
Kennesaw State University Kennesaw State University

DigitalCommons@Kennesaw State University DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Fall 12-18-2020

An Unsupervised Anomaly Detection Framework for Detecting An Unsupervised Anomaly Detection Framework for Detecting

Anomalies in Real Time through Network System’s Log Files Anomalies in Real Time through Network System’s Log Files

Analysis Analysis

Vannel Zeufack

Follow this and additional works at: https://digitalcommons.kennesaw.edu/cs_etd

Recommended Citation Recommended Citation
Zeufack, Vannel, "An Unsupervised Anomaly Detection Framework for Detecting Anomalies in Real Time
through Network System’s Log Files Analysis" (2020). Master of Science in Computer Science Theses. 38.
https://digitalcommons.kennesaw.edu/cs_etd/38

This Thesis is brought to you for free and open access by the Department of Computer Science at
DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Master of Science in Computer
Science Theses by an authorized administrator of DigitalCommons@Kennesaw State University. For more
information, please contact digitalcommons@kennesaw.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/368698736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.kennesaw.edu/
https://digitalcommons.kennesaw.edu/cs_etd
https://digitalcommons.kennesaw.edu/cs
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd/38?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

i

An Unsupervised Anomaly Detection Framework for

Detecting Anomalies in Real Time through Network

System’s Log Files Analysis

A Thesis Proposal presented to

The Faculty of the Computer Science Department

by

Vannel Zeufack

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Kennesaw State University

December 2020

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

ii

An Unsupervised Anomaly Detection Framework for

Detecting Anomalies in Real Time through Network

System’s Log Files Analysis

 Approved:

 Dr. Ahyoung Lee - Advisor

 Dr. Coskun Cetinkaya - Department Chair

 Dr. Jeffrey Chastine - Dean

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

iii

In presenting this thesis as a partial fulfillment of the requirements for an advanced

degree from Kennesaw State University, I agree that the university library shall make it

available for inspection and circulation in accordance with its regulations governing

materials of this type. I agree that permission to copy from, or to publish, this thesis

may be granted by the professor under whose direction it was written, or, in his

absence, by the dean of the appropriate school when such copying or publication is

solely for scholarly purposes and does not involve potential financial gain. It is

understood that any copying from or publication of, this thesis which involves potential

financial gain will not be allowed without written permission.

 Vannel Zeufack

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

iv

Notice To Borrowers

Unpublished theses deposited in the Library of Kennesaw State University must be used

only in accordance with the stipulations prescribed by the author in the preceding

statement.

The author of this thesis is:

Vannel Zeufack

950 Hudson Road SE, Apt 307

Marietta, GA, 30060

The director of this thesis is:

Dr. Ahyoung Lee

680 Arntson Drive, J 306

Marietta, GA, 30060

Users of this thesis not regularly enrolled as students at Kennesaw State University are

required to attest acceptance of the preceding stipulations by signing below. Libraries

borrowing this thesis for the use of their patrons are required to see that each user

records here the information requested.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

v

An Unsupervised Anomaly Detection Framework for

Detecting Anomalies in Real Time through Network

System’s Log Files Analysis

An Abstract of

A Thesis Presented to

The Faculty of the Computer Science Department

by

Vannel Zeufack

Previous degree (Bachelor of Science), Kennesaw State University, 2018

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Kennesaw State University

December 2020

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

vi

Abstract

Nowadays, in almost every computer system, log files are used to keep records of occurring
events. Those log files are then used for analyzing and debugging system failures. Due to this
important utility, researchers have worked on finding fast and efficient ways to detect anomalies
in a computer system by analyzing its log records. Research in log-based anomaly detection can
be divided into two main categories: batch log-based anomaly detection and streaming log-
based anomaly detection. Batch log-based anomaly detection is computationally heavy and does
not allow us to instantaneously detect anomalies. On the other hand, streaming anomaly
detection allows for immediate alert. However, current streaming approaches are mainly
supervised. In this work, we propose a fully unsupervised framework which can detect anomalies
in real time. We test our framework on hdfs log files and successfully detect anomalies with an F-
1 score of 83%.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

vii

An Unsupervised Anomaly Detection Framework for

Detecting Anomalies in Real Time through Network

System’s Log Files Analysis

A Thesis Proposal presented to

The Faculty of the Computer Science Department

by

Vannel Zeufack

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Advisors:

