134 research outputs found

    Joint Head Selection and Airtime Allocation for Data Dissemination in Mobile Social Networks

    Full text link
    Mobile social networks (MSNs) enable people with similar interests to interact without Internet access. By forming a temporary group, users can disseminate their data to other interested users in proximity with short-range communication technologies. However, due to user mobility, airtime available for users in the same group to disseminate data is limited. In addition, for practical consideration, a star network topology among users in the group is expected. For the former, unfair airtime allocation among the users will undermine their willingness to participate in MSNs. For the latter, a group head is required to connect other users. These two problems have to be properly addressed to enable real implementation and adoption of MSNs. To this aim, we propose a Nash bargaining-based joint head selection and airtime allocation scheme for data dissemination within the group. Specifically, the bargaining game of joint head selection and airtime allocation is first formulated. Then, Nash bargaining solution (NBS) based optimization problems are proposed for a homogeneous case and a more general heterogeneous case. For both cases, the existence of solution to the optimization problem is proved, which guarantees Pareto optimality and proportional fairness. Next, an algorithm, allowing distributed implementation, for join head selection and airtime allocation is introduced. Finally, numerical results are presented to evaluate the performance, validate intuitions and derive insights of the proposed scheme

    Content Download in Vehicular Networks in Presence of Noisy Mobility Prediction

    Get PDF
    Bandwidth availability in the cellular backhaul is challenged by ever-increasing demand by mobile users. Vehicular users, in particular, are likely to retrieve large quantities of data, choking the cel- lular infrastructure along major thoroughfares and in urban areas. It is envisioned that alternative roadside network connectivity can play an important role in offloading the cellular infrastructure. We investigate the effectiveness of vehicular networks in this task, considering that roadside units can exploit mobility prediction to decide which data they should fetch from the Internet and to schedule transmissions to vehicles. Rather than adopting a specific prediction scheme, we propose a fog-of-war model that allows us to express and account for different degrees of prediction accuracy in a simple, yet effective, manner. We show that our fog-of-war model can closely reproduce the prediction accuracy of Markovian techniques. We then provide a probabilistic graph-based representation of the system that includes the prediction information and lets us optimize content prefetching and transmission scheduling. Analytical and simulation results show that our approach to content downloading through vehicular networks can achieve a 70% offload of the cellular networ

