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Abstract 
 

 

Nowadays, in almost every computer system, log files are used to keep records of occurring 
events. Those log files are then used for analyzing and debugging system failures. Due to this 
important utility, researchers have worked on finding fast and efficient ways to detect anomalies 
in a computer system by analyzing its log records. Research in log-based anomaly detection can 
be divided into two main categories: batch log-based anomaly detection and streaming log-
based anomaly detection. Batch log-based anomaly detection is computationally heavy and does 
not allow us to instantaneously detect anomalies. On the other hand, streaming anomaly 
detection allows for immediate alert. However, current streaming approaches are mainly 
supervised. In this work, we propose a fully unsupervised framework which can detect anomalies 
in real time. We test our framework on hdfs log files and successfully detect anomalies with an F-
1 score of 83%. 
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1. Introduction 
 

In today’s computing systems, logging has become a widely embraced and important 

practice. It is the process of keeping records of events which occurred within a 

computing system. The records are kept into what is referred to as a log file. According 

to [3], more than five standards and more than five regulations enforce, in every 

continent, that a log management system must be included into the security systems. So 

why are log files so important? 

Indeed, computing systems are becoming increasingly large and complex, leading to an 

increase in vulnerability and failure prominence. By recording events, logs allow system 

operators to detect and debug failures and easily recover from a working state if 

necessary. 

For many years (and even today), anomaly detection based on log file analysis has been 

done manually by domain experts who read and interprets log files line by line. 

However, in this big data era, log files are becoming so large that it is almost impossible 

to manually and timely analyze them. According to [4], approximately 2.5 quintillion 

bytes of data are created each day. Every minute, snapchat users share 527,760 photos, 

YouTube users watch 4,146,600 YouTube videos and 456,000 tweets are sent on 

Twitter. 

To solve this issue, many scholars have researched efficient ways to automate log-based 

anomaly detection. The state-of-the art approaches leverages the power of Machine 

Learning algorithms to detect patterns in log files and flag abnormalities. However, 

performing real time log analysis in an unsupervised setting remains a challenge. 

In this work, we propose a fully unsupervised real time framework able to detect 

anomalies in real time. Our framework exploits the power of clustering to learn most 

frequent patterns from historical logs and uses fine-grained distance analysis to detect 

outliers. 

The remaining sections of this document are organized as follows. Section 2 describes 

the most significant researches and their limitations. Section 3 discusses the major 

challenges of anomaly detection based on log file analysis. Section 4 provides details 

about the proposed solution. Section 5 describes and discusses our experiments and 

results. Finally, section 6 concludes and provides perspective for future plans. 
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2. Significant prior research 
 

For about a decade, machine learning has been the key tool to automate log analysis. 

Indeed, machine learning algorithms and structures have shown their capability to 

detect and learn very complex patterns. 

Since all significant prior research uses machine learning techniques, they share a 

common framework [5] shown in the figure below: 

 

Figure 1 - Log-based Anomaly Detection Framework 

Log collection is the first step of the framework and is about gathering data. Logs could 

be collected in streaming or batch. The next step, log parsing, consists in extracting log 

templates. The third step, feature extraction, consists in extracting relevant features for 

the anomaly detection model. The final step uses the extracted features to perform 

anomaly detection. The anomaly detection system is usually a machine learning model. 

More details can be found in [5]. 

The cutting-edge results in log-based anomaly detection research can be classified into 

two broad categories: offline anomaly detection systems and online anomaly 

detection systems. 

2.1. Offline anomaly detection systems 

Offline anomaly detection systems are mainly used to debug or detect anomalies after 

they occurred. Log analysis is performed after a significant number of logs is collected 

(may be at end of the day or the week or the month). Some of these approaches use 

unsupervised learning while others use supervised learning. 

Approaches using unsupervised learning do not require labeled logs (logs for which we 

know a priori what is normal and what is abnormal). There is no learning phase. They 

extract features and perform anomaly detection on the full log file. Here, we can 

mention PCA [6] which extracts state ratio vectors and message count vectors and uses 

Principal Component Analysis to detect anomalies. We also have LogCluster [7] which 

assigns weights to events and uses Agglomerative Hierarchical Clustering to detect 

patterns. Invariants Mining [8] extracts messages counts and uses singular value 

decomposition to learn invariants from the logs. 
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Supervised learning approaches require labeled logs. They learn patterns from labeled 

logs and can flag, from a new batch, any pattern which deviates from the normal 

patterns. This is the case of LogRobust [9] who uses attention-based Bi-LSTM neural 

network to learn normal patterns and then detect anormal behavior given new batches. 