Dr. Ahyoung Lee

Dr. Donghyun Kim

Kennesaw State University

December 2020

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

viii

Acknowledgement

Many thanks to Dr. Donghyun Kim without which my graduate

studies would not have been possible

Thanks to Dr. Ahyoung Lee for her amazing support

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

ix

Contents
1. Introduction .. 1

2. Significant prior research .. 2

2.1. Offline anomaly detection systems.. 2

2.2. Online anomaly detection systems .. 3

3. Research Challenges ... 4

3.1. Unsupervised streaming anomaly detection ... 4

3.2. Feature engineering ... 4

3.3. Handling new log entries.. 4

4. Methodology ... 5

4.1. Framework overview .. 5

4.1.1. Knowledge base construction ... 5

4.1.2. Streaming Anomaly Detection .. 6

4.2. Log parsing ... 6

4.3. Feature Extraction .. 7

4.4. Clustering using OPTICS [13] .. 7

4.5. Streaming Anomaly Detection Algorithm .. 8

5. Experiments .. 9

5.1. HDFS logs Dataset [6] ... 9

5.2. Experimental setup .. 9

5.3. Evaluation metrics .. 9

5.4. Evaluation results ... 10

5.4.1. Log parsing Results.. 10

5.4.2. Feature Extraction Results .. 11

5.4.3. Framework efficiency .. 11

... 11

5.4.4. Discussion.. 11

6. Conclusion and Future Work .. 12

References .. 13

Appendix : Source Code .. 18

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

1

1. Introduction

In today’s computing systems, logging has become a widely embraced and important

practice. It is the process of keeping records of events which occurred within a

computing system. The records are kept into what is referred to as a log file. According

to [3], more than five standards and more than five regulations enforce, in every

continent, that a log management system must be included into the security systems. So

why are log files so important?

Indeed, computing systems are becoming increasingly large and complex, leading to an

increase in vulnerability and failure prominence. By recording events, logs allow system

operators to detect and debug failures and easily recover from a working state if

necessary.

For many years (and even today), anomaly detection based on log file analysis has been

done manually by domain experts who read and interprets log files line by line.

However, in this big data era, log files are becoming so large that it is almost impossible

to manually and timely analyze them. According to [4], approximately 2.5 quintillion

bytes of data are created each day. Every minute, snapchat users share 527,760 photos,

YouTube users watch 4,146,600 YouTube videos and 456,000 tweets are sent on

Twitter.

To solve this issue, many scholars have researched efficient ways to automate log-based

anomaly detection. The state-of-the art approaches leverages the power of Machine

Learning algorithms to detect patterns in log files and flag abnormalities. However,

performing real time log analysis in an unsupervised setting remains a challenge.

In this work, we propose a fully unsupervised real time framework able to detect

anomalies in real time. Our framework exploits the power of clustering to learn most

frequent patterns from historical logs and uses fine-grained distance analysis to detect

outliers.

The remaining sections of this document are organized as follows. Section 2 describes

the most significant researches and their limitations. Section 3 discusses the major

challenges of anomaly detection based on log file analysis. Section 4 provides details

about the proposed solution. Section 5 describes and discusses our experiments and

results. Finally, section 6 concludes and provides perspective for future plans.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

2

2. Significant prior research

For about a decade, machine learning has been the key tool to automate log analysis.

Indeed, machine learning algorithms and structures have shown their capability to

detect and learn very complex patterns.

Since all significant prior research uses machine learning techniques, they share a

common framework [5] shown in the figure below:

Figure 1 - Log-based Anomaly Detection Framework

Log collection is the first step of the framework and is about gathering data. Logs could

be collected in streaming or batch. The next step, log parsing, consists in extracting log

templates. The third step, feature extraction, consists in extracting relevant features for

the anomaly detection model. The final step uses the extracted features to perform

anomaly detection. The anomaly detection system is usually a machine learning model.