    Energy efficient offloading techniques for heterogeneous networks

    Get PDF
    Mobile data offloading has been proposed as a solution for the network congestion problem that is continuously aggravating due to the increase in mobile data demand. The concept of offloading refers to the exploitation of network heterogeneity with the objective to mitigate the load of the cellular network infrastructure. In this thesis a multicast protocol for short range networks that exploits the characteristics of physical layer network coding is presented. In the proposed protocol, named CooPNC, a novel cooperative approach is provided that allows collision resolutions with the use of an indirect inter-network cooperation scheme. Through this scheme, a reliable multicast protocol for partially overlapping short range networks with low control overhead is provided. It is shown that with CooPNC, higher throughput and energy efficiency are achieved, while it presents lower delay compared to state-of-the-art multicast protocols. A detailed description of the proposed protocol is provided, with a simple scenario of overlapping networks and also for a generalised scalable scenario. Through mathematical analysis and simulations it is proved that CooPNC presents significant performance gains compared to other state-of-the-art multicast protocols for short range networks. In order to reveal the performance bounds of Physical Layer Network Coding, the so-called Cross Network is investigated under diverse Network Coding (NC) techniques. The impact of Medium Access Control (MAC) layer fairness on the throughput performance of the network is provided, for the cases of pure relaying, digital NC with and without overhearing and physical layer NC with and without overhearing. A comparison among these techniques is presented and the throughput bounds, caused by MAC layer limitations, are discussed. Furthermore, it is shown that significant coding gains are achieved with digital and physical layer NC and the energy efficiency performance of each NC case is presented, when applied on the Cross Network.In the second part of this thesis, the uplink offloading using IP Flow Mobility (IFOM) is also investigated. IFOM allows a LTE mobile User Equipment (UE) to maintain two concurrent data streams, one through LTE and the other through WiFi access technology, that presents uplink limitations due to the inherent fairness design of IEEE 802.11 DCF. To overcome these limitations, a weighted proportionally fair bandwidth allocation algorithm is proposed, regarding the data volume that is being offloaded through WiFi, in conjunction with a pricing-based rate allocation algorithm for the rest of the data volume needs of the UEs that are transmitted through the LTE uplink. With the proposed approach, the energy efficiency of the UEs is improved, and the offloaded data volume is increased under the concurrent use of access technologies that IFOM allows. In the weighted proportionally fair WiFi bandwidth allocation, both the different upload data needs of the UEs, along with their LTE spectrum efficiency are considered, and an access mechanism is proposed that improves the use of WiFi access in uplink offloading. In the LTE part, a two-stage pricing-based rate allocation is proposed, under both linear and exponential pricing approaches, with the objective to satisfy all offloading UEs regarding their LTE uplink access. The existence of a malicious UE is also considered that aims to exploit the WiFi bandwidth against its peers in order to upload less data through the energy demanding LTE uplink and a reputation based method is proposed to combat its selfish operation. This approach is theoretically analysed and its performance is evaluated, regarding the malicious and the truthful UEs in terms of energy efficiency. It is shown that while the malicious UE presents better energy efficiency before being detected, its performance is significantly degraded with the proposed reaction method.La derivación del tráfico de datos móviles (en inglés data offloading) ha sido propuesta como una solución al problema de la congestión de la red, un problema que empeora continuamente debido al incremento de la demanda de datos móviles. El concepto de offloading se entiende como la explotación de la heterogeneidad de la red con el objetivo de mitigar la carga de la infraestructura de las redes celulares. En esta tesis se presenta un protocolo multicast para redes de corto alcance (short range networks) que explota las características de la codificación de red en la capa física (physical layer network coding). En el protocolo propuesto, llamado CooPMC, se implementa una solución cooperativa que permite la resolución de colisiones mediante la utilización de un esquema indirecto de cooperación entre redes. Gracias a este esquema, se consigue un protocolo multicast fiable i con poco overhead de control para redes de corto alcance parcialmente solapadas. Se demuestra que el protocolo CooPNC consigue una mayor tasa de transmisión neta (throughput) y una mejor eficiencia energética, a la vez que el retardo se mantiene por debajo del obtenido con los protocolos multicast del estado del arte. La tesis ofrece una descripción detallada del protocolo propuesto, tanto para un escenario simple de redes solapadas como también para un escenario general escalable. Se demuestra mediante análisis matemático y simulaciones que CooPNC ofrece mejoras significativas en comparación con los protocolos multicast para redes de corto alcance del estado del arte. Con el objetivo de encontrar los límites de la codificación de red en la capa física (physical layer network coding), se estudia el llamado Cross Network bajo distintas técnicas de Network Coding (NC). Se proporciona el impacto de la equidad (fairness) de la capa de control de acceso al medio (Medium Access Control, MAC), para los casos de repetidor puro (pure relaying), NC digital con y sin escucha del medio, y NC en la capa física con y sin escucha del medio. En la segunda parte de la tesis se investiga el offloading en el enlace ascendente mediante IP Flow Mobility (IFOM). El IFOM permite a los usuarios móviles de LTE mantener dos flujos de datos concurrentes, uno a través de LTE y el otro a través de la tecnología de acceso WiFi, que presenta limitaciones en el enlace ascendente debido a la equidad (fairness) inherente del diseño de IEEE 802.11 DCF. Para superar estas limitaciones, se propone un algoritmo proporcional ponderado de asignación de banda para el volumen de datos derivado a través de WiFi, junto con un algoritmo de asignación de tasa de transmisión basado en pricing para el volumen de datos del enlace ascendente de LTE. Con la solución propuesta, se mejora la eficiencia energética de los usuarios móviles, y se incrementa el volumen de datos que se pueden derivar gracias a la utilización concurrente de tecnologías de acceso que permite IFOM. En el algoritmo proporcional ponderado de asignación de banda de WiFi, se toman en consideración tanto las distintas necesidades de los usuarios en el enlace ascendente como su eficiencia espectral en LTE, y se propone un mecanismo de acceso que mejora el uso de WiFi para el tráfico derivado en el enlace ascendente. En cuanto a la parte de LTE, se propone un algoritmo en dos etapas de asignación de tasa de transmisión basada en pricing (con propuestas de pricing exponencial y lineal) con el objetivo de satisfacer el enlace ascendente de los usuarios en LTE. También se contempla la existencia de usuarios maliciosos, que pretenden utilizar el ancho de banda WiFi contra sus iguales para transmitir menos datos a través del enlace ascendente de LTE (menos eficiente energéticamente). Para ello se propone un método basado en la reputación que combate el funcionamiento egoísta (selfish).Postprint (published version

