15 research outputs found

    Development of Human Fall Detection System using Joint Height, Joint Velocity, and Joint Position from Depth Maps

    Get PDF
    Human falls are a major health concern in many communities in today’s aging population. There are different approaches used in developing fall detection system such as some sort of wearable, ambient sensor and vision based systems. This paper proposes a vision based human fall detection system using Kinect for Windows. The generated depth stream from the sensor is used in the proposed algorithm to differentiate human fall from other activities based on human Joint height, joint velocity and joint positions. From the experimental results our system was able to achieve an average accuracy of 96.55% with a sensitivity of 100% and specificity of 95

    Online Fall Detection using Recurrent Neural Networks

    Full text link
    Unintentional falls can cause severe injuries and even death, especially if no immediate assistance is given. The aim of Fall Detection Systems (FDSs) is to detect an occurring fall. This information can be used to trigger the necessary assistance in case of injury. This can be done by using either ambient-based sensors, e.g. cameras, or wearable devices. The aim of this work is to study the technical aspects of FDSs based on wearable devices and artificial intelligence techniques, in particular Deep Learning (DL), to implement an effective algorithm for on-line fall detection. The proposed classifier is based on a Recurrent Neural Network (RNN) model with underlying Long Short-Term Memory (LSTM) blocks. The method is tested on the publicly available SisFall dataset, with extended annotation, and compared with the results obtained by the SisFall authors.Comment: 6 pages, ICRA 201

    A Novel Algorithm for Human Fall Detection using Height, Velocity and Position of the Subject from Depth Maps

    Get PDF
    Human fall detection systems play an important role in our daily life, because falls are the main obstacle for elderly people to live independently and it is also a major health concern due to aging population. Different approaches are used to develop human fall detection systems for elderly and people with special needs. The three basic approaches include some sort of wearable devices, ambient based devices or non-invasive vision-based devices using live cameras. Most of such systems are either based on wearable or ambient sensor which is very often rejected by users due to the high false alarm and difficulties in carrying them during their daily life activities. This paper proposes a fall detection system based on the height, velocity and position of the subject using depth information from Microsoft Kinect sensor. Classification of human fall from other activities of daily life is accomplished using height and velocity of the subject extracted from the depth information. Finally position of the subject is identified for fall confirmation. From the experimental results, the proposed system was able to achieve an average accuracy of 94.81% with sensitivity of 100% and specificity of 93.33%

    Development of a human fall detection system based on depth maps

    Get PDF
    Assistive care related products are increasingly in demand with the recent developments in health sector associated technologies. There are several studies concerned in improving and eliminating barriers in providing quality health care services to all people, especially elderly who live alone and those who cannot move from their home for various reasons such as disable, overweight. Among them, human fall detection systems play an important role in our daily life, because fall is the main obstacle for elderly people to live independently and it is also a major health concern due to aging population. The three basic approaches used to develop human fall detection systems include some sort of wearable devices, ambient based devices or non-invasive vision based devices using live cameras. Most of such systems are either based on wearable or ambient sensor which is very often rejected by users due to the high false alarm and difficulties in carrying them during their daily life activities. Thus, this study proposes a non-invasive human fall detection system based on the height, velocity, statistical analysis, fall risk factors and position of the subject using depth information from Microsoft Kinect sensor. Classification of human fall from other activities of daily life is accomplished using height and velocity of the subject extracted from the depth information after considering the fall risk level of the user. Acceleration and activity detection are also employed if velocity and height fail to classify the activity. Finally position of the subject is identified for fall confirmation or statistical analysis is conducted to verify the fall event. From the experimental results, the proposed system was able to achieve an average accuracy of 98.3% with sensitivity of 100% and specificity of 97.7%. The proposed system accurately distinguished all the fall events from other activities of daily life

    Fall detection using history triple features

    Full text link
    Accurate identification and timely handling of involuntary events, such as falls, plays a crucial part in effective as-sistive environment systems. Fall detection, in particular, is quite critical, especially in households of lonely elderly people. However, the task of visually identifying a fall is challenging as there is a variety of daily activities that can be mistakenly characterized as falls. To tackle this issue, various feature extraction methods that aim to effectively distinguish unintentional falls from other everyday activi-ties have been proposed. In this study, we examine the capability of the History Triple Features technique based on Trace transform, to provide noise robust and invariant to different variations features for the spatiotemporal represen-tation of fall occurrences. The aim is to effectively detect falls among other household-related activities that usually take place indoors. For the evaluation of the algorithm the video sequences from two realistic fall detection datasets of different nature have been used. One is constructed using a ceiling mounted depth camera and the other is constructed using an RGB camera placed on arbitrary positions in dif-ferent rooms. After forming the feature vectors, we train a support vector machine using a radial basis function kernel. Results show a very good response of the algorithm achiev-ing 100 % on both datasets indicating the suitability of the technique to the specific task. 1

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing
    corecore