More details can be found in [5].

The cutting-edge results in log-based anomaly detection research can be classified into

two broad categories: offline anomaly detection systems and online anomaly

detection systems.

2.1. Offline anomaly detection systems

Offline anomaly detection systems are mainly used to debug or detect anomalies after

they occurred. Log analysis is performed after a significant number of logs is collected

(may be at end of the day or the week or the month). Some of these approaches use

unsupervised learning while others use supervised learning.

Approaches using unsupervised learning do not require labeled logs (logs for which we

know a priori what is normal and what is abnormal). There is no learning phase. They

extract features and perform anomaly detection on the full log file. Here, we can

mention PCA [6] which extracts state ratio vectors and message count vectors and uses

Principal Component Analysis to detect anomalies. We also have LogCluster [7] which

assigns weights to events and uses Agglomerative Hierarchical Clustering to detect

patterns. Invariants Mining [8] extracts messages counts and uses singular value

decomposition to learn invariants from the logs.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

3

Supervised learning approaches require labeled logs. They learn patterns from labeled

logs and can flag, from a new batch, any pattern which deviates from the normal

patterns. This is the case of LogRobust [9] who uses attention-based Bi-LSTM neural

network to learn normal patterns and then detect anormal behavior given new batches.

2.2. Online anomaly detection systems

Online or streaming anomaly detection systems perform anomaly detection in real time,

as the events are recorded. Currently, these approaches use supervised learning. They

learn patterns offline from normal logs and are placed in production to detect abnormal

events in real time.

One of the most prominent online anomaly detection system is DeepLog [10] which

trains, offline, a log key anomaly detection model and a parameter value anomaly

detection model. The trained models are used to detect anomalies in real time. Another

interesting work is LogAnomaly [11] which learns normal patterns using LSTM neural

network and can detect sequential and quantitative anomalies simultaneously.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

4

3. Research Challenges

Three major challenges emerge in log-based anomaly detection research: unsupervised

streaming anomaly detection, feature engineering and new log entries management.

3.1. Unsupervised streaming anomaly detection

Streaming anomaly detection can be defined as the process of finding issues and

alerting in real-time. Indeed, in this big data era with faster computers, data is

generated at a huge pace. Moreover, because nowadays computer systems are

becoming increasingly complex, they are increasingly prone to failure. Hence, there is a

necessity to build automated anomaly detection systems which can perform analysis at

the same pace as data are generated.

Even though some researchers were able to find ways to perform streaming anomaly

detection, it remains a gap as the current state of the art approaches require normal

(labeled) logs from which to learn normal patterns. However, obtaining labeled logs is

sometimes expensive (require domain experts) and time consuming. This leads to the

necessity of a streaming anomaly detection system which does not require normal logs.

3.2. Feature engineering

In the previous works, the most exploited feature is the count of log templates by

window. However, many approaches have shown satisfying results by exploring various

types features including timestamp statistics, log parameter vectors and state ratio

vectors. The diversity in feature extraction can be attributed to the richness and

diversity of information included into log files. Hence, it is hard to determine exactly

what features are best for anomaly detection.

3.3. Handling new log entries

In a production environment, it could happen that a previously unseen event occurs.

While some of the previous works flagged new log entries as abnormal, other

approaches proposed that new log entries should be analyzed manually by domain

experts [10] and others proposed that new log entries should to be approximated to the

known log entry with most similar template [11]. Handling new log entries has shown to

be a challenge as it requires the system to be retrained offline to account for the

change.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

5

4. Methodology

In this work, we will tackle the first major challenge which is to be able to build an

unsupervised streaming anomaly detection system. To achieve that, we propose an

unsupervised anomaly detection framework for detecting anomalies in real-time.

Compared to other approaches, our framework does not require prior clean logs and

can perform real time anomaly detection. An overview of our framework is shown in

figure 2:

Figure 2 – Unsupervised Anomaly Detection Framework

4.1. Framework overview

Our framework has two main steps: knowledge base construction and streaming

anomaly detection. The knowledge base construction phase learns normal patterns

from the historical logs. During the streaming anomaly detection phase, an event is

flagged as abnormal if it exhibits a pattern which differs from normal behavior.

