and Industrial Engineering, 59(2):232–240, 2010.

[70] C. M. Rocco, J. E. Ramirez-Marquez, and D. E. Salazar. Bi and tri-objective optimization
in the deterministic network interdiction problem. Reliability Engineering and System Safety,
95(8):887–896, 2010.

[71] J. O. Royset and R. K. Wood. Solving the bi-objective maximum-flow network-interdiction
problem. INFORMS Journal on Computing, 19(2):175–184, 2007.

[72] J. Salmerón. Deception tactics for network interdiction: A multiobjective approach. Networks,
60(1):45–58, 2012.

[73] S. Sayin and P. Kouvelis. The multiobjective discrete optimization problem: a weighted
min-max two-stage optimization approach and a bicriteria algorithm. Management Science,
51(10):1572–1581, 2005.

[74] B. Schandl, K. Klamroth, and M. M. Wiecek. Norm-based approximation in multicriteria
programming. Computers and Mathematics with Applications, 44(7):925–942, 2002.

[75] A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lectures in Stochastic Programming: Modeling
and Theory. SIAM, Philadelphia, PA, 2009.

[76] J. C. Smith, M. Prince, and J. Geunes. Modern network interdiction problems and algorithms.
In P. M. Pardalos, D.-Z. Du, and R. Graham, editors, Handbook of Combinatorial Optimization,
pages 1949–1987. Springer, New York, 2nd edition, 2013.

[77] Y. Song and S. Shen. Risk-averse shortest path interdiction. INFORMS Journal on Computing,
28(3):527–539, 2016.

[78] S. Steiner and T. Radzik. Computing all efficient solutions of the biobjective minimum spanning
tree problem. Computers and Operations Research, 35(1):198–211, 2008.

[79] R. Steuer. Multiple Criteria Optimization: Theory Computation and Application. John Wiley
and Sons, New York, 1986.

[80] R. Steuer and E. Choo. An interactive weighted Tchebycheff procedure for multiple objective
programming. Mathematical Programming, 26(3):326–344, 1983.

[81] T. Stidsen, K. A. Andersen, and B. Damman. A branch and bound algorithm for a class of
biobjective mixed integer programs. Management Science, 60(4):1009–1032, 2014.

[82] K. M. Sullivan, D. P. Morton, F. Pan, and J. C. Smith. Securing a border under asymmetric
information. Naval Research Logistics, 61(2):91–100, 2014.

[83] W. A. Sutherland. Introduction to Metric and Topological Spaces. Oxford University Press, New
York, 1975.

106

[84] J. Sylva and A. Crema. A method for finding the set of non-dominated vectors for multiple
objective integer linear programs. European Journal of Operational Research, 158(1):46–55,
2004.

[85] E. Ulungu and J. Teghem. Multi-objective combinatorial optimization problems: A survey.
Journal of Multi-Criteria Decision Analysis, 3(2):83–104, 1994.

[86] J. Valdes. Parsing flowcharts and series-parallel graphs. Technical Report STAN-CS-78-682,
Stanford University, 1978.

[87] T. Vincent, S. Florian, S. Ruzika, and A. Przybylski. Multiple objective branch and bound
for mixed 0-1 linear programming: Corrections and improvements for the biobjective case.
Computers and Operations Research, 40(1):498–509, 2013.

[88] M. Visée, J. Teghem, M. Pirlot, and E. Ulungu. Two-phases method and branch and bound
procedures to solve the bi-objective knapsack problem. Journal of Global Optimization, 12(2):139–
155, 1998.

[89] T. W. Jonsbraten, R. J-b Wets, and D. Woodruff. A class of stochastic programs with decision
dependent random elements. Annals of Operations Research, 82:83–106, 1998.

[90] A. Washburn and R. K. Wood. Two-person zero-sum games for network interdiction. Operations
Research, 43(2):243–251, 1995.

[91] D. White. The set of efficient solutions for multipe objective shortest path problems. Computers
and Operations Research, 9(2):101–107, 1982.

[92] A. Wierzbicki. The use of reference objectives in multiobjective optimization. In G. Fandel
and T. Gal, editors, Multiple Criteria Decision Making Theory and Application, pages 468–486.
Springer, Berlin, 1980.

[93] R. D. Wollmer. Algorithms for targeting strikes in a lines-of-communication network. Operations
Research, 18(3):497–515, 1970.

[94] R. K. Wood. Deterministic network interdiction. Mathematical and Computer Modelling,
17(2):1–18, 1993.

[95] W. Zhang and M. Reimann. A simple augmented ε-constraint method for multi-objective
mathematical integer programming problems. European Journal of Operational Research,
234(1):15–24, 2014.

107

	Clemson University
	TigerPrints
	8-2019

	Network Interdiction under Uncertainty
	Timothy Holzmann
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background and Literature Review
	Contribution and Motivation
	Dissertation Organization

	Modified Augmented Weighted Tchebychev Scalarizations
	Chapter Introduction
	Algorithm
	Algorithm Proof
	Example
	Computational Study
	Conclusion

	The Shortest Path Interdiction Problem with Arc Improvement Recourse
	Problem description
	Transforming the SPIP-I into a SPIP instance
	Recursion algorithm for series-parallel graphs
	Improved recursive algorithm
	Computational study
	Conclusion

	The shortest Path Interdiction Problem with Randomized Strategies
	Problem Statement and Background
	The Convex Case
	The Concave Case
	Sample Average Approximation for General SPIP-RS
	Computational Study
	Conclusion and Future Work

	Appendices
	Algorithms

	Bibliography

