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ABSTRACT 

Assistive care related products are increasingly in demand with the recent 

developments in health sector associated technologies. There are several studies 

concerned in improving and eliminating barriers in providing quality health care 

services to all people, especially elderly who live alone and those who cannot move 

from their home for various reasons such as disable, overweight. Among them, human 

fall detection systems play an important role in our daily life, because fall is the main 

obstacle for elderly people to live independently and it is also a major health concern 

due to aging population. The three basic approaches used to develop human fall 

detection systems include some sort of wearable devices, ambient based devices or 

non-invasive vision based devices using live cameras. Most of such systems are either 

based on wearable or ambient sensor which is very often rejected by users due to the 

high false alarm and difficulties in carrying them during their daily life activities. Thus, 

this study proposes a non-invasive human fall detection system based on the height, 

velocity, statistical analysis, fall risk factors and position of the subject using depth 

information from Microsoft Kinect sensor. Classification of human fall from other 

activities of daily life is accomplished using height and velocity of the subject 

extracted from the depth information after considering the fall risk level of the user. 

Acceleration and activity detection are also employed if velocity and height fail to 

classify the activity. Finally position of the subject is identified for fall confirmation 

or statistical analysis is conducted to verify the fall event. From the experimental 

results, the proposed system was able to achieve an average accuracy of 98.3% with 

sensitivity of 100% and specificity of 97.7%. The proposed system accurately 

distinguished all the fall events from other activities of daily life. 
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ABSTRAK 

Produk-produk berkaitan bantuan penjagaan semakin diminati ramai dengan 

perkembangan terkini dalam sektor teknologi berkaitan dengan kesihatan. Terdapat 

beberapa kajian yang berkaitan untuk meningkatkan dan menghapuskan halangan 

dalam menyediakan perkhidmatan penjagaan berkualiti kepada semua orang, 

terutamanya warga tua yang hidup berseorangan dan orang yang tidak boleh bergerak 

dari rumah mereka kerana atas pelbagai sebab seperti lumpuh, berat badan berlebihan. 

Diantaranya, sistem pengesanan orang jatuh memainkan peranan penting dalam 

kehidupan seharian kita, kerana jatuh adalah halangan utama bagi orang tua untuk 

hidup secara bebas dan ia juga merupakan masalah kesihatan utama bagi penduduk 

yang semakin tua. Tiga pendekatan asas digunakan untuk membangunkan sistem 

pengesanan orang jatuh termasuk beberapa jenis peranti yang boleh dipakai, peranti 

berasaskan ambien atau peranti berasaskan penglihatan tanpa invasif menggunakan 

kamera secara langsung. Kebanyakan sistem sedemikian sama ada berdasarkan kepada 

sensor yang boleh dipakai atau ambien sering ditolak oleh pengguna disebabkan oleh 

nisbah penggeraan palsu yang tinggi dan kesukaran untuk membawa alat tersebut 

dalam aktiviti harian mereka. Oleh itu, kajian ini mencadangkan sistem pengesanan 

orang jatuh bukan invasif berdasarkan ketinggian, halaju, analisis statistik, faktor 

risiko jatuh dan kedudukan subjek menggunakan maklumat mendalam dari sensor 

Microsoft Kinect. Pengkelasan orang jatuh dari aktiviti lain dalam kehidupan harian 

dapat dicapai dengan menggunakan ketinggian dan halaju subjek yang diekstrak dari 

maklumat mendalam setelah mempertimbangkan tahap risiko jatuh pengguna. Pecutan 

dan pengesanan aktiviti juga digunakan jika halaju dan ketinggian gagal untuk 

mengelaskan aktiviti. Akhirnya kedudukan subjek dapat dikenal pasti bagi pengesahan 

jatuh atau menjalankan analisis statistik untuk mengesahkan kejadian jatuh. Dari hasil 

percubaan, sistem yang dicadangkan dapat mencapai 98.3% purata ketepatan dengan 

100% kepekaan dan 97.7% kekhususan. Sistem yang dicadangkan dapat membezakan 

dengan tepat semua kejadian kejatuhan dari aktiviti lain dalam kehidupan seharian.
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CHAPTER 1  

INTRODUCTION 

This chapter gives a general background of the investigated problems in the proposed 

research topic. The motivations for the research being conducted were briefly 

explained. The objectives and the scopes of the study are also discussed along with the 

significance of this research. 