4.1.1. Knowledge base construction

This phase aims at building prior knowledge based on which our system will detect

abnormalities. This knowledge base is built from historical logs which may or may not

contain anomalies (in contrary to previous works who assumes having clean logs to start

with). The key idea is to determine the most frequent patterns exhibited within a

predefined window size. For example, considering a network log file, we can learn that,

within a window of size of 100 events, users usually make 10 queries. Analyzing the log

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

6

file within small chunks (windows) is suitable for faster anomaly detection as we will no

more need to have the full log file to perform an analysis.

To learn the frequent patterns, the historical logs (training logs) are first parsed to

extract log templates [12] (also named log keys in some other works). Next, the log file

is divided into equal size windows. For each window, a message count vector is built.

Each message count vector is combined to form an event count matrix. We use OPTICS

[13] to cluster together similar windows. Finally, the centroid for each of the clusters is

computed and represents our frequent patterns.

4.1.2. Streaming Anomaly Detection

The streaming anomaly detection phase allows to determine, in real-time, whether an

event is normal or abnormal. To determine whether an incoming event is normal, we

analyze it in the context of the most recent window. We argue that the normality of an

event can be inferred from the most recent events which occurred before it.

Every time a new event occurs, it is first parsed and matched to its corresponding log

template. Next, a window, including the new event and the 𝑘 – 1 most recent events

before it, is created. Then a message count vector is created for the newly created

window.

Next, each message count vector is compared to the closest vector from the knowledge

base. If the distance between the vectors is above a threshold δ then, the vector is

considered abnormal. Otherwise, the vector is considered normal. The threshold δ is set

as the maximum distance from the centroid to the farthest vector within the

corresponding cluster.

Finally, if the vector was considered normal, then we consider the current event as

normal. Otherwise, we investigate further by determining whether the current event is

responsible for the abnormality of the window.

4.2. Log parsing

Log parsing is the process of extracting for each log line, its template and parameters. As

illustrated in Figure 3, every log line is made a constant part and a variable part. Log

parsing extracts the constant part. Since log parsing is not the focus of our study, we

reuse the state-of-the art parser proposed in Drain [12]. Drain is an online log parsing

approach with fixed depth tree. It allows to parse logs efficiently in real-time.

Figure 3 - Log Parsing Illustration

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

7

4.3. Feature Extraction

As [10], we believe that the occurrence of an event strongly depends on the occurrence

of the most recent events that occurred before that event. Hence, we divide the log file

into sliding windows. For each window, we capture its pattern by building an event

count vector for the window.

An event count vector is built by summing up the number of occurrences of each event

within the window. For example, given a system containing 3 events, the vector

[10, 5, 80] would mean that, within the window, event 1 has occurred 10 times, event 2

has occurred 5 times and event 3 has occurred 80 times.

After combining all the event count vectors, we obtain an 𝑛 ∗ 𝑚 event count matrix

where 𝑛 is the number of windows and 𝑚 is the total number of events within the

system.

4.4. Clustering using OPTICS [13]

To group together similar windows and therefore determine frequent patterns, we use

a clustering algorithm, namely OPTICS (Ordering points to identify the clustering

structure) [14]. OPTICS is a better version of DBSCAN (Density based spatial clustering of

applications with noise) [15] algorithm which solves DBSCAN’s issue of not being able to

cluster points in varying density datasets. Compared to K-Means clustering [16] and

Agglomerative Hierarchical clustering [17], OPTICS algorithm is not sensitive to outliers

and therefore perfect for anomaly detection. Moreover, it can determine arbitrary

shaped clusters and requires few parameter tunings.

OPTICS is a density-based algorithm. It allows to make groups without having to specify

the number of groups in advance. This is a great asset for our problem as we do not

know in advance how many clusters to expect. Density-based clustering algorithms

consider a cluster to be an area with a huge density of points. The clusters are separated

by areas of low density. The points in low density areas are usually considered noise or

outliers.