2.2. Online anomaly detection systems 

Online or streaming anomaly detection systems perform anomaly detection in real time, 

as the events are recorded. Currently, these approaches use supervised learning. They 

learn patterns offline from normal logs and are placed in production to detect abnormal 

events in real time.  

One of the most prominent online anomaly detection system is DeepLog [10] which 

trains, offline, a log key anomaly detection model and a parameter value anomaly 

detection model. The trained models are used to detect anomalies in real time. Another 

interesting work is LogAnomaly [11] which learns normal patterns using LSTM neural 

network and can detect sequential and quantitative anomalies simultaneously. 
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3. Research Challenges 
 

Three major challenges emerge in log-based anomaly detection research: unsupervised 

streaming anomaly detection, feature engineering and new log entries management. 

3.1. Unsupervised streaming anomaly detection 

Streaming anomaly detection can be defined as the process of finding issues and 

alerting in real-time. Indeed, in this big data era with faster computers, data is 

generated at a huge pace. Moreover, because nowadays computer systems are 

becoming increasingly complex, they are increasingly prone to failure. Hence, there is a 

necessity to build automated anomaly detection systems which can perform analysis at 

the same pace as data are generated. 

Even though some researchers were able to find ways to perform streaming anomaly 

detection, it remains a gap as the current state of the art approaches require normal 

(labeled) logs from which to learn normal patterns. However, obtaining labeled logs is 

sometimes expensive (require domain experts) and time consuming. This leads to the 

necessity of a streaming anomaly detection system which does not require normal logs. 

3.2. Feature engineering 

In the previous works, the most exploited feature is the count of log templates by 

window. However, many approaches have shown satisfying results by exploring various 

types features including timestamp statistics, log parameter vectors and state ratio 

vectors. The diversity in feature extraction can be attributed to the richness and 

diversity of information included into log files. Hence, it is hard to determine exactly 

what features are best for anomaly detection.  

3.3. Handling new log entries 

In a production environment, it could happen that a previously unseen event occurs. 

While some of the previous works flagged new log entries as abnormal, other 

approaches proposed that new log entries should be analyzed manually by domain 

experts [10] and others proposed that new log entries should to be approximated to the 

known log entry with most similar template [11]. Handling new log entries has shown to 

be a challenge as it requires the system to be retrained offline to account for the 

change. 
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4. Methodology 
 

In this work, we will tackle the first major challenge which is to be able to build an 

unsupervised streaming anomaly detection system. To achieve that, we propose an 

unsupervised anomaly detection framework for detecting anomalies in real-time. 

Compared to other approaches, our framework does not require prior clean logs and 

can perform real time anomaly detection. An overview of our framework is shown in 

figure 2: 

 

Figure 2 – Unsupervised Anomaly Detection Framework 

4.1. Framework overview 

Our framework has two main steps: knowledge base construction and streaming 

anomaly detection. The knowledge base construction phase learns normal patterns 

from the historical logs. During the streaming anomaly detection phase, an event is 

flagged as abnormal if it exhibits a pattern which differs from normal behavior.  

4.1.1. Knowledge base construction 

This phase aims at building prior knowledge based on which our system will detect 

abnormalities. This knowledge base is built from historical logs which may or may not 

contain anomalies (in contrary to previous works who assumes having clean logs to start 

with). The key idea is to determine the most frequent patterns exhibited within a 

predefined window size. For example, considering a network log file, we can learn that, 

within a window of size of 100 events, users usually make 10 queries. Analyzing the log 
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file within small chunks (windows) is suitable for faster anomaly detection as we will no 

more need to have the full log file to perform an analysis. 

To learn the frequent patterns, the historical logs (training logs) are first parsed to 

extract log templates [12] (also named log keys in some other works). Next, the log file 

is divided into equal size windows. For each window, a message count vector is built. 

Each message count vector is combined to form an event count matrix. We use OPTICS 

[13] to cluster together similar windows. Finally, the centroid for each of the clusters is 

computed and represents our frequent patterns. 

4.1.2. Streaming Anomaly Detection 

The streaming anomaly detection phase allows to determine, in real-time, whether an 

event is normal or abnormal. To determine whether an incoming event is normal, we 

analyze it in the context of the most recent window. We argue that the normality of an 

event can be inferred from the most recent events which occurred before it.  

Every time a new event occurs, it is first parsed and matched to its corresponding log 

template. Next, a window, including the new event and the 𝑘 – 1 most recent events 

before it, is created. Then a message count vector is created for the newly created 

window. 