1.1 Background Study  

Assistive technology or adaptive technology is an emerging research area since daily 

living assistance are very often needed for many people in today’s aging populations 

including disabled, overweight, obese and elderly people. The main purpose of 

assistive technology is to provide better living and health care to those in need, 

especially elderly people who live alone. It is mainly aimed at allowing them to live 

independently in their own home as long as possible, without having to change their 

life style.  

In order, to provide better living for them, it is important to have continuous 

human monitoring systems in their home to inform the health care representatives of 

any emergency attendance. Among such monitoring systems, fall detection systems 

are increasing in interest since statistics (Baker & Harvey, 1985; Griffiths, Rooney, & 

Brock, 2005) has shown that fall is the main cause of injury related death for seniors 

aged 79 (Kannus et al., 2005; Stevens et al., 2006) or above and it is the second 

common source of injury related (unintentional) death for all ages (A. Bourke, O’brien, 

& Lyons, 2007; Kangas et al., 2008). Furthermore, fall is the biggest threat among all 

other incidents to elderly and those people who are in need of support (Almeida, 

Zhang, & Liu, 2007; Gostynski, 1990; Gurley et al., 1996; Lin, Chiou, & Cohen, 1996; 
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C. J. Lord & Colvin, 1991; S. R. Lord et al., 2007; Sadigh et al., 2004; Salvà et al., 

2004; Stevens et al., 2006; Teasell et al., 2002; Tinetti & Williams, 1997). 

Accordingly, fall can have severe consequences for elderly people, especially if not 

attended in a short period of time (Shany et al., 2012). Similarly, unintentional human 

fall represents the main source of morbidity and mortality among elderly (Harrington 

et al., 2010). 

Hence, accurate and autonomous human fall detection systems are very 

important to support the elderly people to live independently. Since it had been proved 

that the medical consequences of a fall are highly dependent on the response and rescue 

time of the medical staff (Mubashir, Shao, & Seed, 2013), which is, in fact, only 

possible with an accurate and reliable fall detection systems that can provide fall alerts. 

Such systems are also vitally important, since there may be a case where someone 

losses consciousness or are unable to call for help after a fall event. 

Therefore, highly accurate fall detection systems can significantly improve the 

living of elderly people and enhance the general health care services too. There has 

been plenty of researches conducted in this area to develop systems and algorithms for 

enhancing the functional ability of the elderly and patients (Mubashir et al., 2013). 

This in fact, led to the improvement in the technologies used to make such systems 

and thus enhanced the detection ratio to make such systems adaptable and acceptable. 

The confidential levels of such systems are also increased, leading to reduction in 

labour cost in terms of presence of medical staff at all the times looking after the 

elderly people. This implies that an accurate human fall detection system could reduce 

the number or the need of medical staffs looking after the elderly people. 

Recent researches conducted on human fall monitoring approaches for elderly 

people was categorized into five classes (Arshad et al., 2014). These classes (wearable 

sensor based, wireless based, ambiance sensor based, vision and floor sensor/electric 

field sensor based approaches) distinguish, the different fall detection methods 

employed. This categorization of fall detections methods also reflects the 

characteristics of the movement that leads to fall.  Therefore, it is also important to 

recognize those characteristics of movement in order to understand the existing 

algorithms used to detect falls and also to device new algorithms to enhance the 

performance of such systems.  

The various methods that has been used to detect human fall such as using a 

camera to identify a human fall posture or using various sensors to detect fall, shares 
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some common features. Even though different sensors and approaches are used to 

identify a fall event, from the analysis, the five categories of fall detection methods 

was re-divided into three main approaches (Luo & Hu, 2004). These three categories 

are further divided into different sections depending on the sensor and algorithm used 

to distinguish different detection methods. The three basic approaches are wearable 

based device, camera based systems and ambience based devices (Luo & Hu, 2004; 

Mubashir et al., 2013; Yu, 2008) as shown in Figure 1.1. 

 

 

Figure 1.1: Hierarchy of fall detection methods 

 

As shown in Figure 1.1, wearable based device is further divided into two sub-

categories based on the fall detection methods used. They are inactivity (motion based) 

and posture based approaches. Similarly, ambient / fusion based devices are divided 

into two types; those that used floor sensors or electric field and those that used posture 

based sensors to detect fall. Camera or vision based approach is divided into four 

different sub-categories.  