OPTICS is based on the observation that given a 𝑀𝑖𝑛𝑃𝑡𝑠 (minimum number of points),

clusters with a higher density are embedded within clusters with a lower density. The

key idea is that higher density points should be processed first. OPTICS retains the

clustering order using: the core distance and the reachability distance.

The Core Distance is the minimum value of radius required to consider a point as a core

point. If a point is not a core point, then its Core Distance is undefined.

The Reachability Distance: the Reachability Distance between two points p and q is the

maximum of the Core Distance of p and the Euclidean Distance (or some other distance

metric) between p and q.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

8

Figure 4 - Core Distance vs Reachability distance [13]

Using OPTICS algorithm, we group together similar windows. Next for each cluster, we

compute its centroid. The centroid of each cluster numerically represents a frequent

pattern.

4.5. Streaming Anomaly Detection Algorithm

To assess the normality of an event, we first assess the normality of the window

containing the event and the 𝑘 − 1 most recent events before it. If the window is

normal, so is the event. If the window is considered abnormal, we assess whether the

current event is a major cause for that abnormality. To achieve that, we find the top 𝑗

events accounting for the abnormality. If the current event is within the top 𝑗

candidates, we flag it as abnormal. Otherwise, we flag it as normal.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

9

5. Experiments

In this section, we describe the dataset used for our experiments, our evaluation metrics

and our evaluation results.

5.1. HDFS logs Dataset [6]

For our experiments we use HDFS (Hadoop Distributed File System) log data set. It a

dataset generated by running Hadoop-based jobs on more than 200 Amazon’s EC2

nodes. The dataset has been labeled by Hadoop domain experts.

Hadoop is an open source framework for efficiently storing and manipulating big data

[18]. Among 11,197,954 log entries in the dataset, about 2.9% are abnormal. More

details about the dataset can be found in [6]. Of the overall 11 million logs, we used 3

million for our experiments.

5.2. Experimental setup

In our experiments, we used 70% of the dataset as training set and 30% as test set.

The code was written using Python 3.7.9 on a windows 10 Enterprise 64-bit desktop

with processor Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz (8 CPUs), ~3.0GHz (16 GB

RAM). We used the OPTICS implementation from sklearn 0.23.2.

5.3. Evaluation metrics

Our framework is evaluated according to precision, recall and F1-Score.

In the following formulas, 𝑇𝑃 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) represents the number of reported

anomalies which were real anomalies. 𝐹𝑃 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) represents the number of

reported anomalies which were not real anomalies. 𝐹𝑁 (𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) represents

the number of reported normal windows which were anomalies.

Precision determines the percentage of reported anomalies which were real anomalies.

It is computed as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1)

Recall determines the percentage of anomalies which were caught among all the

anomalies. It is computed as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2)

F1-Score is the weighted average of precision and recall and is computed as follows:

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (3)

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

10

5.4. Evaluation results

In this section, we describe the results from implementing our framework on HDFS

dataset. We provide the log parsing results, the feature extraction results, and the

framework efficiency with respect to our evaluation metrics.

5.4.1. Log parsing Results

Using Drain [10] we were able to determine that our log file contains about 48 different

events. Their repartition is shown on the figure below:

Figure 5 - Number of occurrences of each type of events in the log file

From figure 5, we can notice that only 10 of those events have a real significance in the

log file. The table below shows 5 of the most occurring events as well as their number of

occurrences in the log file. The following figure shows the repartition of the 10 most

occurring events.

Table 1 - Five of the most recurring events

EventId EventTemplate Occurrences

09a53393 Receiving block <*> src: <*> dest: <*> 1723232

3d91fa85 BLOCK* NameSystem.allocateBlock: <*> <*> 575061

d38aa58d PacketResponder <*> for block <*> <*> 1706728

e3df2680 Received block <*> of size <*> from <*> 1706514

5d5de21c BLOCK* NameSystem.addStoredBlock: blockMap
updated: <*> is added to <*> size <*>

1719741

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

11

Figure 6 - Count of the 10 most occuring events in the logs

5.4.2. Feature Extraction Results

In our experiments, we used 𝟓𝟎 as window size. Approximately 2 million (size of training

dataset) windows were generated for training.

