48 research outputs found

    Towards Accountable AI: Hybrid Human-Machine Analyses for Characterizing System Failure

    Full text link
    As machine learning systems move from computer-science laboratories into the open world, their accountability becomes a high priority problem. Accountability requires deep understanding of system behavior and its failures. Current evaluation methods such as single-score error metrics and confusion matrices provide aggregate views of system performance that hide important shortcomings. Understanding details about failures is important for identifying pathways for refinement, communicating the reliability of systems in different settings, and for specifying appropriate human oversight and engagement. Characterization of failures and shortcomings is particularly complex for systems composed of multiple machine learned components. For such systems, existing evaluation methods have limited expressiveness in describing and explaining the relationship among input content, the internal states of system components, and final output quality. We present Pandora, a set of hybrid human-machine methods and tools for describing and explaining system failures. Pandora leverages both human and system-generated observations to summarize conditions of system malfunction with respect to the input content and system architecture. We share results of a case study with a machine learning pipeline for image captioning that show how detailed performance views can be beneficial for analysis and debugging

    Perancangan Framework Umum untuk Diagnosis Otomatis Kegagalan Sistem Informasi Berbasis Web Menggunakan Pembelajaran Mesin

    Full text link
    Banyak sistem informasi mengalami problem yang sama ketika menghadapi kegagalan, yaitu sulit untuk menentukan mana dari sistem sebagai sumber kegagalan. Paper ini akan mempelajari dan menganalisis diagnosis fault dengan pembelajaran mesin dalam tiga kasus kegagalan sistem informasi berbasis web, yaitu : isolasi bug dengan regresi logistik, lokalisasi fault dalam layanan internet dengan pohon keputusan, dan diagnosis problem kinerja sistem dengan Tree Augmented Naïve Bayesian Network (TAN). Kemudian mengusulkan sebuah framework umum untuk diagnosis otomatis berdasarkan kemiripan diagnosis fault dalam ketiga kasus tersebut

    A Comparison of Decision Tree Classifiers for Automatic Diagnosis of Speech Recognition Errors

    Get PDF
    Present speech recognition systems are becoming more complex due to technology advances, optimizations and special requirements such as small computation and memory footprints. Proper handling of system failures can be seen as a kind of fault diagnosis. Motivated by the success of decision tree diagnosis in other scientific fields and by their successful application in speech recognition in the last decade, we contribute to the topic mainly in terms of comparison of different types of decision trees. Five styles are examined: CART (testing three different splitting criteria), C4.5, and then Minimum Message Length (MML), strict MML and Bayesian styles decision trees. We apply these techniques to data of computer speech recognition fed by intrinsically variable speech. We conclude that for this task, CART technique outperforms C4.5 in terms of better classification for ASR failures

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    An Unsupervised Anomaly Detection Framework for Detecting Anomalies in Real Time through Network System’s Log Files Analysis

    Get PDF
    Nowadays, in almost every computer system, log files are used to keep records of occurring events. Those log files are then used for analyzing and debugging system failures. Due to this important utility, researchers have worked on finding fast and efficient ways to detect anomalies in a computer system by analyzing its log records. Research in log-based anomaly detection can be divided into two main categories: batch log-based anomaly detection and streaming logbased anomaly detection. Batch log-based anomaly detection is computationally heavy and does not allow us to instantaneously detect anomalies. On the other hand, streaming anomaly detection allows for immediate alert. However, current streaming approaches are mainly supervised. In this work, we propose a fully unsupervised framework which can detect anomalies in real time. We test our framework on hdfs log files and successfully detect anomalies with an F- 1 score of 83%

    A2Log: Attentive Augmented Log Anomaly Detection

    Get PDF
    Anomaly detection becomes increasingly important for the dependability and serviceability of IT services. As log lines record events during the execution of IT services, they are a primary source for diagnostics. Thereby, unsupervised methods provide a significant benefit since not all anomalies can be known at training time. Existing unsupervised methods need anomaly examples to obtain a suitable decision boundary required for the anomaly detection task. This requirement poses practical limitations. Therefore, we develop A2Log, which is an unsupervised anomaly detection method consisting of two steps: Anomaly scoring and anomaly decision. First, we utilize a self-attention neural network to perform the scoring for each log message. Second, we set the decision boundary based on data augmentation of the available normal training data. The method is evaluated on three publicly available datasets and one industry dataset. We show that our approach outperforms existing methods. Furthermore, we utilize available anomaly examples to set optimal decision boundaries to acquire strong baselines. We show that our approach, which determines decision boundaries without utilizing anomaly examples, can reach scores of the strong baselines
    corecore