Wearable based devices use accelerometers and gyroscopes embedded into 

garments or any wearing gadgets such as belts, wrist watches, necklace or jacks. The 

basic concept used to classify human fall is either identifying the posture or through 

activity/inactivity detection. Ambient/fusion based devices is a type of non-invasive 

and non-vision based approach. It either use the concept of posture identification 

through various sensors or uses floor vibration or electric sensors to detect the subject 

hitting the sensor. On the other hand, vision based (non-invasive) approach uses live 
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cameras or multiples of such cameras to accurately detect human falls through utilizing 

the analytical and machine learning methods based on a computer vision model. They 

utilized various approaches to classify human fall including the changes in body shape 

between frames, activity/inactivity detection of the subject, three-dimensional (3D) 

analysis of the subject using more than one camera and generating a depth map of the 

scene with the help of depth sensors. Except the depth sensor based method, the other 

types in vision based approaches use RGB (Red Green Blue) cameras and therefore 

they are subject to rejection from user’s due to privacy concerns. They are also rejected 

due to the high cost of the systems, installation and camera calibration issues. A depth 

image based approach could solve the issues arising from video based systems. Studies 

representing this approach can also be divided into three types reflecting the approach 

used. The first category represents those works that employed joint measurements or 

used human joint movements from depth information to detect fall. The second 

category includes the works that depended only on depth data with any supervised and 

unsupervised machine learning to classify human fall from other activities of daily life 

and the third category includes studies that make use of wearable devices along with 

the depth sensor. The proposed algorithm is only based on the depth image and uses a 

statistical model with joint measurement to generate potential fall alert and to classify 

human fall from other activities of daily life.  

1.2 Problem Statement 

Accurate human fall detection devices are highly demanding, because it is helpful in 

changing the life of elderly people and patients with special needs. Among such 

devices, wearable products with embedded sensors and non-wearable ambient based 

devices are very cheap and are readily available. However, due to the high false alarm 

ratio and wearing difficulties (difficulties in carrying them during their daily life 

activities), it is very often rejected by the users. On the other hand, non-wearable 

devices such as floor sensor based products also generates lots of false alarms by 

triggering normal daily activities or sensing the pressure of any objects as human fall. 

As far as video based solutions are concerned they are accurate than the other two 

approaches, but it possesses its own drawbacks such as the high cost of the systems, 

time required for installation and camera calibration are common issues. Additionally, 
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these systems require adequate lighting for accurate human extraction. Furthermore, 

the lack of depth information used in such systems also leads to generation of 

unnecessary false alarm. At the same time, sunlight interferences and not preserving 

the privacy of users are the major concern with video based systems.  

1. A depth image based approach could solve the issues arising from video based 

systems, therefore this study addresses to the concerns arising from such 

systems. Most of the available depth map based systems are not fully non-

invasive to cater the requirements. Some of the studies, still make use of 

wearable accelerometers or other such devices to identify any potential fall 

activity. The depth images were simply used to confirm the fall event rather 

than fully utilizing capabilities of the depth sensor. While others that used only 

depth images, were dependent on the skeleton data or extracted human joint 

measurements and does not fully take care of the response time and degradation 

of person segmentation due to obstacles. Some of them use machine learning 

which increases the computational costs and the complexity of the fall 

detection algorithm. The performance of such systems is also subject to the 

processing time required, processing resources consumed and the response 

time of the internal potential fall alert mechanism to start the machine learning 

classification.  

2. Furthermore, they use a single fixed procedure to detect human fall event (a 

single algorithm to detect fall irrespective of the user and the environment), 

while the nature of the fall, the chances of falls and the consequences of falls 

will differ from people to people. It also differs depending on the environment 

such as hospital setting, community setting or nursing homes.  The differences 

of nature of falls and other characteristics of daily activities are due to age, 

disease or from physical weakness. The available fall detection systems do not 

address to these issues, rather the issues were combined, and a single solution 

is proposed which may show an accurate detection ratio for some cases and for 

other cases it may not.  

3. Apart from that, some of the daily life activities possesses similar patterns of 

unintentional human fall such lying on floor from standing posture. Therefore, 

it is also important to study the characteristics of all the daily life activities, 

especially those activities that are similar to unintentional human fall, in order 

to identify any specific dissimilarity or distinguishing features between them. 
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