5.4.3. Framework efficiency

The chart below shows are framework efficiency.

71% of reported anomalies by our framework were indeed real anomalies. Our

framework was able to detect all anomalies with a recall of 100%. The final combined F-

measure yields 83% which is a quite high result for an unsupervised framework.

5.4.4. Discussion

It should be noted that we assume that the training logs are in majority normal.

From our results, we can realize that our framework perform pretty well given that it

has only being trained on ~2 million log lines. Moreover, we find that the precision is

relatively average which is mainly due to the unsupervised nature of the framework.

The precision could be made higher by increasing the training size.

Also, we can argue that our results are better than DeepLog [8] which only works in a

supervised setting, given normal logs for training.

71

100

83

0

20

40

60

80

100

120

%

AXIS TITLE

Framework Evaluation

Precision Recall F-Measure

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

12

6. Conclusion and Future Work

With the increasing complexity of today’s computer systems, timely and efficient

anomaly detection has become necessary to prevent failures. As log files record

precious information, they show up as a valuable resource for debugging and preventing

failures. However, log file sizes have grown too large for humans to perform timely and

efficient analysis. To solve this issue, many researchers have proposed automated

anomaly detection frameworks. However, the current state-of-the art fails at providing

an anomaly detection framework which can detect anomalies in real time without

requiring normal or labeled logs.

In this work, we proposed an unsupervised framework for real time anomaly detection.

Our framework does not require neither normal nor labeled logs. Our framework has

two main stages: a knowledge base construction stage which uses clustering for

determining frequent patterns and a streaming anomaly detection phase for detecting

anomalous events in real time. Our framework shows a novel perspective to anomaly

detection in which, rather than alerting whenever an event trace is abnormal, we alert

whenever an event seems abnormal in the context of the most recent events which

occurred before it. We experimented our framework on an HDFS log dataset and

obtained a great F-1 score of ~83%.

In the future, we intend to explore the feasibility of an online unsupervised anomaly

detection framework which can update itself in real-time without requiring periodic

retraining. Moreover, we intend our feature extraction by exploiting the impact of the

other rich features embedded in log files.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

13

References

[1] V. Chandola, A. Banerjee and V. Kumar, "Anomaly detection: A survey," ACM

Computing Surveys, vol. 41, no. 3, 2009.

[2] R. Ahamed, A. Habeeb, F. Nasaruddin, A. Gani, I. A. T. Hashem, E. Ahmed and M.

Imrand, "Real-time big data processing for anomaly detection: A Survey,"

International Journal of Information Management, vol. 45, pp. 289-307, 2019.

[3] D. Forte, "The importance of log files in security incident prevention," in Network

Security, 2009.

[4] B. Marr, "Forbes," 21 May 2018. [Online]. Available:

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-

create-every-day-the-mind-blowing-stats-everyone-should-read/#5b9fd28e60ba.

[5] S. He, J. Zhu, P. He and M. R. Lyu, "Experience Report: System Log Analysis for

Anomaly Detection," in IEEE 27th International Symposium on Software Reliability

Engineering, 2016.

[6] W. Xu, L. Huang, A. Fox, D. Patterson and M. I. Jordan, "Detecting Large-Scale

System Problems by Mining Console Logs," in Proc. of the ACM Symposium on

Operating Systems Principles, 2009.

[7] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang and X. Chen, "Log Clustering based Problem

Identification for Online Service Systems," in IEEE/ACM 38th IEEE International

Conference on Software Engineering Companion, 2016.

[8] J.-G. LOU, Q. FU, S. YANG, Y. XU and J. LI, "Mining Invariants from Console Logs for

System Problem Detection," in Proc. of the USENIX Annual Technical Conference,

2010.

[9] X. Zhang, Y. Xu, H. Zhang, Y. Dang, C. Xie, X. Yang, J. Chen, X. He, R. Yao, J.-G. Lou,

M. Chintalapati, F. Shen and D. Zhang, "Robust Log-Based Anomaly Detection on

Unstable Log Data," in Proceedings of the 2019 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, 2019.