Next, each message count vector is compared to the closest vector from the knowledge 

base. If the distance between the vectors is above a threshold δ then, the vector is 

considered abnormal. Otherwise, the vector is considered normal. The threshold δ is set 

as the maximum distance from the centroid to the farthest vector within the 

corresponding cluster. 

Finally, if the vector was considered normal, then we consider the current event as 

normal. Otherwise, we investigate further by determining whether the current event is 

responsible for the abnormality of the window. 

4.2. Log parsing 

Log parsing is the process of extracting for each log line, its template and parameters. As 

illustrated in Figure 3, every log line is made a constant part and a variable part. Log 

parsing extracts the constant part. Since log parsing is not the focus of our study, we 

reuse the state-of-the art parser proposed in Drain [12]. Drain is an online log parsing 

approach with fixed depth tree. It allows to parse logs efficiently in real-time. 

 

Figure 3 - Log Parsing Illustration 
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4.3. Feature Extraction 

As [10], we believe that the occurrence of an event strongly depends on the occurrence 

of the most recent events that occurred before that event. Hence, we divide the log file 

into sliding windows. For each window, we capture its pattern by building an event 

count vector for the window. 

An event count vector is built by summing up the number of occurrences of each event 

within the window. For example, given a system containing 3 events, the vector 

[10, 5, 80] would mean that, within the window, event 1 has occurred 10 times, event 2 

has occurred 5 times and event 3 has occurred 80 times. 

After combining all the event count vectors, we obtain an 𝑛 ∗  𝑚 event count matrix 

where 𝑛 is the number of windows and 𝑚 is the total number of events within the 

system. 

4.4. Clustering using OPTICS [13] 

To group together similar windows and therefore determine frequent patterns, we use 

a clustering algorithm, namely OPTICS (Ordering points to identify the clustering 

structure) [14]. OPTICS is a better version of DBSCAN (Density based spatial clustering of 

applications with noise) [15] algorithm which solves DBSCAN’s issue of not being able to 

cluster points in varying density datasets. Compared to K-Means clustering [16] and 

Agglomerative Hierarchical clustering [17], OPTICS algorithm is not sensitive to outliers 

and therefore perfect for anomaly detection. Moreover, it can determine arbitrary 

shaped clusters and requires few parameter tunings. 

OPTICS is a density-based algorithm. It allows to make groups without having to specify 

the number of groups in advance. This is a great asset for our problem as we do not 

know in advance how many clusters to expect. Density-based clustering algorithms 

consider a cluster to be an area with a huge density of points. The clusters are separated 

by areas of low density. The points in low density areas are usually considered noise or 

outliers. 

OPTICS is based on the observation that given a 𝑀𝑖𝑛𝑃𝑡𝑠 (minimum number of points), 

clusters with a higher density are embedded within clusters with a lower density. The 

key idea is that higher density points should be processed first. OPTICS retains the 

clustering order using: the core distance and the reachability distance. 

The Core Distance is the minimum value of radius required to consider a point as a core 

point. If a point is not a core point, then its Core Distance is undefined. 

The Reachability Distance: the Reachability Distance between two points p and q is the 

maximum of the Core Distance of p and the Euclidean Distance (or some other distance 

metric) between p and q. 
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Figure 4 - Core Distance vs Reachability distance [13] 

Using OPTICS algorithm, we group together similar windows. Next for each cluster, we 

compute its centroid. The centroid of each cluster numerically represents a frequent 

pattern. 

4.5. Streaming Anomaly Detection Algorithm 

To assess the normality of an event, we first assess the normality of the window 

containing the event and the 𝑘 − 1 most recent events before it. If the window is 

normal, so is the event. If the window is considered abnormal, we assess whether the 

current event is a major cause for that abnormality. To achieve that, we find the top 𝑗 

events accounting for the abnormality. If the current event is within the top 𝑗 

candidates, we flag it as abnormal. Otherwise, we flag it as normal. 
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5. Experiments 
 

In this section, we describe the dataset used for our experiments, our evaluation metrics 

and our evaluation results. 

5.1. HDFS logs Dataset [6] 

For our experiments we use HDFS (Hadoop Distributed File System) log data set. It a 

dataset generated by running Hadoop-based jobs on more than 200 Amazon’s EC2 

nodes. The dataset has been labeled by Hadoop domain experts. 

Hadoop is an open source framework for efficiently storing and manipulating big data 

[18]. Among 11,197,954 log entries in the dataset, about 2.9% are abnormal. More 

details about the dataset can be found in [6]. Of the overall 11 million logs, we used 3 

million for our experiments. 