    Content Sharing in Mobile Networks with Infrastructure: Planning and Management

    Get PDF
    This thesis focuses on mobile ad-hoc networks (with pedestrian or vehicular mobility) having infrastructure support. We deal with the problems of design, deployment and management of such networks. A first issue to address concerns infrastructure itself: how pervasive should it be in order for the network to operate at the same time efficiently and in a cost-effective manner? How should the units composing it (e.g., access points) be placed? There are several approaches to such questions in literature, and this thesis studies and compares them. Furthermore, in order to effectively design the infrastructure, we need to understand how and how much it will be used. As an example, what is the relationship between infrastructure-to-node and node-to-node communication? How far away, in time and space, do data travel before its destination is reached? A common assumption made when dealing with such problems is that perfect knowledge about the current and future node mobility is available. In this thesis, we also deal with the problem of assessing the impact that an imperfect, limited knowledge has on network performance. As far as the management of the network is concerned, this thesis presents a variant of the paradigm known as publish-and-subscribe. With respect to the original paradigm, our goal was to ensure a high probability of finding the requested content, even in presence of selfish, uncooperative nodes, or even nodes whose precise goal is harming the system. Each node is allowed to get from the network an amount of content which corresponds to the amount of content provided to other nodes. Nodes with caching capabilities are assisted in using their cache in order to improve the amount of offered conten

    mWASH: Mobile Phone Applications for the Water, Sanitation, and Hygiene Sector

    Get PDF
    This report assesses how water and sanitation practitioners have begun to tap the potential of mobile phones as tools to improve water, sanitation, and hygiene (WASH) services. Coined "mWASH" solutions, this report analyzes how mobile technology applications are already being tapped in many areas, such as health, agriculture, and disaster relief, as well as WASH. The ten case studies call out lessons critical for developing robust mWASH applications. Using SMS, email, or the web, citizens and residents can remotely report conditions such as poor water quality and sewage backflow, register lack of infrastructure to aid in network expansion, and view information on the status of service provision and problem resolution

    Acacia prospectus 2006-2011

    Get PDF
    French version available in IDRC Digital Library: Descriptif Acacia 2006-201

    Provision Quality-of-Service Controlled Content Distribution in Vehicular Ad Hoc Networks