[10] M. Du, F. Li, G. Zheng and V. Srikumar, "DeepLog: Anomaly Detection and

Diagnosis from System Logs through Deep Learning," in ACM Conference on

Computer and Communications Security (CCS), Dallas, 2017.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

14

[11] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang, S. Tao, P. Sun and

R. Zhou, "Unsupervised Detection of Sequential and Quantitative Anomalies in

Unstructured Logs," in Proceedings of the Twenty-Eighth International Joint

Conference on Artificial Intelligence (IJCAI-19), 2019.

[12] P. He, J. Zhu, Z. Zheng and a. M. R. Lyu, "Drain: An Online Log Parsing Approach

with Fixed Depth Tree," in IEEE 24th International Conference on Web Services,

2017.

[13] M. Ankerst, M. M. Breunig, H.-P. Kriegel and J. Sander, "OPTICS: Ordering Points To

Identify the Clustering Structure," in Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery, 2011.

[14] M. M. Breunig, H.-P. Kriegel, R. T. Ng and J. Sander, "OPTICS-OF: Identifying Local

Outliers," in Proceedings of the 3rd European Conference on Principles and Practice

of Knowledge, Prague, 1999.

[15] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, "A density-based algorithm for

discovering clusters in large spatial databases with noise," in Proceedings of 2nd

International Conference on Knowledge Discovery and Data Mining, 1996.

[16] J. A. Hartigan and M. A. Wong, "Algorithm AS 136: A k-Means Clustering

Algorithm," Journal of the Royal Statistical Society, Series C, pp. 100 - 108, 1979.

[17] D. Defays, "An efficient algorithm for a complete-link method," The Computer

Journal - British Computer Society, vol. 20, no. 4, p. 364–366, 1977.

[18] AWS, "What is Hadoop?," [Online]. Available:

https://aws.amazon.com/emr/details/hadoop/what-is-hadoop/.

[19] T. Akidau, "O'Reilly," 5 August 2015. [Online]. Available:

https://www.oreilly.com/radar/the-world-beyond-batch-streaming-101/.

[20] M. Shukla, Y. P. Kosta and M. Jayswal, "A Modified Approach of OPTICS Algorithm

for Data Streams," in Engineering, Technology & Applied Science Researh, 2017.

[21] J. Sander, "Density Based Clustering," Encyclopedia of Machine Learning, 2011.

[22] X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia and G. Lu, "LogMaster: Mining Event

Correlations in Logs ofLarge-scale Cluster Systems," in 31st International

Symposium on Reliable Distributed Systems, 2012.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

15

[23] S. Zhang, W. Meng, J. Bu, S. Yang, Y. Liu and D. Pei, "Syslog Processing for Switch

FailureDiagnosis and Prediction in Datacenter Networks," in IEEE International

Workshop on Quality of Service, 2017.

[24] Z. LIU, T. QIN, X. GUAN, H. JIANG and C. WANG, "An Integrated Method for

Anomaly DetectionFrom Massive System Logs," in IEEE SPECIAL SECTION ON

SECURITY AND TRUSTED COMPUTING FORINDUSTRIAL INTERNET OF THINGS,

2018.

[25] R. Vaarandi, B. Blumbergs and M. Kont, "An Unsupervised Framework for

Detecting Anomalous Messages from Syslog Log Files," in IEEE/IFIP Network

Operations and Management Symposium, 2018.

[26] Y. Cui, S. Ahmad and J. Hawkins, "Continuous online sequence learning with an

unsupervised neural network model," 2016.

[27] C. Monni and M. Pezz, "Energy-Based Anomaly DetectionA New Perspective for

Predicting Software Failures," in IEEE/ACM 41st International Conference on

Software Engineering: New Ideas and Emerging Results (ICSE-NIER), 2019.

[28] M. Astekin, H. Zengin and H. S. ozer, "Evaluation of Distributed Machine

LearningAlgorithms for Anomaly Detection fromLarge-Scale System Logs: A Case

Study," in IEEE International Conference on Big Data (Big Data), 2018.

[29] C. Bertero, M. Roy, C. Sauvanaud and G. Trédan, "Experience Report: Log Mining

using Natural LanguageProcessing and Application to Anomaly Detection," 2017.