5.2. Experimental setup 

In our experiments, we used 70% of the dataset as training set and 30% as test set. 

The code was written using Python 3.7.9 on a windows 10 Enterprise 64-bit desktop 

with processor Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz (8 CPUs), ~3.0GHz (16 GB 

RAM). We used the OPTICS implementation from sklearn 0.23.2. 

5.3. Evaluation metrics 

Our framework is evaluated according to precision, recall and F1-Score. 

In the following formulas, 𝑇𝑃 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) represents the number of reported 

anomalies which were real anomalies. 𝐹𝑃 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) represents the number of 

reported anomalies which were not real anomalies. 𝐹𝑁 (𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) represents 

the number of reported normal windows which were anomalies. 

Precision determines the percentage of reported anomalies which were real anomalies. 

It is computed as follows:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
     (1) 

Recall determines the percentage of anomalies which were caught among all the 

anomalies. It is computed as follows:  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
     (2) 

F1-Score is the weighted average of precision and recall and is computed as follows: 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
     (3) 
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5.4. Evaluation results 

In this section, we describe the results from implementing our framework on HDFS 

dataset. We provide the log parsing results, the feature extraction results, and the 

framework efficiency with respect to our evaluation metrics. 

5.4.1. Log parsing Results 

Using Drain [10] we were able to determine that our log file contains about 48 different 

events. Their repartition is shown on the figure below: 

 

Figure 5 - Number of occurrences of each type of events in the log file 

From figure 5, we can notice that only 10 of those events have a real significance in the 

log file. The table below shows 5 of the most occurring events as well as their number of 

occurrences in the log file. The following figure shows the repartition of the 10 most 

occurring events. 

Table 1 - Five of the most recurring events 

EventId EventTemplate Occurrences 

09a53393 Receiving block <*> src: <*> dest: <*> 1723232 

3d91fa85 BLOCK* NameSystem.allocateBlock: <*> <*> 575061 

d38aa58d PacketResponder <*> for block <*> <*> 1706728 

e3df2680 Received block <*> of size <*> from <*> 1706514 

5d5de21c BLOCK* NameSystem.addStoredBlock: blockMap 
updated: <*> is added to <*> size <*> 

1719741 
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Figure 6 - Count of the 10 most occuring events in the logs 

5.4.2. Feature Extraction Results 

In our experiments, we used 𝟓𝟎 as window size. Approximately 2 million (size of training 

dataset) windows were generated for training. 

5.4.3. Framework efficiency 

The chart below shows are framework efficiency. 

 

 

71% of reported anomalies by our framework were indeed real anomalies. Our 

framework was able to detect all anomalies with a recall of 100%. The final combined F-

measure yields 83% which is a quite high result for an unsupervised framework. 

5.4.4. Discussion 

It should be noted that we assume that the training logs are in majority normal. 

From our results, we can realize that our framework perform pretty well given that it 

has only being trained on ~2 million log lines. Moreover, we find that the precision is 

relatively average which is mainly due to the unsupervised nature of the framework. 

The precision could be made higher by increasing the training size. 

Also, we can argue that our results are better than DeepLog [8] which only works in a 

supervised setting, given normal logs for training.  
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6. Conclusion and Future Work 
 

With the increasing complexity of today’s computer systems, timely and efficient 

anomaly detection has become necessary to prevent failures. As log files record 

precious information, they show up as a valuable resource for debugging and preventing 

failures. However, log file sizes have grown too large for humans to perform timely and 

efficient analysis. To solve this issue, many researchers have proposed automated 

anomaly detection frameworks. However, the current state-of-the art fails at providing 

an anomaly detection framework which can detect anomalies in real time without 

requiring normal or labeled logs. 

In this work, we proposed an unsupervised framework for real time anomaly detection. 

Our framework does not require neither normal nor labeled logs. Our framework has 

two main stages: a knowledge base construction stage which uses clustering for 

determining frequent patterns and a streaming anomaly detection phase for detecting 

anomalous events in real time. Our framework shows a novel perspective to anomaly 

detection in which, rather than alerting whenever an event trace is abnormal, we alert 

whenever an event seems abnormal in the context of the most recent events which 

occurred before it. We experimented our framework on an HDFS log dataset and 

obtained a great F-1 score of ~83%. 

In the future, we intend to explore the feasibility of an online unsupervised anomaly 

detection framework which can update itself in real-time without requiring periodic 

retraining. Moreover, we intend our feature extraction by exploiting the impact of the 

other rich features embedded in log files. 
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Appendix : Source Code 
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