    Get PDF
    By equipping vehicles with the on-board wireless facility, the newly emerged vehicular networking targets to provision the broadband serves to vehicles. As such, a variety of novel and exciting applications can be provided to vehicular users to enhance their road safety and travel comfort, and finally raise a complete change to their on-road life. As the content distribution and media/video streaming, such as Youtube, Netflix, nowadays have become the most popular Internet applications, to enable the efficient content distribution and audio/video streaming services is thus of the paramount importance to the success of the vehicular networking. This, however, is fraught with fundamental challenges due to the distinguished natures of vehicular networking. On one hand, the vehicular communication is challenged by the spotty and volatile wireless connections caused by the high mobility of vehicles. This makes the download performance of connections very unstable and dramatically change over time, which directly threats to the on-top media applications. On the other hand, a vehicular network typically involves an extremely large-scale node population (e.g., hundreds or thousandths of vehicles in a region) with intense spatial and temporal variations across the network geometry at different times. This dictates any designs to be scalable and fully distributed which should not only be resilient to the network dynamics, but also provide the guaranteed quality-of-service (QoS) to users. The purpose of this dissertation is to address the challenges of the vehicular networking imposed by its intrinsic dynamic and large-scale natures, and build the efficient, scalable and, more importantly, practical systems to enable the cost-effective and QoS guaranteed content distribution and media streaming services to vehicular users. Note that to effective- ly deliver the content from the remote Internet to in-motion vehicles, it typically involves three parts as: 1.) an infrastructure grid of gateways which behave as the data depots or injection points of Internet contents and services to vehicles, 2.) protocol at gateways which schedules the bandwidth resource at gateways and coordinates the parallel transmissions to different vehicles, and 3.) the end-system control mechanism at receivers which adapts the receiver’s content download/playback strategy based on the available network throughput to provide users with the desired service experience. With above three parts in mind, the entire research work in this dissertation casts a systematic view to address each part in one topic with: 1.) design of large-scale cost-effective content distribution infrastructure, 2.) MAC (media access control) performance evaluation and channel time scheduling, and 3.) receiver adaptation and adaptive playout in dynamic download environment. In specific, in the first topic, we propose a practical solution to form a large-scale and cost-effective content distribution infrastructure in the city. We argue that a large-scale infrastructure with the dedicated resources, including storage, computing and communication capacity, is necessary for the vehicular network to become an alternative of 3G/4G cellular network as the dominating approach of ubiquitous content distribution and data services to vehicles. On addressing this issue, we propose a fully distributed scheme to form a large-scale infrastructure by the contributions of individual entities in the city, such as grocery stores, movie theaters, etc. That is to say, the installation and maintenance costs are shared by many individuals. In this topic, we explain the design rationale on how to motivate individuals to contribute, and specify the detailed design of the system, which is embodied with distributed protocols and performance evaluation. The second topic investigates on the MAC throughput performance of the vehicle-to- infrastructure (V2I) communications when vehicles drive through RSUs, namely drive-thru Internet. Note that with a large-scale population of fast-motion nodes contending the chan- nel for transmissions, the MAC performance determines the achievable nodal throughput and is crucial to the on-top applications. In this topic, using a simple yet accurate Marko- vian model, we first show the impacts of mobility (characterized by node velocity and moving directions) on the nodal and system throughput performance, respectively. Based on this analysis, we then propose three enhancement schemes to timely adjust the MAC parameters in tune with the vehicle mobility to achieve the maximal the system throughput. The last topic investigates on the end-system design to deliver the user desired media streaming services in the vehicular environment. In specific, the vehicular communications are notoriously known for the intermittent connectivity and dramatically varying throughput. Video streaming on top of vehicular networks therefore inevitably suffers from the severe network dynamics, resulting in the frequent jerkiness or even freezing video playback. To address this issue, an analytical model is first developed to unveil the impacts of network dynamics on the resultant video performance to users in terms of video start-up delay and smoothness of playback. Based on the analysis, the adaptive playout buffer mechanism is developed to adapt the video playback strategy at receivers towards the user-defined video quality. The proposals developed in the three topics are validated with the extensive and high fidelity simulations. We believe that our analysis developed in the dissertation can provide insightful lights on understanding the fundamental performance of the vehicular content distribution networks from the aspects of session-level download performance in urban vehicular networks (topic 1), MAC throughput performance (topic 2), and user perceived media quality (topic 3). The protocols developed in the three topics, respectively, offer practical and efficient solutions to build and optimize the vehicular content distribution networks

    Optimal Group Formation in Dense Wi-Fi Direct Networks for Content Distribution

    Get PDF
    Wi-Fi Direct enables direct communication between Wi-Fi devices by forming Peer to Peer (P2P) groups. In each P2P group, one device becomes the Group Owner (GO) and serves as an access point (AP) to connect the remaining devices. The group formation in Wi-Fi Direct has two major limitations. Firstly, it is initiated between two P2P devices only. It does not define any mechanism to allow more than two devices to contend for becoming GO. Secondly, it does not include a selection criteria for the GO (to allow vendor-specific implementation). These limitations can significantly reduce the performance of the Wi-Fi Direct networks. Earlier works addressed these issues using heuristic approaches which do not guarantee optimum performance. Furthermore, the selection of multiple GOs (in dense networks) has not been rigorously investigated in the literature. This paper proposes a modified group formation scheme among multiple devices. The proposed scheme formulates the GO selection problem as an optimization problem which is solved using integer programming (IP). The GOs are selected based on link capacities with the objective to maximize the overall network throughput. In multicast applications, the proposed scheme is implemented such that the minimum achievable rate by any device is maximized. The performance of the proposed GO selection scheme is extensively evaluated through realistic simulation performed in ns-3. The results reveal significant performance gains in terms of group formation time and network throughput. For instance, a throughput gain of 19.8% is achieved using a single GO. The gain is further improved by using a higher number of GOs. In multicast applications, a Packet Loss Ratio (PLR) of 2.8% is maintained. Detailed performance evaluation is presented for several scenarios considering different network sizes, number of GOs, and distribution of user's locations. Moreover, a comparison with state-of-The-Art schemes is presented to validate the advantages of the proposed scheme. 2013 IEEE.This work was supported in part by the Qatar National Research Fund (a member of Qatar Foundation) through the NPRP Grant under Grant 8-627-2-260 and 6-070-2-024, and in part by the Qatar National Library. The statements made herein are solely the responsibility of the authors.Scopu
    corecore