[30] W. i. X. u, L. Huang, A. Fox, D. Patterson and M. Jordan, "Online System Problem

Detection by Mining Patterns of Console Logs," in Ninth IEEE International

Conference on Data Mining, 2009.

[31] G. J. Ferrer, "Real-time Unsupervised Clustering," 2016.

[32] Z. Zhao, S. Cerf, R. Birke, B. Robu, S. Bouchenak, S. B. Mokhtar and L. Y. Chen,

"Robust Anomaly Detection on Unreliable Data," 2020.

[33] S. Ahmada, AlexanderLavina, S. Purdya and Z. Agha, "Unsupervised real-time

anomaly detection for streaming data," Elsevier, vol. Neurocomputing, pp. 134 -

147, 2017.

[34] R. Dominguesa, M. Filipponea, P. Michiardia and J. Zouaouib, "A comparative

evaluation of outlier detectionalgorithms: experiments and analyses," Elsevier,

2018.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

16

[35] M. Salehi, C. Leckie, J. C. Bezdek, T. Vaithianathan and X. Zhang, "Fast Memory

Efficient Local Outlier Detectionin Data Streams," in IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, 2016.

[36] P. Bodık, M. Goldszmidt, A. Fox, D. B. Woodard and H. Andersen, "Fingerprinting

the datacenter: automated classification of performance crises," ACM digital

libary, 2010.

[37] M. Chen, A. Zheng, J. Lloyd, M. Jordan and E. Brewer, "Failure diagnosis using

decision trees," in International Conference on Autonomic Computing, 2004.

[38] Y. Liang, Y. Zhang, H. Xiong and R. Sahoo, "Failure Prediction in IBM BlueGene/L

Event Logs," in Seventh IEEE International Conference on Data Mining, 2007.

[39] P. He, J. Zhu, S. He, J. Li and M. R. Lyu, "An Evaluation Study on Log Parsing and Its

Use in Log Mining," in 46th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), 2016.

[40] V. CHANDOLA, A. BANERJEE and V. KUMAR, "Anomaly detection: A survey," ACM

DL, 2009.

[41] S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso and O. Kao, "Self-Attentive

Classification-Based Anomaly," in ICDM, 2020.

[42] K. J. S. C. P. Anton A. Chuvakin, Logging and Log Management: The Authoritative

Guide to Understanding the Concepts Surrounding Logging and Log Management.

[43] Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan and S. Li, "Which Variables Should I Log?,"

in TSE, 2019.

[44] M. Du and F. Li, "Spell: Streaming Parsing of System Event Logs," in ICDM, 2016.

[45] V. CHANDOLA, A. BANERJEE and V. KUMAR, "Outlier Detection : A Survey," ACM

Computing Surveys, 2007.

[46] L. Kalinichenko, Shanin and Taraban, "Methods for Anomaly Detection: a Survey,"

CEUR Workshop, 2014.

[47] F.Sabahi and A.Movaghar, "Intrusion Detection: A Survey," in The Third

International Conference on Systems and Networks Communications, 2008.

[48] J. Zhu, J. LIU, M. R. Lyu, P. He, S. HE and Z. Chen, "Log Analytics Powered by AI,"

[Online]. Available: https://github.com/logpai.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

17

[49] G. Gan and M. K.-P. Ng, "k -means clustering with outlier removal," Pattern

Recognition Letters, 2017.

[50] Y. Gong, R. O. Sinnott and P. Rimba, "RT-DBSCAN: Real-time Parallel Clustering of

Spatio-Temporal Data using Spark-Streaming," in International Conference on

Computational Science, 2018.

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

18

Appendix : Source Code

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

19

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

20

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

21

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

22

DocuSign Envelope ID: F84BE63B-63C4-4F4C-9641-82D0F6BD92C5DocuSign Envelope ID: 6EA0D1C9-C3BB-4703-BAD7-867AB0B736D9

	An Unsupervised Anomaly Detection Framework for Detecting Anomalies in Real Time through Network System’s Log Files Analysis
	Recommended Citation

	tmp.1608330998.pdf.XlwJd

